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State of the Art i

• Secure messaging as a proper cryptographic
sub-discipline has elevated itself into a frenzy throughout
the past years.

• Several ratcheting protocols tackling different areas of the
security spectrum have been proposed.
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State of the Art ii

The fundamental goal, however, is the same for all protocols.

How to secure an asynchronous channel between two partici-
pants that arbitrarily switch their roles (sender/receiver) in the
presence of state exposures.
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State of the Art iii

• Forward Security: Prevent the decryption of past
messages by deleting old states through one-way
functions.

• Post-Compromise Security: Prevent the decryption of
future communication by introducing some form of
randomness into the states (ratcheting).
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State of the Art iv

OTR [BGB04]: The earliest ratcheting protocol. Superseded by
the omnipresent Signal whose security was formally assessed
in 2017 [CCD+17].

• Synchronized ratcheting protocol by Cohn-Gordon et
al. [CCG16].

• Unidirectional, no forward-security protocol by Bellare et
al. [BSJ+17].

4



State of the Art v

PR [PR18]: Poettering and Rösler proposed a protocol in the
random oracle model with optimal security that relies on HIBE
but does not consider a potential leakage of random coins.

• JS [JS18]: A similar construction by Jaeger and Stepanovs
also in the random oracle model utilizing HIBE but
incorporates coin leakages before their usage.
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State of the Art vi

DV [DV19]: Durak and Vaudenay put forward a highly efficient
protocol with slightly lower security that is based on a
public-key cryptosystem, a digital signature scheme, a
one-time symmetric encryption construction and a
collision-resistant hash function.

• Introduces r-RECOVER security.

• Post-compromise security implies public-key
cryptography.
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State of the Art vii

JMM [JMM19]: Jost, Maurer and Mularczyk proposed another
protocol in the random oracle model with a security level
somewhere between PR and DV with coin leakage resilience
after their usage.

• Also based on ordinary primitives but not as efficient as
DV.
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State of the Art viii

ACD [ACD19]: Alwen, Coretti and Dodis proposed a
reinterpretation of Signal with immediate decryption and
security against adversarially chosen random coins. However,
when the direction of communication does not change, the
construction only relies on symmetric cryptography.

• ACD-PK is a tweak that does offer post-compromise
security.
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State of the Art ix

EtH [YV20]: The most efficient protocol (Encrypt-then-Hash) to
date was recently proposed by Yan and Vaudenay but does not
offer any post-compromise security.
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Crux

In all proposed constructions the users are oblivious to the ac-
tual protocols. Active attacks may occur undetected as commu-
nication progresses. Additionally, there is no way to modulate
the security level. In some scenarios, better performance is war-
ranted at the cost of reduced security guarantees. The known
protocols are either strongly secure but impractical or the other
way around.
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Contributions i

• Formal definition of the security awareness notion, in
which users are able to detect active attacks by noticing a
communication breakdown. Consequently, every
acknowledged message is deemed confidential.

• Users can deduce from incoming messages which of the
outgoing ones were actually delivered (acknowledgment
extractor).

• Given a transcript of sent and received messages
alongside potential state exposures we want to pinpoint
which messages remain private (cleanness extractor).
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Contributions ii

• Generic toolbox that allows the composition of any two
protocols with different security levels. When a strongly
secure protocol is paired with a weaker but more efficient
protocol, we obtain the notion of ratchet on-demand.

• Hybrid system of two identical protocols that allows to
reinstantiate broken communication.
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Contributions iii

• Comprehensive implementation benchmark of all
discussed schemes, i.e., PR, JS, DV, JMM, ACD, ACD-PK and
EtH.
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Preliminaries i

Definition (ARCAD)
An asynchronous ratcheted communication with associated
data consists of the following PPT algorithms:

• Setup(1λ) $−→ pp

• Gen(1λ,pp) $−→ (sk,pk)
• Init(1λ,pp, skP,pkP) → stP
• Send(stP, ad,pt) $−→ (st′P, ct)
• Receive(stP, ad, ct) → (acc, st′P,pt)
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Preliminaries ii
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Preliminaries iii

Definition (Matching Status [DV19])
P is in a matching status at time t for P if

1. at any moment of the game before time t for P, receivedPct
is a prefix of sentPct;

2. at any moment of the game before time t for P, receivedPct
is a prefix of sentPct.
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Preliminaries iv

In order to simply the analysis of various security we would
like to tuck away trivial attacks behind a cleanness predicate
Cclean such that the games for other security notions become
easier to parse.

• FORGE

• r-RECOVER
• PREDICT
• INC-CCA
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Preliminaries v
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Preliminaries vi

Adv(A) =
∣∣∣Pr [IND-CCAA0,Cclean(1λ) → 1

]
− Pr

[
IND-CCAA1,Cclean(1

λ) → 1
]∣∣∣
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Security Awareness i

• r-RECOVER security averts that a users P continues to
accepts genuine ct from P after having received a forgery.
However, P is still capable of receiving messages from P.

• A communication breakdown should reveal any forgery
and receiving genuine messages should indicate that no
forgeries took place.
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Security Awareness ii
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Security Awareness iii

Lemma
If an ARCAD is r-RECOVER, s-RECOVER and PREDICT secure,
whenever P receives a genuine message from P (i.e., a (ad,ct)
pair sent by P is accepted by P), P is in a matching status,
except with negligible probability.
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Security Awareness iv

• In addition to RECOVER security, we want to give a user
the power to verify whether a message has been accepted
by his counterpart and check whether some cleanness
predicate Cclean has been violated.

• Let TP(t) be the chronological partial transcript up to time
t of send, receive, exposure and challenge calls involving
user P alongside the (ad,ct) pairs corresponding to the
send, receive invocations. Let TRATCHP (t) be the transcript
that only contains send, receive and challenge calls.
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Security Awareness v

Definition (Acknowledgment Extractor)
Given TP(t) and a message (ad, ct) successfully received by P
at time t that was sent by P at time t, let (ad′, ct′) be the last
message received by P before time t.

An acknowledgment extractor is an efficient function f such
that f

(
TRATCHP (t)

)
= (ad′, ct′) for any time t when P is a

matching status.
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Security Awareness vi

Definition (Cleanness Extractor)
Let TP(t) and TP(t) be two partial transcripts, there is a
cleanness extractor for Cclean if there is an efficient function g
such that g(TP(t), TP(t)) has the following properties: if there
is one challenge in TP(t), and either P received (adtest, cttest)
or there is a round trip P→ P→ P starting with P sending
(adtest, cttest), then g(TP(t), TP(t)) = Cclean.
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Security Awareness vii

We give a generic construction that elevates any secure ARCAD0
into a security-aware ARCAD1 = chain(ARCAD0).
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Security Awareness viii

• Intuitively, a blockchain-like structure that contains a
hash chain of sent ciphertexts that is sent alongside each
message suffices to associate each message to the digest
of the chain.

• Hsent: Hash of all sent ciphertexts. Computed by the
sender, sent along each message and updated with a
hashing key hk.

• Hreceived: Hash of all received ciphertexts. Also updated
with hk upon every reception.

• Hsent and Hreceived are enough to ensure r-RECOVER
security.
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Security Awareness ix

• Areceived: Counter of received messages that need to be
reported in the next send call where the last Hreceived is
attached to ct to acknowledge received messages and
Areceived = 0.

• Asent: List of the hashes of sent ciphertexts that are
waiting for an acknowledgment.

• Any impersonation of a participant leads to an immediate
cut of communication as the intrusion is detected.
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Security Awareness x
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Security Awareness xi
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Security Awareness xii

Lemma
If H is collision-resistant, chain(ARCAD0) is RECOVER-secure
(for both r-RECOVER and s-RECOVER).

Lemma
chain(ARCAD0) has an acknowledgment extractor.
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Security Awareness xiii

Lemma
chain(ARCAD0) has a cleanness extractor for the following
predicates:

Cleak, C
A,B
trivialforge, C

Ptest
trivialforge, C

A,B
forge, C

Ptest
forge, Cleak, Cnoexp.

Lemma
If ARCAD0 is PREDICT-secure, then chain(ARCAD0) is
PREDICT-secure.
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On-Demand Ratcheting i

• Combine a strongly secure protocol (using public-key
cryptography) with a weaker (only symmetric-key
cryptography) but more efficient construction.

• Use the weak protocol for frequent exchanges (no
post-compromise security) and periodically ratchet with
the strong one.

• Ratcheting could be administered at the application level
or even by the user.
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On-Demand Ratcheting ii

• Denote by ARCADmain the strong protocol and by ARCADsub
the weak protocol.

• An on-demand ratcheting is scheme is denoted by
hybrid (ARCADmain,ARCADsub).

• Use flag that is sent together with ad to instigate
ratcheting.
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On-Demand Ratcheting iii

• The protocol proceeds in epochs, first defined in PR.
Intuitively, an epoch designates a badge of sent/received
messages until the direction of communication changes.

• Each user stores two counters ePsend, ePrec indicating the
epoch of the last sent and received message.

• An epoch counter em is sent along each message, i.e.,

em =

ePsend if ePrec < ePsend
ePrec + 1 otherwise.
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On-Demand Ratcheting iv
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On-Demand Ratcheting v

• In addition to the epoch counters, each user keeps count
of the number of messages within one epoch, i.e., ctr[em].

• Every ARCADmain call creates a new ARCADsub
send/receive state pair. The sender stores the send state
in sub[em, ctr[em]] and transmits the receive state in the
ciphertext.
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On-Demand Ratcheting vi
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On-Demand Ratcheting vii
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On-Demand Ratcheting viii
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On-Demand Ratcheting ix

• Security is derived from ARCADmain and ARCADsub.

• If ARCADmain = ARCADsub, then ARCADmain can be used to
generate a new ARCADsub session, making it possible to
restore communication.
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Benchmarks i

We implemented PR, JS, DV, JMM, ACD, ACD-PK and EtH on a
machine comparable to a high-end smartphone in three
different scenarios:
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Benchmarks ii
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Benchmarks iii
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Benchmarks iv
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