
Beyond Security and Efficiency: On-Demand
Ratcheting with Security Awareness

Andrea Caforio† and F. Betül Durak⋆ and Serge Vaudenay†

PKC 2021, May 11
†LASEC, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
⋆Robert Bosch LLC - Research and Technology Center, Pittsburgh PA, USA



State of the Art i

• Secure messaging as a proper cryptographic
sub-discipline has elevated itself into a frenzy throughout
the past years.

• Several ratcheting protocols tackling different areas of the
security spectrum have been proposed.

1



State of the Art i

• Secure messaging as a proper cryptographic
sub-discipline has elevated itself into a frenzy throughout
the past years.

• Several ratcheting protocols tackling different areas of the
security spectrum have been proposed.

1



State of the Art ii

The fundamental goal, however, is the same for all protocols.

How to secure an asynchronous channel between two partici-
pants that arbitrarily switch their roles (sender/receiver) in the
presence of state exposures.

2



State of the Art iii

• Forward Security: Prevent the decryption of past
messages by deleting old states through one-way
functions.

• Post-Compromise Security: Prevent the decryption of
future communication by introducing some form of
randomness into the states (ratcheting).

3



State of the Art iii

• Forward Security: Prevent the decryption of past
messages by deleting old states through one-way
functions.

• Post-Compromise Security: Prevent the decryption of
future communication by introducing some form of
randomness into the states (ratcheting).

3



State of the Art iv

OTR [BGB04]: The earliest ratcheting protocol. Superseded by
the omnipresent Signal whose security was formally assessed
in 2017 [CCD+17].

• Synchronized ratcheting protocol by Cohn-Gordon et
al. [CCG16].

• Unidirectional, no forward-security protocol by Bellare et
al. [BSJ+17].

4



State of the Art v

PR [PR18]: Poettering and Rösler proposed a protocol in the
random oracle model with optimal security that relies on HIBE
but does not consider a potential leakage of random coins.

• JS [JS18]: A similar construction by Jaeger and Stepanovs
also in the random oracle model utilizing HIBE but
incorporates coin leakages before their usage.

5



State of the Art vi

DV [DV19]: Durak and Vaudenay put forward a highly efficient
protocol with slightly lower security that is based on a
public-key cryptosystem, a digital signature scheme, a
one-time symmetric encryption construction and a
collision-resistant hash function.

• Introduces r-RECOVER security.

• Post-compromise security implies public-key
cryptography.

6



State of the Art vi

DV [DV19]: Durak and Vaudenay put forward a highly efficient
protocol with slightly lower security that is based on a
public-key cryptosystem, a digital signature scheme, a
one-time symmetric encryption construction and a
collision-resistant hash function.

• Introduces r-RECOVER security.
• Post-compromise security implies public-key
cryptography.

6



State of the Art vii

JMM [JMM19]: Jost, Maurer and Mularczyk proposed another
protocol in the random oracle model with a security level
somewhere between PR and DV with coin leakage resilience
after their usage.

• Also based on ordinary primitives but not as efficient as
DV.

7



State of the Art viii

ACD [ACD19]: Alwen, Coretti and Dodis proposed a
reinterpretation of Signal with immediate decryption and
security against adversarially chosen random coins. However,
when the direction of communication does not change, the
construction only relies on symmetric cryptography.

• ACD-PK is a tweak that does offer post-compromise
security.

8



State of the Art ix

EtH [YV20]: The most efficient protocol (Encrypt-then-Hash) to
date was recently proposed by Yan and Vaudenay but does not
offer any post-compromise security.

9



Crux

In all proposed constructions the users are oblivious to the ac-
tual protocols. Active attacks may occur undetected as commu-
nication progresses. Additionally, there is no way to modulate
the security level. In some scenarios, better performance is war-
ranted at the cost of reduced security guarantees. The known
protocols are either strongly secure but impractical or the other
way around.

10



Contributions i

• Formal definition of the security awareness notion, in
which users are able to detect active attacks by noticing a
communication breakdown. Consequently, every
acknowledged message is deemed confidential.

• Users can deduce from incoming messages which of the
outgoing ones were actually delivered (acknowledgment
extractor).

• Given a transcript of sent and received messages
alongside potential state exposures we want to pinpoint
which messages remain private (cleanness extractor).

11



Contributions i

• Formal definition of the security awareness notion, in
which users are able to detect active attacks by noticing a
communication breakdown. Consequently, every
acknowledged message is deemed confidential.

• Users can deduce from incoming messages which of the
outgoing ones were actually delivered (acknowledgment
extractor).

• Given a transcript of sent and received messages
alongside potential state exposures we want to pinpoint
which messages remain private (cleanness extractor).

11



Contributions i

• Formal definition of the security awareness notion, in
which users are able to detect active attacks by noticing a
communication breakdown. Consequently, every
acknowledged message is deemed confidential.

• Users can deduce from incoming messages which of the
outgoing ones were actually delivered (acknowledgment
extractor).

• Given a transcript of sent and received messages
alongside potential state exposures we want to pinpoint
which messages remain private (cleanness extractor).

11



Contributions ii

• Generic toolbox that allows the composition of any two
protocols with different security levels. When a strongly
secure protocol is paired with a weaker but more efficient
protocol, we obtain the notion of ratchet on-demand.

• Hybrid system of two identical protocols that allows to
reinstantiate broken communication.

12



Contributions ii

• Generic toolbox that allows the composition of any two
protocols with different security levels. When a strongly
secure protocol is paired with a weaker but more efficient
protocol, we obtain the notion of ratchet on-demand.

• Hybrid system of two identical protocols that allows to
reinstantiate broken communication.

12



Contributions iii

• Comprehensive implementation benchmark of all
discussed schemes, i.e., PR, JS, DV, JMM, ACD, ACD-PK and
EtH.

13



Preliminaries i

Definition (ARCAD)
An asynchronous ratcheted communication with associated
data consists of the following PPT algorithms:

• Setup(1λ) $−→ pp

• Gen(1λ,pp) $−→ (sk,pk)
• Init(1λ,pp, skP,pkP) → stP
• Send(stP, ad,pt) $−→ (st′P, ct)
• Receive(stP, ad, ct) → (acc, st′P,pt)

14



Preliminaries i

Definition (ARCAD)
An asynchronous ratcheted communication with associated
data consists of the following PPT algorithms:

• Setup(1λ) $−→ pp

• Gen(1λ,pp) $−→ (sk,pk)

• Init(1λ,pp, skP,pkP) → stP
• Send(stP, ad,pt) $−→ (st′P, ct)
• Receive(stP, ad, ct) → (acc, st′P,pt)

14



Preliminaries i

Definition (ARCAD)
An asynchronous ratcheted communication with associated
data consists of the following PPT algorithms:

• Setup(1λ) $−→ pp

• Gen(1λ,pp) $−→ (sk,pk)
• Init(1λ,pp, skP,pkP) → stP

• Send(stP, ad,pt) $−→ (st′P, ct)
• Receive(stP, ad, ct) → (acc, st′P,pt)

14



Preliminaries i

Definition (ARCAD)
An asynchronous ratcheted communication with associated
data consists of the following PPT algorithms:

• Setup(1λ) $−→ pp

• Gen(1λ,pp) $−→ (sk,pk)
• Init(1λ,pp, skP,pkP) → stP
• Send(stP, ad,pt) $−→ (st′P, ct)

• Receive(stP, ad, ct) → (acc, st′P,pt)

14



Preliminaries i

Definition (ARCAD)
An asynchronous ratcheted communication with associated
data consists of the following PPT algorithms:

• Setup(1λ) $−→ pp

• Gen(1λ,pp) $−→ (sk,pk)
• Init(1λ,pp, skP,pkP) → stP
• Send(stP, ad,pt) $−→ (st′P, ct)
• Receive(stP, ad, ct) → (acc, st′P,pt)

14



Preliminaries ii

15



Preliminaries iii

Definition (Matching Status [DV19])
P is in a matching status at time t for P if

1. at any moment of the game before time t for P, receivedPct
is a prefix of sentPct;

2. at any moment of the game before time t for P, receivedPct
is a prefix of sentPct.

16



Preliminaries iii

Definition (Matching Status [DV19])
P is in a matching status at time t for P if

1. at any moment of the game before time t for P, receivedPct
is a prefix of sentPct;

2. at any moment of the game before time t for P, receivedPct
is a prefix of sentPct.

16



Preliminaries iv

In order to simply the analysis of various security we would
like to tuck away trivial attacks behind a cleanness predicate
Cclean such that the games for other security notions become
easier to parse.

• FORGE

• r-RECOVER
• PREDICT
• INC-CCA

17



Preliminaries iv

In order to simply the analysis of various security we would
like to tuck away trivial attacks behind a cleanness predicate
Cclean such that the games for other security notions become
easier to parse.

• FORGE
• r-RECOVER

• PREDICT
• INC-CCA

17



Preliminaries iv

In order to simply the analysis of various security we would
like to tuck away trivial attacks behind a cleanness predicate
Cclean such that the games for other security notions become
easier to parse.

• FORGE
• r-RECOVER
• PREDICT

• INC-CCA

17



Preliminaries iv

In order to simply the analysis of various security we would
like to tuck away trivial attacks behind a cleanness predicate
Cclean such that the games for other security notions become
easier to parse.

• FORGE
• r-RECOVER
• PREDICT
• INC-CCA

17



Preliminaries v

18



Preliminaries vi

Adv(A) =
∣∣∣Pr [IND-CCAA0,Cclean(1λ) → 1

]
− Pr

[
IND-CCAA1,Cclean(1

λ) → 1
]∣∣∣

19



Security Awareness i

• r-RECOVER security averts that a users P continues to
accepts genuine ct from P after having received a forgery.
However, P is still capable of receiving messages from P.

• A communication breakdown should reveal any forgery
and receiving genuine messages should indicate that no
forgeries took place.

20



Security Awareness i

• r-RECOVER security averts that a users P continues to
accepts genuine ct from P after having received a forgery.
However, P is still capable of receiving messages from P.

• A communication breakdown should reveal any forgery
and receiving genuine messages should indicate that no
forgeries took place.

20



Security Awareness ii

21



Security Awareness iii

Lemma
If an ARCAD is r-RECOVER, s-RECOVER and PREDICT secure,
whenever P receives a genuine message from P (i.e., a (ad,ct)
pair sent by P is accepted by P), P is in a matching status,
except with negligible probability.

22



Security Awareness iv

• In addition to RECOVER security, we want to give a user
the power to verify whether a message has been accepted
by his counterpart and check whether some cleanness
predicate Cclean has been violated.

• Let TP(t) be the chronological partial transcript up to time
t of send, receive, exposure and challenge calls involving
user P alongside the (ad,ct) pairs corresponding to the
send, receive invocations. Let TRATCHP (t) be the transcript
that only contains send, receive and challenge calls.

23



Security Awareness iv

• In addition to RECOVER security, we want to give a user
the power to verify whether a message has been accepted
by his counterpart and check whether some cleanness
predicate Cclean has been violated.

• Let TP(t) be the chronological partial transcript up to time
t of send, receive, exposure and challenge calls involving
user P alongside the (ad,ct) pairs corresponding to the
send, receive invocations. Let TRATCHP (t) be the transcript
that only contains send, receive and challenge calls.

23



Security Awareness v

Definition (Acknowledgment Extractor)
Given TP(t) and a message (ad, ct) successfully received by P
at time t that was sent by P at time t, let (ad′, ct′) be the last
message received by P before time t.

An acknowledgment extractor is an efficient function f such
that f

(
TRATCHP (t)

)
= (ad′, ct′) for any time t when P is a

matching status.

24



Security Awareness vi

Definition (Cleanness Extractor)
Let TP(t) and TP(t) be two partial transcripts, there is a
cleanness extractor for Cclean if there is an efficient function g
such that g(TP(t), TP(t)) has the following properties: if there
is one challenge in TP(t), and either P received (adtest, cttest)
or there is a round trip P→ P→ P starting with P sending
(adtest, cttest), then g(TP(t), TP(t)) = Cclean.

25



Security Awareness vii

We give a generic construction that elevates any secure ARCAD0
into a security-aware ARCAD1 = chain(ARCAD0).

26



Security Awareness viii

• Intuitively, a blockchain-like structure that contains a
hash chain of sent ciphertexts that is sent alongside each
message suffices to associate each message to the digest
of the chain.

• Hsent: Hash of all sent ciphertexts. Computed by the
sender, sent along each message and updated with a
hashing key hk.

• Hreceived: Hash of all received ciphertexts. Also updated
with hk upon every reception.

• Hsent and Hreceived are enough to ensure r-RECOVER
security.

27



Security Awareness viii

• Intuitively, a blockchain-like structure that contains a
hash chain of sent ciphertexts that is sent alongside each
message suffices to associate each message to the digest
of the chain.

• Hsent: Hash of all sent ciphertexts. Computed by the
sender, sent along each message and updated with a
hashing key hk.

• Hreceived: Hash of all received ciphertexts. Also updated
with hk upon every reception.

• Hsent and Hreceived are enough to ensure r-RECOVER
security.

27



Security Awareness viii

• Intuitively, a blockchain-like structure that contains a
hash chain of sent ciphertexts that is sent alongside each
message suffices to associate each message to the digest
of the chain.

• Hsent: Hash of all sent ciphertexts. Computed by the
sender, sent along each message and updated with a
hashing key hk.

• Hreceived: Hash of all received ciphertexts. Also updated
with hk upon every reception.

• Hsent and Hreceived are enough to ensure r-RECOVER
security.

27



Security Awareness viii

• Intuitively, a blockchain-like structure that contains a
hash chain of sent ciphertexts that is sent alongside each
message suffices to associate each message to the digest
of the chain.

• Hsent: Hash of all sent ciphertexts. Computed by the
sender, sent along each message and updated with a
hashing key hk.

• Hreceived: Hash of all received ciphertexts. Also updated
with hk upon every reception.

• Hsent and Hreceived are enough to ensure r-RECOVER
security.

27



Security Awareness ix

• Areceived: Counter of received messages that need to be
reported in the next send call where the last Hreceived is
attached to ct to acknowledge received messages and
Areceived = 0.

• Asent: List of the hashes of sent ciphertexts that are
waiting for an acknowledgment.

• Any impersonation of a participant leads to an immediate
cut of communication as the intrusion is detected.

28



Security Awareness ix

• Areceived: Counter of received messages that need to be
reported in the next send call where the last Hreceived is
attached to ct to acknowledge received messages and
Areceived = 0.

• Asent: List of the hashes of sent ciphertexts that are
waiting for an acknowledgment.

• Any impersonation of a participant leads to an immediate
cut of communication as the intrusion is detected.

28



Security Awareness ix

• Areceived: Counter of received messages that need to be
reported in the next send call where the last Hreceived is
attached to ct to acknowledge received messages and
Areceived = 0.

• Asent: List of the hashes of sent ciphertexts that are
waiting for an acknowledgment.

• Any impersonation of a participant leads to an immediate
cut of communication as the intrusion is detected.

28



Security Awareness x

29



Security Awareness xi

30



Security Awareness xii

Lemma
If H is collision-resistant, chain(ARCAD0) is RECOVER-secure
(for both r-RECOVER and s-RECOVER).

Lemma
chain(ARCAD0) has an acknowledgment extractor.

31



Security Awareness xiii

Lemma
chain(ARCAD0) has a cleanness extractor for the following
predicates:

Cleak, C
A,B
trivialforge, C

Ptest
trivialforge, C

A,B
forge, C

Ptest
forge, Cleak, Cnoexp.

Lemma
If ARCAD0 is PREDICT-secure, then chain(ARCAD0) is
PREDICT-secure.

32



On-Demand Ratcheting i

• Combine a strongly secure protocol (using public-key
cryptography) with a weaker (only symmetric-key
cryptography) but more efficient construction.

• Use the weak protocol for frequent exchanges (no
post-compromise security) and periodically ratchet with
the strong one.

• Ratcheting could be administered at the application level
or even by the user.

33



On-Demand Ratcheting i

• Combine a strongly secure protocol (using public-key
cryptography) with a weaker (only symmetric-key
cryptography) but more efficient construction.

• Use the weak protocol for frequent exchanges (no
post-compromise security) and periodically ratchet with
the strong one.

• Ratcheting could be administered at the application level
or even by the user.

33



On-Demand Ratcheting i

• Combine a strongly secure protocol (using public-key
cryptography) with a weaker (only symmetric-key
cryptography) but more efficient construction.

• Use the weak protocol for frequent exchanges (no
post-compromise security) and periodically ratchet with
the strong one.

• Ratcheting could be administered at the application level
or even by the user.

33



On-Demand Ratcheting ii

• Denote by ARCADmain the strong protocol and by ARCADsub
the weak protocol.

• An on-demand ratcheting is scheme is denoted by
hybrid (ARCADmain,ARCADsub).

• Use flag that is sent together with ad to instigate
ratcheting.

34



On-Demand Ratcheting ii

• Denote by ARCADmain the strong protocol and by ARCADsub
the weak protocol.

• An on-demand ratcheting is scheme is denoted by
hybrid (ARCADmain,ARCADsub).

• Use flag that is sent together with ad to instigate
ratcheting.

34



On-Demand Ratcheting ii

• Denote by ARCADmain the strong protocol and by ARCADsub
the weak protocol.

• An on-demand ratcheting is scheme is denoted by
hybrid (ARCADmain,ARCADsub).

• Use flag that is sent together with ad to instigate
ratcheting.

34



On-Demand Ratcheting iii

• The protocol proceeds in epochs, first defined in PR.
Intuitively, an epoch designates a badge of sent/received
messages until the direction of communication changes.

• Each user stores two counters ePsend, ePrec indicating the
epoch of the last sent and received message.

• An epoch counter em is sent along each message, i.e.,

em =

ePsend if ePrec < ePsend
ePrec + 1 otherwise.

35



On-Demand Ratcheting iii

• The protocol proceeds in epochs, first defined in PR.
Intuitively, an epoch designates a badge of sent/received
messages until the direction of communication changes.

• Each user stores two counters ePsend, ePrec indicating the
epoch of the last sent and received message.

• An epoch counter em is sent along each message, i.e.,

em =

ePsend if ePrec < ePsend
ePrec + 1 otherwise.

35



On-Demand Ratcheting iii

• The protocol proceeds in epochs, first defined in PR.
Intuitively, an epoch designates a badge of sent/received
messages until the direction of communication changes.

• Each user stores two counters ePsend, ePrec indicating the
epoch of the last sent and received message.

• An epoch counter em is sent along each message, i.e.,

em =

ePsend if ePrec < ePsend
ePrec + 1 otherwise.

35



On-Demand Ratcheting iv

36



On-Demand Ratcheting v

• In addition to the epoch counters, each user keeps count
of the number of messages within one epoch, i.e., ctr[em].

• Every ARCADmain call creates a new ARCADsub
send/receive state pair. The sender stores the send state
in sub[em, ctr[em]] and transmits the receive state in the
ciphertext.

37



On-Demand Ratcheting v

• In addition to the epoch counters, each user keeps count
of the number of messages within one epoch, i.e., ctr[em].

• Every ARCADmain call creates a new ARCADsub
send/receive state pair. The sender stores the send state
in sub[em, ctr[em]] and transmits the receive state in the
ciphertext.

37



On-Demand Ratcheting vi

38



On-Demand Ratcheting vii

39



On-Demand Ratcheting viii

40



On-Demand Ratcheting ix

• Security is derived from ARCADmain and ARCADsub.

• If ARCADmain = ARCADsub, then ARCADmain can be used to
generate a new ARCADsub session, making it possible to
restore communication.

41



On-Demand Ratcheting ix

• Security is derived from ARCADmain and ARCADsub.
• If ARCADmain = ARCADsub, then ARCADmain can be used to
generate a new ARCADsub session, making it possible to
restore communication.

41



Benchmarks i

We implemented PR, JS, DV, JMM, ACD, ACD-PK and EtH on a
machine comparable to a high-end smartphone in three
different scenarios:

42



Benchmarks ii

43



Benchmarks iii

44



Benchmarks iv

45



46



References i

Joël Alwen, Sandro Coretti, and Yevgeniy Dodis.
The double ratchet: Security notions, proofs, and
modularization for the signal protocol.
In Yuval Ishai and Vincent Rijmen, editors, Advances in
Cryptology - EUROCRYPT 2019 - 38th Annual International
Conference on the Theory and Applications of
Cryptographic Techniques, Darmstadt, Germany, May 19-23,
2019, Proceedings, Part I, volume 11476 of Lecture Notes in
Computer Science, pages 129–158. Springer, 2019.

47



References ii

Nikita Borisov, Ian Goldberg, and Eric A. Brewer.
Off-the-record communication, or, why not to use PGP.
In Vijay Atluri, Paul F. Syverson, and Sabrina De Capitani
di Vimercati, editors, Proceedings of the 2004 ACM
Workshop on Privacy in the Electronic Society, WPES 2004,
Washington, DC, USA, October 28, 2004, pages 77–84. ACM,
2004.
Mihir Bellare, Asha Camper Singh, Joseph Jaeger, Maya
Nyayapati, and Igors Stepanovs.
Ratcheted encryption and key exchange: The security of
messaging.

48



References iii

In Jonathan Katz and Hovav Shacham, editors, Advances in
Cryptology - CRYPTO 2017 - 37th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August
20-24, 2017, Proceedings, Part III, volume 10403 of Lecture
Notes in Computer Science, pages 619–650. Springer, 2017.

Katriel Cohn-Gordon, Cas J. F. Cremers, Benjamin Dowling,
Luke Garratt, and Douglas Stebila.
A formal security analysis of the signal messaging
protocol.
In 2017 IEEE European Symposium on Security and Privacy,
EuroS&P 2017, Paris, France, April 26-28, 2017, pages
451–466. IEEE, 2017.

49



References iv

Katriel Cohn-Gordon, Cas J. F. Cremers, and Luke Garratt.
On post-compromise security.
In IEEE 29th Computer Security Foundations Symposium,
CSF 2016, Lisbon, Portugal, June 27 - July 1, 2016, pages
164–178. IEEE Computer Society, 2016.

F. Betül Durak and Serge Vaudenay.
Bidirectional asynchronous ratcheted key agreement with
linear complexity.
In Nuttapong Attrapadung and Takeshi Yagi, editors,
Advances in Information and Computer Security - 14th
International Workshop on Security, IWSEC 2019, Tokyo,
Japan, August 28-30, 2019, Proceedings, volume 11689 of

50



References v

Lecture Notes in Computer Science, pages 343–362.
Springer, 2019.

Daniel Jost, Ueli Maurer, and Marta Mularczyk.
Efficient ratcheting: Almost-optimal guarantees for
secure messaging.
In Yuval Ishai and Vincent Rijmen, editors, Advances in
Cryptology - EUROCRYPT 2019 - 38th Annual International
Conference on the Theory and Applications of
Cryptographic Techniques, Darmstadt, Germany, May 19-23,
2019, Proceedings, Part I, volume 11476 of Lecture Notes in
Computer Science, pages 159–188. Springer, 2019.

51



References vi

Joseph Jaeger and Igors Stepanovs.
Optimal channel security against fine-grained state
compromise: The safety of messaging.
In Hovav Shacham and Alexandra Boldyreva, editors,
Advances in Cryptology - CRYPTO 2018 - 38th Annual
International Cryptology Conference, Santa Barbara, CA,
USA, August 19-23, 2018, Proceedings, Part I, volume 10991
of Lecture Notes in Computer Science, pages 33–62.
Springer, 2018.

52



References vii

Bertram Poettering and Paul Rösler.
Towards bidirectional ratcheted key exchange.
In Hovav Shacham and Alexandra Boldyreva, editors,
Advances in Cryptology - CRYPTO 2018 - 38th Annual
International Cryptology Conference, Santa Barbara, CA,
USA, August 19-23, 2018, Proceedings, Part I, volume 10991
of Lecture Notes in Computer Science, pages 3–32. Springer,
2018.

53



References viii

Hailun Yan and Serge Vaudenay.
Symmetric asynchronous ratcheted communication with
associated data.
In Kazumaro Aoki and Akira Kanaoka, editors, Advances in
Information and Computer Security - 15th International
Workshop on Security, IWSEC 2020, Fukui, Japan, September
2-4, 2020, Proceedings, volume 12231 of Lecture Notes in
Computer Science, pages 184–204. Springer, 2020.

54


