
@starkwareltd | @elibensasson

Scaling Computations on Blockchains
with ZK-STARKs
Eli Ben-Sasson | co-founder & President | StarkWare | @elibensasson

@starkwareltd | @elibensasson

Tl;dr

● Blockchains Rock! But lack Scale and Privacy

● ZK-STARKs solve both problems!
a. Theoretically
b. and practically,
c. and accessibly, through Cairo

● So, come learn Cairo!

@starkwareltd | @elibensasson

Tl;dr

● Blockchains Rock! But lack Scale and Privacy

● ZK-STARKs solve both problems!
a. Theoretically
b. and practically,
c. and accessibly, through Cairo

● So, come learn Cairo!

@starkwareltd | @elibensasson

 Trusted Party
=

Delegated
Accountability

Trust central party/auditor

@starkwareltd | @elibensasson

Blockchains
=

Inclusive
Accountability

Verify, Don’t Trust

Verify (all transactions), don’t trust

@starkwareltd | @elibensasson

Blockchains
=

Inclusive
Accountability

Sacrifice Privacy & Scalability

Verify (all transactions), don’t trust

@starkwareltd | @elibensasson

Blockchains
=

Inclusive
Accountability

Scalable ZKPs solve both problems

Sacrifice Privacy & Scalability

Verify (all transactions), don’t trust

@starkwareltd | @elibensasson

libSTARK

Groth16

Cryptographic
Assumptions

SONIC

BulletProofs

Ligero

Aurora

ZKBoo

Collision-Resistant
Hash

PLONK

year 1976 1980s-2000s 2000s-2017

Halo

SLONKMarlinFractal
Succ. Aurora

SuperSonic

1997-2019

A Cambrian Explosion of ZKPs (read my post/watch video)

Scalable (quasi-linear proving, log. verification)

Transparent (no toxic waste)

Elliptic Curve DLP

Pinocchio

Knowledge of
Exponent

Groups of
unknown order

genSTARK

Hodor

openZKP
TONEA STARKSTARK

Semi-Scalable (after pre-processing)

https://medium.com/starkware/the-cambrian-explosion-of-crypto-proofs-7ac080ac9aed
https://www.crowdcast.io/e/the-cambrian-explosion

libSTARK

Ligero

Aurora

ZKBoo

Fractal
Succ. Aurora

Summary (read my post/watch video)

Groth16

SONIC

BulletProofs

PLONK

Halo

SLONKMarlin

SuperSonic

Lean crypto
Post quantum security

Fastest proving time
Future proofing (Lindsey)

Proof length

Pinocchio

genSTARK

Hodor

STARK
openZKP

ZKP Cambrian explosion ongoing, expect more science!

ZKP members differ by (i) arithmetization, (ii)
low-degreeness, and (iii) crypto assumptions

For short proofs, use Groth16 SNARKs.
For everything else, there’s STARKs!

https://medium.com/starkware/the-cambrian-explosion-of-crypto-proofs-7ac080ac9aed
https://www.crowdcast.io/e/the-cambrian-explosion

@starkwareltd | @elibensasson

ZK-STARKs solve (1)
scale (2) privacy

Theoretically

@starkwareltd | @elibensasson

ZK-STARKs solve (1)
scale (2) privacy

Theoretically
and Practically

@starkwareltd | @elibensasson

ZK-STARKs solve (1)
scale (2) privacy

Theoretically
and Practically
and Accessibly

@starkwareltd | @elibensasson

ZK-STARKs solve (1)
scale (2) privacy

Theoretically

@starkwareltd | @elibensasson

Blockchains
=

Inclusive
Accountability

ZK-STARKs solve both problems

Sacrifice Privacy & Scalability

Verify (all transactions), don’t trust

@starkwareltd | @elibensasson

Blockchains
=

Inclusive
Accountability

Sacrifice Privacy & Scalability

Verify (all transactions), don’t trust

accounts

accounts

accounts

accounts

accounts

accounts

ZK-STARKs solve both problems

@starkwareltd | @elibensasson

Verify (all transactions), don’t trust

accounts

accounts

accounts

accounts

accounts

accounts

Privacy (Zero Knowledge, ZK)
Prover’s private inputs are shielded

*With respect to size of computation

Scalability
Exponentially small verifier running time*
Nearly linear prover running time*

 ZK-STARK

Prover verifier

vπ

@starkwareltd | @elibensasson

Verify STARK batch, don’t trust

ZK-STARK

v

v

v

v

v

v

Merkle root

Merkle root

Merkle root

Merkle root

Merkle root

Merkle root

Privacy (Zero Knowledge, ZK)
Prover’s private inputs are shielded

*With respect to size of computation

Scalability
Exponentially small verifier running time*
Nearly linear prover running time*

 ZK-STARK

Prover

π

@starkwareltd | @elibensassonZK-STARK

v

v

v

v

v

v

Merkle root

Merkle root

Merkle root

Merkle root

Merkle root

Merkle root

π, root

π, root

π, root

π, root

π, root

π, root

Verify STARK batch, don’t trust

Privacy (Zero Knowledge, ZK)
Prover’s private inputs are shielded

*With respect to size of computation

Scalability
Exponentially small verifier running time*
Nearly linear prover running time*

 ZK-STARK

Proverroot

π, root

@starkwareltd | @elibensassonZK-STARK

v

v

v

v

v

v

Merkle root

Merkle root

Merkle root

Merkle root

Merkle root

Merkle root

π, root

π, root

π, root

π, root

π, root

π, root

Verify STARK batch, don’t trust

Privacy (Zero Knowledge, ZK)
Prover’s private inputs are shielded

*With respect to size of computation

Scalability
Exponentially small verifier running time*
Nearly linear prover running time*

 ZK-STARK

Proverroot

π, root

@starkwareltd | @elibensassonZK-STARK

v

v

v

v

v

v

Merkle root

Merkle root

Merkle root

Merkle root

Merkle root

Merkle root

π, root

π, root

π, root

π, root

π, root

π, root

Privacy (Zero Knowledge, ZK)
Prover’s private inputs are shielded

*With respect to size of computation

Scalability
Exponentially small verifier running time*
Nearly linear prover running time*

Universality
Applicability to general computation

Transparency
No toxic waste (i.e. no trusted setup)

Lean & Battle-Hardened Cryptography
e.g. post-quantum secure

Verify STARK batch, don’t trust ZK-STARK￼￼

@starkwareltd | @elibensasson

Privacy (Zero Knowledge, ZK)
Prover’s private inputs are shielded

*With respect to size of computation

Scalability
Exponentially small verifier running time*
Nearly linear prover running time*

Universality
Applicability to general computation

Transparency
No toxic waste (i.e. no trusted setup)

Lean & Battle-Hardened Cryptography
e.g. post-quantum secure

 ZK-STARK
Privacy (Zero Knowledge, ZK)
Prover’s private inputs are shielded

*With respect to size of computation

Succinctness
Exponentially small verifier running time only post processing
Arbitrary prover running time

Universality
Applicability to general computation

Non-Interactive
Setup may be (i) > computation time, (ii) trusted (toxic waste)

ZK-SNARK

@starkwareltd | @elibensasson

Privacy (Zero Knowledge, ZK)
Prover’s private inputs are shielded

*With respect to size of computation

Scalability
Exponentially small verifier running time*
Nearly linear prover running time*

Universality
Applicability to general computation

Transparency
No toxic waste (i.e. no trusted setup)

Lean & Battle-Hardened Cryptography
e.g. post-quantum secure

 ZK-STARK
Privacy (Zero Knowledge, ZK)
Prover’s private inputs are shielded

*With respect to size of computation

Succinctness
Exponentially small verifier running time only post processing
Arbitrary prover running time

Universality
Applicability to general computation

Non-Interactive
Setup may be (i) > computation time, (ii) trusted (toxic waste)

ZK-SNARK>

Fiat-Shamir/Micali/BCS16

@starkwareltd | @elibensasson

ZK-STARKs solve (1)
scale (2) privacy

Theoretically
and Practically

@starkwareltd | @elibensasson

Transactions per second (TPS)

Naive Replay StarkEx (DeversiFi)

4

30

9,000

18,000

trading trading

payments payments

@starkwareltd | @elibensasson

@starkwareltd | @elibensasson

How to build an AIR-FRI STARK

Computational
Integrity
Statement

Algebraic
Intermediate
Representation

arithme-
tization

Fast
Reed-Solomon
IOP of Proximity

Scalable
Transparent
ARgument of
Knowledge

Prover

π

π
low degree
 testing

Prover

crypto

@starkwareltd | @elibensasson

How to build an AIR-FRI STARK

Computational
Integrity
Statement

Algebraic
Intermediate
Representation

arithme-
tization

Fast
Reed-Solomon
IOP of Proximity

Scalable
Transparent
ARgument of
Knowledge

Prover

π

π
low degree
 testing

Depends on CI statement

crypto

Does not depends on CI statement

@starkwareltd | @elibensasson

How to build an AIR-FRI STARK

Computational
Integrity
Statement

Algebraic
Intermediate
Representation

arithme-
tization

Prover

π

π

Depends on CI statement

T

w

x0 y0 z0

x1 y1 z1

x2 y2 z2

Constraints

● Xi
2 - Yi+2=0 for i = 0,2,4,...

● Xi Yi+1 =1 for i = 1,9,17,...
● ...

Transition function: constraints on trace

x2 y2 z2

@starkwareltd | @elibensasson

x2 y2 z2

Computational
Integrity
Statement

Algebraic
Intermediate
Representation

arithme-
tization

Prover

π

π

Depends on CI statement

T

w

x0 y0 z0

x1 y1 z1

x2 y2 z2

Constraints

● Xi
2 - Yi+2=0 for i = 0,2,4,...

● Xi Yi+1 =1 for i = 1,9,17,...
● ...

Transition function: constraints on trace

AIR Visualizer

@starkwareltd | @elibensasson

ASIC-like STARK

Computational
Integrity
Statement 1

Algebraic
Intermediate
Representation 1

arithme-
tization

Computational
Integrity
Statement 2

Algebraic
Intermediate
Representation 2

arithme-
tization

π

π

Minimize:
● Trace size (T, w)
● Degree, # constraints
● …
● Debugging? Documenting?
● Reusing? Modifying?

T

w

x0 y0 z0

x1 y1 z1

x2 y2 z2

Constraints

● Xi
2 - Yi+2=0 for i = 0,2,4,...

● Xi Yi+1 =1 for i = 1,9,17,...
● ...

x2 y2 z2

@starkwareltd | @elibensasson

CPU AIR - CAIRo

Computational
Integrity
Statement 1

One AIR to Rule
them All

High Level
Programming Lang

Computational
Integrity
Statement 2

Compiler

High Level
Programming Lang

π

T

x0 y0 z0

x1 y1 z1

x2 y2 z2

One AIR to Rule Them All

w < 50
constraints < 100
Degree = 2
Variable T (depends on prog)

x2 y2 z2

w

@starkwareltd | @elibensasson

Cairo is 1st

● Universal Von Neumann STARK

● Universal Von Neumann verifier on
blockchain (Ethereum Mainnet)

Cairo Theory

One AIR to Rule
them AllCompiler π

T

x0 y0 z0

x1 y1 z1

x2 y2 z2

One AIR to Rule Them All

w < 50
constraints < 100
Degree = 2
Variable T (depends on prog)

x2 y2 z2

w

Scalability
Exponentially small verifier running time*
Nearly linear prover running time*

Transparency
No toxic waste (i.e. no trusted setup)

Universality
Applicability to general computation

@starkwareltd | @elibensasson

Cairo is 1st

● Universal Von Neumann STARK

● Universal Von Neumann verifier on
blockchain (Ethereum Mainnet)

Cairo Theory

Scalability
Exponentially small verifier running time*
Nearly linear prover running time*

Transparency
No toxic waste (i.e. no trusted setup)

Universality
Applicability to general computation

Prior Works on Universal ZKPs

SNARK: Pinocchio, TinyRAM, vnTinyRAM,
Buffet, Pequin, jSNARK, ZEXE,...

STARK: TinyRAM, DiStaff, AirScript, …

Bulletproofs: zkVM, Spacesuit, …

See zkp.science for partial list

https://zkp.science/

@starkwareltd | @elibensasson

ZK-STARKs solve (1)
scale (2) privacy

Theoretically
and Practically

and Accessibly, through Cairo

@starkwareltd | @elibensasson

Hello Cairo!

● Cairo* as MVL - Minimal Viable Language for production STARK systems
○ Goldilocks principle: architecture is “just right” balance of expressibility and STARK prover

efficiency (minimal trace size)
○ Neither too hot: only 3 registers (PC, allocation pointer, frame pointer), minimal instruction

set, …
○ Nor too cold: supports functions, recursion, branching, conditionals, random memory, …

Snippets Library functions

@starkwareltd | @elibensasson

Cairo - Production Grade STARKs for Blockchain

SPOT TRADING NFT TRADING PERPETUAL TRADING

@starkwareltd | @elibensasson

Cairo - Production Grade STARKs for Blockchain

Compiler Virtual Machine IED Extensions Tracer Application Code
Translate Cairo code

into bytecode Runs the Cairo program
and turns it into a trace

Syntax highlighting for
VIM & Visual Studio

Code

Visual rendering of the
program run

StarkEx 2.0 code same
code that powers

DeversiFi on mainnet

@starkwareltd | @elibensasson

Cairo - Production Grade STARKs for Blockchain

● Efficiency
○ Theoretical estimate: Cairo 20-30% more expensive in proving time than ASIC-AIR
○ Real World experience: Cairo trace size << ASIC-AIR trace size
○ Why? High level language allows devs to code complex optimizations safely

@starkwareltd | @elibensasson

Cairo - Next Steps

Cairo education

Proving service on testnet

Visit Cairo playground

Write Cairo code using toolchain

Q1 Q2

Proving service on Mainnet?

Decentralized proving ecosystem

Deploy your scalable app with
Cairo

later

YOU

US

https://www.cairo-lang.org/playground/?utm_source=rwc

@starkwareltd | @elibensasson

Cairo - Come & Play
try it now!

@starkwareltd | @elibensasson

Further resources
STARK Theory

● STARK paper
● FRI paper
● ethSTARK documentation
● Latest FRI soundness

STARK math education

● Blog posts
● Crowdcast STARK @ home series

Cairo resources

● Documentation
● Blogs [1, 2]
● Main page
● Discord server

STARK code

● ethSTARK (open source)
● Ziggy (pq-secure signature, open source)
● Cairo StarkEx code

https://eprint.iacr.org/2018/046
https://eccc.weizmann.ac.il/report/2017/134/
https://github.com/starkware-libs/ethSTARK/blob/master/rescue_stark_documentation.pdf
https://eprint.iacr.org/2020/654
https://starkware.co/math/
https://www.crowdcast.io/elibensasson
https://www.cairo-lang.org/docs/
https://medium.com/starkware/hello-cairo-3cb43b13b209
https://medium.com/starkware/cairo-welcome-on-board-1cf3487554f
https://www.cairo-lang.org/
https://discord.com/invite/P9MqqNrxDA
https://github.com/starkware-libs/ethSTARK
https://github.com/starkware-libs/ethSTARK/tree/ziggy/src/starkware
https://github.com/starkware-libs/cairo-lang/tree/master/src/starkware/cairo/apps/starkex2_0

