Raccoon Attack: Finding and Exploiting Most-Significant-Bit-Oracles in TLS-DH(E)

<u>Robert Merget</u>,¹ Marcus Brinkmann,¹ Nimrod Aviram,² Juraj Somorovsky,³ Johannes Mittmann,⁴ Jörg Schwenk¹

Real World Crypto 2021

¹ Ruhr University Bochum

² Department of Electrical Engineering, Tel Aviv University

³ Paderborn University

⁴ Bundesamt für Sicherheit in der Informationstechnik (BSI), Germany

Transport Layer Security

TLS-DH(E)

TLS-DH(E)

Key derivation and Constant Time Execution

TLS key derivation is based on hash functions

Hash functions operate in O(n) not O(1)

This creates various side-channels:

- Compression function invocation
- Hash function invocation
- Key padding
- Direct side-channel

Example: SHA-256 in OpenSSL

From Side-channel to Exploit

 $\overline{MSB_k}(g^{ab}) = 0?$

Attack Overview

Retrieving the PMS

Constructing Instance of Hidden Number Problem: $\alpha = g^{ab}, t_i = g^{r_i b}, 0 < y_i < 2^{n-k}$

Performance

DH Group	Bit length	k=24	k=20	k=16	k=12	k=8
RFC 5114	1024	d=50 T=6s	d=60 T=10s	d=80 T=26s	d=100 T=111s	d=200 T=9295s
LibTomCrypt	1036	d=50 T=6s	d=60 T=10s	d=80 T=28s	d=100 T=52s	d=180 T=5613s
SKIP	2048	d=100 T=112s	d=120 T=207s	d=160 T=977s	Unsolved	Unsolved

- d = Number of equations required
- T = Time required to solve HNP
- k = Leading Zero bits leaked

Impact

Scan of Alexa Top 100k:

- 32% of the scanned servers supported DHE cipher suites
- 10.9% of those servers reused their ephemeral keys

Firefox was the last to drop support in September 2020

No major browser supports DHE anymore

Countermeasure

Generally:

- Do not leak partial information about secret values
- Make secrets constant size

For TLS:

- Clients should avoid DH(E)
- Servers should not reuse ephemeral keys
- Servers and clients should not use DH

Raccoon and ECDH(E)

TLS does not strip leading zero bytes of shared ECDH secrets

Requires implementation specific side-channels

Further research required, currently not exploitable

Raccoon and TLS 1.3

TLS 1.3 does not strip leading zero bytes of shared secrets

Foresight by David Benjamin in Draft-13 proved useful

Ephemeral key reuse is uncommon

Conclusion

- No need to panic, exploitation is difficult
- The Raccoon attack is not TLS specific
- First time HNP is used to attack DH

More info: https://raccoon-attack.com

Tool to scan your servers:

https://github.com/tls-attacker/TLS-Scanner

