
Cryptographic protocol analysis for
the real world

Nadim Kobeissi, Georgio Nicolas, Mukesh Tiwari
2021 IACR Real World Cryptography Symposium

January 13, 2021

Verifpal

What is Formal Verification?

• Using software tools in order to obtain guarantees on the security of
cryptographic components.
• Protocols have unintended behaviors when confronted with an active

attacker: formal verification can prove security under certain active attacker
scenarios!
• Primitives can act in unexpected ways given certain inputs: formal

verification: formal verification can prove functional correctness of
implementations!

2

Formal Verification Today

Protocols: ProVerif, Tamarin
• Take models of protocols (Signal, TLS)

and find contradictions to queries.

• “Can the attacker decrypt Alice’s first
message to Bob?”

• Are limited to the “symbolic model”,
CryptoVerif works in the “computational
model”.

Code and Implementations: F*

• Exports type checks to the Z3 theorem
prover.

• Can produce provably functionally
correct software implementations of
primitives (e.g. Curve25519 in HACL*).

• Can produce provably functionally
correct protocol implementations
(Signal*).

3

Formal Verification Today

Protocols: ProVerif, Tamarin
• Take models of protocols (Signal, TLS)

and find contradictions to queries.

• “Can the attacker decrypt Alice’s first
message to Bob?”

• Are limited to the “symbolic model”,
CryptoVerif works in the “computational
model”.

Code and Implementations: F*

• Exports type checks to the Z3 theorem
prover.

• Can produce provably functionally
correct software implementations of
primitives (e.g. Curve25519 in HACL*).

• Can produce provably functionally
correct protocol implementations
(Signal*).

3

Formal Verification Today

Protocols: ProVerif, Tamarin
• Take models of protocols (Signal, TLS)

and find contradictions to queries.

• “Can the attacker decrypt Alice’s first
message to Bob?”

• Are limited to the “symbolic model”,
CryptoVerif works in the “computational
model”.

Code and Implementations: F*

• Exports type checks to the Z3 theorem
prover.

• Can produce provably functionally
correct software implementations of
primitives (e.g. Curve25519 in HACL*).

• Can produce provably functionally
correct protocol implementations
(Signal*).

3

Symbolic and Computational Models

Computational Model
• Primitives are nuanced (IND-CPA, IND-

CCA, etc.)

• Security bounds (2128, etc.)

• Human-assisted.

• Produces game-based proof, similar
technique to hand proofs.

Symbolic Model
• Primitives are “perfect” black boxes.
• No algebraic or numeric values.
• Can be fully automated.
• Produces verification of no

contradictions (theorem assures no
missed attacks).

4

Symbolic and Computational Models

Computational Model
• Primitives are nuanced (IND-CPA, IND-

CCA, etc.)

• Security bounds (2128, etc.)

• Human-assisted.

• Produces game-based proof, similar
technique to hand proofs.

Symbolic Model
• Primitives are “perfect” black boxes.
• No algebraic or numeric values.
• Can be fully automated.
• Produces verification of no

contradictions (theorem assures no
missed attacks).

4

Symbolic and Computational Models

Computational Model
• Primitives are nuanced (IND-CPA, IND-

CCA, etc.)

• Security bounds (2128, etc.)

• Human-assisted.

• Produces game-based proof, similar
technique to hand proofs.

Symbolic Model
• Primitives are “perfect” black boxes.
• No algebraic or numeric values.
• Can be fully automated.
• Produces verification of no

contradictions (theorem assures no
missed attacks).

4

Symbolic and Computational Models

Computational Model
• Primitives are nuanced (IND-CPA, IND-

CCA, etc.)

• Security bounds (2128, etc.)

• Human-assisted.

• Produces game-based proof, similar
technique to hand proofs.

Symbolic Model
• Primitives are “perfect” black boxes.
• No algebraic or numeric values.
• Can be fully automated.
• Produces verification of no

contradictions (theorem assures no
missed attacks).

4

Symbolic Verification, Still?

• Research in symbolic verification is still producing novel results:
• Prime, Order Please! Revisiting Small Subgroup and Invalid Curve Attacks on

Protocols using Diffie-Hellman – Cas Cremers and Dennis Jackson
• Seems Legit: Automated Analysis of Subtle Attacks on Protocols that Use Signatures –

Dennis Jackson, Cas Cremers, Katriel Cohn-Gordon and Ralf Sasse

• Many papers published in the past 4 years: symbolic verification proving
(and finding attacks) in Signal, TLS 1.3, Noise, Scuttlebutt, Bluetooth, 5G
and much more!
• This is a great way to work, allowing practitioners to reason better about

their protocols before/as they are implemented.

5

Symbolic Verification, Still?

• Research in symbolic verification is still producing novel results:
• Prime, Order Please! Revisiting Small Subgroup and Invalid Curve Attacks on

Protocols using Diffie-Hellman – Cas Cremers and Dennis Jackson
• Seems Legit: Automated Analysis of Subtle Attacks on Protocols that Use Signatures –

Dennis Jackson, Cas Cremers, Katriel Cohn-Gordon and Ralf Sasse

• Many papers published in the past 4 years: symbolic verification proving
(and finding attacks) in Signal, TLS 1.3, Noise, Scuttlebutt, Bluetooth, 5G
and much more!
• This is a great way to work, allowing practitioners to reason better about

their protocols before/as they are implemented.

5

Symbolic Verification, Still?

• Research in symbolic verification is still producing novel results:
• Prime, Order Please! Revisiting Small Subgroup and Invalid Curve Attacks on

Protocols using Diffie-Hellman – Cas Cremers and Dennis Jackson
• Seems Legit: Automated Analysis of Subtle Attacks on Protocols that Use Signatures –

Dennis Jackson, Cas Cremers, Katriel Cohn-Gordon and Ralf Sasse

• Many papers published in the past 4 years: symbolic verification proving
(and finding attacks) in Signal, TLS 1.3, Noise, Scuttlebutt, Bluetooth, 5G
and much more!
• This is a great way to work, allowing practitioners to reason better about

their protocols before/as they are implemented.

5

Symbolic Verification, Still?

• Research in symbolic verification is still producing novel results:
• Prime, Order Please! Revisiting Small Subgroup and Invalid Curve Attacks on

Protocols using Diffie-Hellman – Cas Cremers and Dennis Jackson
• Seems Legit: Automated Analysis of Subtle Attacks on Protocols that Use Signatures –

Dennis Jackson, Cas Cremers, Katriel Cohn-Gordon and Ralf Sasse

• Many papers published in the past 4 years: symbolic verification proving
(and finding attacks) in Signal, TLS 1.3, Noise, Scuttlebutt, Bluetooth, 5G
and much more!
• This is a great way to work, allowing practitioners to reason better about

their protocols before/as they are implemented.

5

So why isn’t it
used more?!

Symbolic Verification
Overview

• Main tools: ProVerif, Tamarin.
• User writes a model of a protocol in action:

• Signal AKE, bunch of messages between Alice and Bob,
• TLS 1.3 session between a server and a bunch of clients,
• ACME for Let’s Encrypt (with domain name ownership

confirmation…)
• User writes queries:

• “Can someone impersonate the server to the clients?”
• “Can a client hijack another client’s simultaneous

connection to the server?”
• ProVerif and Tamarin try to find contradictions.

6

Symbolic Verification
Overview

• Main tools: ProVerif, Tamarin.
• User writes a model of a protocol in action:

• Signal AKE, bunch of messages between Alice and Bob,
• TLS 1.3 session between a server and a bunch of clients,
• ACME for Let’s Encrypt (with domain name ownership

confirmation…)
• User writes queries:

• “Can someone impersonate the server to the clients?”
• “Can a client hijack another client’s simultaneous

connection to the server?”
• ProVerif and Tamarin try to find contradictions.

6

Symbolic Verification
Overview

• Main tools: ProVerif, Tamarin.
• User writes a model of a protocol in action:

• Signal AKE, bunch of messages between Alice and Bob,
• TLS 1.3 session between a server and a bunch of clients,
• ACME for Let’s Encrypt (with domain name ownership

confirmation…)
• User writes queries:

• “Can someone impersonate the server to the clients?”
• “Can a client hijack another client’s simultaneous

connection to the server?”
• ProVerif and Tamarin try to find contradictions.

6

Symbolic Verification
Overview

• Main tools: ProVerif, Tamarin.
• User writes a model of a protocol in action:

• Signal AKE, bunch of messages between Alice and Bob,
• TLS 1.3 session between a server and a bunch of clients,
• ACME for Let’s Encrypt (with domain name ownership

confirmation…)
• User writes queries:

• “Can someone impersonate the server to the clients?”
• “Can a client hijack another client’s simultaneous

connection to the server?”
• ProVerif and Tamarin try to find contradictions.

6

SoK: Computer-Aided Cryptography
Manuel Barbosa and Gilles Barthe and Karthik Bhargavan and Bruno Blanchet and Cas

Cremers and Kevin Liao and Bryan Parno

Symbolic Verification
Overview

• Main tools: ProVerif, Tamarin.
• User writes a model of a protocol in action:

• Signal AKE, bunch of messages between Alice and Bob,
• TLS 1.3 session between a server and a bunch of clients,
• ACME for Let’s Encrypt (with domain name ownership

confirmation…)
• User writes queries:

• “Can someone impersonate the server to the clients?”
• “Can a client hijack another client’s simultaneous

connection to the server?”
• ProVerif and Tamarin try to find contradictions.

6

SoK: Computer-Aided Cryptography
Manuel Barbosa and Gilles Barthe and Karthik Bhargavan and Bruno Blanchet and Cas

Cremers and Kevin Liao and Bryan Parno

Tamarin and ProVerif: Examples

7

Tamarin and ProVerif: Examples

rule Get_pk:

 [!Pk(A, pk)]

 ""-->

 [Out(pk)]

"// Protocol

rule Init_1:

 [Fr(~ekI), !Ltk($I, ltkI)]

 ""-->

 [Init_1($I, $R, ~ekI)

 , Out("<$I, $R, 'g' ^ ~ekI, sign{'1', $I, $R,'g' ^ ~ekI }
ltkI>)]

rule Init_2:

 let Y = 'g' ^ z "// think of this as a group element check

 in

 [Init_1($I, $R, ~ekI)

 , !Pk($R, pk(ltkR))

 , In("<$R, $I, Y, sign{'2', $R, $I, Y }ltkR>)

]

 "--[SessionKey($I,$R, Y ^ ~ekI)

 , ExpR(z)

]"->

 [InitiatorKey($I,$R, Y ^ ~ekI)]

7

Tamarin

Tamarin and ProVerif: Examples

rule Get_pk:

 [!Pk(A, pk)]

 ""-->

 [Out(pk)]

"// Protocol

rule Init_1:

 [Fr(~ekI), !Ltk($I, ltkI)]

 ""-->

 [Init_1($I, $R, ~ekI)

 , Out("<$I, $R, 'g' ^ ~ekI, sign{'1', $I, $R,'g' ^ ~ekI }
ltkI>)]

rule Init_2:

 let Y = 'g' ^ z "// think of this as a group element check

 in

 [Init_1($I, $R, ~ekI)

 , !Pk($R, pk(ltkR))

 , In("<$R, $I, Y, sign{'2', $R, $I, Y }ltkR>)

]

 "--[SessionKey($I,$R, Y ^ ~ekI)

 , ExpR(z)

]"->

 [InitiatorKey($I,$R, Y ^ ~ekI)]

letfun writeMessage_a(me:principal, them:principal,
hs:handshakestate, payload:bitstring, sid:sessionid) =

 let (ss:symmetricstate, s:keypair, e:keypair, rs:key,
re:key, psk:key, initiator:bool) = handshakestateunpack(hs) in

 let (ne:bitstring, ns:bitstring, ciphertext:bitstring) =
(empty, empty, empty) in

 let e = generate_keypair(key_e(me, them, sid)) in

 let ne = key2bit(getpublickey(e)) in

 let ss = mixHash(ss, ne) in

 let ss = mixKey(ss, getpublickey(e)) in

 let ss = mixKey(ss, dh(e, rs)) in

 let s = generate_keypair(key_s(me)) in

[…]

event(RecvMsg(bob, alice, stagepack_c(sid_b), m)) ""==>
(event(SendMsg(alice, c, stagepack_c(sid_a), m))) "||
((event(LeakS(phase0, alice))) "&& (event(LeakPsk(phase0,
alice, bob)))) "|| ((event(LeakS(phase0, bob))) "&&
(event(LeakPsk(phase0, alice, bob))));

7

ProVerif

Tamarin

Verifpal: New Protocol
Analysis Software

8

Verifpal: New Protocol
Analysis Software

1. An intuitive language for modeling
protocols.

8

Verifpal: New Protocol
Analysis Software

1. An intuitive language for modeling
protocols.

2. Modeling that avoids user error.

8

Verifpal: New Protocol
Analysis Software

1. An intuitive language for modeling
protocols.

2. Modeling that avoids user error.
3. Analysis output that’s easy to

understand.

8

Verifpal: New Protocol
Analysis Software

1. An intuitive language for modeling
protocols.

2. Modeling that avoids user error.
3. Analysis output that’s easy to

understand.
4. IDE integration (Visual Studio

Code), translations to ProVerif and
Coq.

8

A New Approach to Symbolic Verification

…without losing strength
• Can reason about advanced protocols (eg.

Signal, DP-3T) out of the box.

• Can analyze for forward secrecy, key
compromise impersonation and other
advanced queries.

• Unbounded sessions, fresh values, and
other cool symbolic model features.

User-focused approach…

• An intuitive language for modeling
protocols.

• Modeling that avoids user error.
• Analysis output that’s easy to

understand.
• Integration with developer workflow.

9

A New Approach to Symbolic Verification

…without losing strength
• Can reason about advanced protocols (eg.

Signal, DP-3T) out of the box.

• Can analyze for forward secrecy, key
compromise impersonation and other
advanced queries.

• Unbounded sessions, fresh values, and
other cool symbolic model features.

User-focused approach…

• An intuitive language for modeling
protocols.

• Modeling that avoids user error.
• Analysis output that’s easy to

understand.
• Integration with developer workflow.

9

Verifpal Language: Simple and Intuitive

10

Verifpal Language: Hashing Primitives

• Primitives are built-in.
• Users cannot define their own primitives.
• Bug, not a feature: eliminate user error on

the primitive level.
• Verifpal not targeting users interested in

their own primitives (use ProVerif or
Tamarin, they’re really quite excellent!)

Verifpal will never be “better” than ProVerif,
Tamarin, etc. — we are targeting a different
class of user entirely

11

Verifpal Language: Hashing Primitives

• Primitives are built-in.
• Users cannot define their own primitives.
• Bug, not a feature: eliminate user error on

the primitive level.
• Verifpal not targeting users interested in

their own primitives (use ProVerif or
Tamarin, they’re really quite excellent!)

Verifpal will never be “better” than ProVerif,
Tamarin, etc. — we are targeting a different
class of user entirely

11

Verifpal Language: Hashing Primitives

• Primitives are built-in.
• Users cannot define their own primitives.
• Bug, not a feature: eliminate user error on

the primitive level.
• Verifpal not targeting users interested in

their own primitives (use ProVerif or
Tamarin, they’re really quite excellent!)

Verifpal will never be “better” than ProVerif,
Tamarin, etc. — we are targeting a different
class of user entirely

11

Verifpal Language: Hashing Primitives

• Primitives are built-in.
• Users cannot define their own primitives.
• Bug, not a feature: eliminate user error on

the primitive level.
• Verifpal not targeting users interested in

their own primitives (use ProVerif or
Tamarin, they’re really quite excellent!)

Verifpal will never be “better” than ProVerif,
Tamarin, etc. — we are targeting a different
class of user entirely

11

Guarded Constants, Checked Primitives

12

Guarded Constants, Checked Primitives

12

• This challenge-response protocol is
broken:
• Attacker can man-in-the-middle gs.
• Client will send valid even if

signature verification fails.

Guarded Constants, Checked Primitives

12

• This challenge-response protocol is
broken:
• Attacker can man-in-the-middle gs.
• Client will send valid even if

signature verification fails.

• Adding brackets around gs “guards” it
against replacement by the active attacker.

• Adding a question mark after SIGNVERIF
makes the model abort execution if it fails.

Guarded Constants, Checked Primitives

12

• This challenge-response protocol is
broken:
• Attacker can man-in-the-middle gs.
• Client will send valid even if

signature verification fails.

• Adding brackets around gs “guards” it
against replacement by the active attacker.

• Adding a question mark after SIGNVERIF
makes the model abort execution if it fails.

[]

Guarded Constants, Checked Primitives

12

• This challenge-response protocol is
broken:
• Attacker can man-in-the-middle gs.
• Client will send valid even if

signature verification fails.

• Adding brackets around gs “guards” it
against replacement by the active attacker.

• Adding a question mark after SIGNVERIF
makes the model abort execution if it fails.

[]

?

V
al

u
e

T
y
p
es

Constant

Fresh, KnownBy, Guard, Leaked,
Declaration, Qualifier

Primitive

Name, Arguments, Check,
PrimitiveSpec

Equation

Values, rules (gba = gab)

Resolve

ga = g^a

g^a

Deconstruct

DEC(k,m), k ➞ m

m

Reconstruct

k, m ➞
MAC(k,m)

MAC(k, m)

Equivalize

ga^b = gb^a

Learned Value

Model

DecomposeRule

Decompose(ENC(k,
m),k) = m

RecomposeRule

Recompose(a,b) =
x ⇔ a,b,_ ←
SHAMIR_SPLIT(x)

RewriteRule

DEC(k,ENC(k, m))
→ m

RebuildRule

SHAMIR_JOIN(a,b)
→ x ⇔ a,b,_ =
SHAMIR_SPLIT(x)

PrimitiveSpec

KnowledgeMap
• Principals
• Const ➞ Value
• Creator
• KnownBy
• Phase…

Alice’s PrincipalState
• Const ➞ Value
• Guard
• KnownBy
• Wire…

Bob’s PrincipalState
• Const ➞ Value
• Guard
• KnownBy
• Wire…

ga, e1

[gb], e2

Parse

AttackerState

Mutate
PrincipalState
for Next Run

Ga =
g^attacker
Gb = gb…

Queries Analysis

•Check for contradiction to queries after
each run

•Terminate when no new values are being

learned

Translate to Coq
•Work with Coq Library to perform more
in-depth analysis

Protocol Modeling and
Verification
•Iterative process through intuitive
modeling and optional further Coq
modeling

13

Verifpal: Advanced Features

• Protocol phases for temporal logic
(forward secrecy, post-compromise
security).

• Leaking values to the attacker (without
necessarily sending a message).

• Unlinkability queries, freshness queries.

14

• Password values that are “crackable”
unless first hashed using a password-
hashing function.

• Query preconditions: check if a query is
satisfied if and only if another query is
satisfied also.

15

Verifpal for Visual Studio Code

• Syntax highlighting, model formatting,
code completion.

• Protocol diagrams, update live with your
model,

• Insight on hover: show more
information about values, queries, etc.

• Live analysis within Visual Studio
Code!

Verifpal Translations: Coq and ProVerif

• Verifpal models can be translated to
Coq models (complete with formal
semantics, lemmas and proofs on
primitives),

• ProVerif model templates for further
analysis in ProVerif and potentially
CryptoVerif.

16

Verifpal Translations: Coq and ProVerif

• Verifpal models can be translated to
Coq models (complete with formal
semantics, lemmas and proofs on
primitives),

• ProVerif model templates for further
analysis in ProVerif and potentially
CryptoVerif.

16

Easier to Read Analysis Output

17

Protocols Analyzed with Verifpal

• Signal secure messaging protocol.
• Scuttlebutt decentralized protocol.
• ProtonMail encrypted email service.
• Telegram secure messaging protocol.
• DP-3T contact tracing protocol.

18

Limitations and Context

• Does not produce proofs (like CryptoVerif)

• Is not formally proven to not miss attacks (like ProVerif)

Working towards obtaining higher confidence through building relationship to
Coq models of verification method, more scrutiny, more protocols analyzed…

Usefulness is more towards engineers and students.

19

20

Who’s Using Verifpal?

Verifpal in the
Classroom

• Verifpal User Manual: easiest way to learn how to model and analyze
protocols on the planet. Comes with 3 example protocol models!

• NYU test run: huge success. 20-year-old American undergraduates with
no background whatsoever in security were modeling protocols in the first
two weeks of class and understanding security goals/analysis results.

21

Verifpal Heroes

• Illustrated Guide to Protocol Verification
• Covers Coq, F*, Tamarin, ProVerif, CryptoVerif,

EasyCrypt and Verifpal

• Enhanced relationship between Verifpal and other
paradigms + lots of new pedagogical materials

• Interactive online version + book version
• Coming in 2021

22

Thank you, Georgio and Mukesh

23

Thank you, Georgio and Mukesh

Verifpal is released as free and open source software, under version
3 of the GPL.

Check out Verifpal today:
verifpal.com

23

Both attending RWC 2021!

Talk to them! These are great people to work with!

