Veritpal

Cryptographic protocol analysis for
the real world

Aﬁi

Nadim Kobeissi, Georgio Nicolas, Mukesh Tiwari
2021 IACR Real World Cryptography Symposium
January 13, 2021

What 1s Formal Verification?

« Using software tools in order to obtain guarantees on the security of
cryptographic components.

« Protocols have unintended behaviors when confronted with an active
attacker: formal verification can prove security under certain active attacker
scenarios!

« Primitives can act in unexpected ways given certain inputs: formal
verification: formal verification can prove functional correctness of
implementations!

Formal Verification Today

Code and Implementations: F*

. Exports type checks to the Z3 theorem
prover.

« Can produce provably functionally
correct software implementations of

primitives (e.g. Curve25519 in HACL*).

« Can produce provably functionally

correct protocol implementations
(Signal*).

Protocols: ProVerif, Tamarin

. Take models of protocols (Signal, TLS)
and find contradictions to queries.

e “Can the attacker decrypt Alice’s first
message to Bob?”

o Are limited to the “symbolic model”,
CryptoVerif works in the “computational
model”.

Formal Verification Today

Code and Implementations: F* \

. Exports type checks to the Z3 theorem
prover.

« Can produce provably functionally
correct software implementations of
primitives (e.g. Curve25519 in HACL*).

« Can produce provably functionally
correct protocol implementations

K(Signal*). J

Protocols: ProVerif, Tamarin

. Take models of protocols (Signal, TLS)
and find contradictions to queries.

e “Can the attacker decrypt Alice’s first
message to Bob?”

o Are limited to the “symbolic model”,
CryptoVerif works in the “computational
model”.

Formal Verification Today

Code and Implementations: F* @)tocols: ProVerif, Tamarin \

« Exports type checks to the Z3 theorem . Take models of protocols (Signal, TLS)
prover. and find contradictions to queries.

 Can produce provably functionally o “Can the attacker decrypt Alice’s first
correct software implementations of message to Bob?”

primitives (e.g. Curve25519 in HACL*). . Are limited to the “symbolic model”,

« Can produce provably functionally CryptoVerif works in the “computational
correct protocol implementations model”.

(Signal*). \ J

Symbolic and Computational Models

Symbolic Model Computational Model
. Primitives are “perfect” black boxes. « Primitives are nuanced (IND-CPA, IND-
CCA, etc.)

« No algebraic or numeric values.

« Can be fully automated. + Security bounds (212, etc.)

« Produces verification of no « Human-assisted.

contradictions (theorem assures no « Produces game-based proof, similar
missed attacks). technique to hand proofs.

Symbolic and Computational Models

Symbolic Model

« No algebraic or numeric values.
« Can be fully automated.

« Produces verification of no
contradictions (theorem assures no
missed attacks).

\

. Primitives are “perfect” black boxes.

~

Computational Model

« Primitives are nuanced (IND-CPA, IND-
CCA, etc.)

 Security bounds (2128, etc.)
« Human-assisted.

« Produces game-based proof, similar
technique to hand proofs.

Symbolic and Computational Models

Symbolic Model Computational Model \
. Primitives are “perfect” black boxes. « Primitives are nuanced (IND-CPA, IND-
CCA, etc.)

« No algebraic or numeric values.

« Can be fully automated. + Security bounds (212, etc.)

« Produces verification of no « Human-assisted.

contradictions (theorem assures no « Produces game-based proof, similar
missed attacks). technique to hand proofs.

- J

Symbolic and Computational Models

Symbolic Model \ Computational Model
. Primitives are “perfect” black boxes. « Primitives are nuanced (IND-CPA, IND-
CCA, etc.)

« No algebraic or numeric values.

« Can be fully automated. + Security bounds (212, etc.)

« Produces verification of no « Human-assisted.

contradictions (theorem assures no « Produces game-based proof, similar
missed attacks). technique to hand proofs.

_ /

Symbolic Verification, Still?

« Research in symbolic verification 1s still producing novel results:

« Prime, Order Please! Revisiting Small Subgroup and Invalid Curve Attacks on
Protocols using Diffie-Hellman — Cas Cremers and Dennis Jackson

« Seems Legit: Automated Analysis of Subtle Attacks on Protocols that Use Signatures —
Dennis Jackson, Cas Cremers, Katriel Cohn-Gordon and Ralf Sasse

« Many papers published 1n the past 4 years: symbolic verification proving
(and finding attacks) in Signal, TLS 1.3, Noise, Scuttlebutt, Bluetooth, 5G
and much more!

. This 1s a great way to work, allowing practitioners to reason better about
their protocols before/as they are implemented.

Symbolic Verification, Still?

« Research in symbolic verification 1s still producing novel results:

« Prime, Order Please! Revisiting Small Subgroup and Invalid Curve Attacks on
Protocols using Diffie-Hellman — Cas Cremers and Dennis Jackson

« Seems Legit: Automated Analysis of Subtle Attacks on Protocols that Use Signatures —
Dennis Jackson, Cas Cremers, Katriel Cohn-Gordon and Ralf Sasse

« Many papers published 1n the past 4 years: symbolic verification proving
(and finding attacks) in Signal, TLS 1.3, Noise, Scuttlebutt, Bluetooth, 5G
and much more!

. This 1s a great way to work, allowing practitioners to reason better about
their protocols before/as they are implemented.

Symbolic Verification, Still?

« Research in symbolic verification 1s still producing novel results:

« Prime, Order Please! Revisiting Small Subgroup and Invalid Curve Attacks on
Protocols using Diffie-Hellman — Cas Cremers and Dennis Jackson

« Seems Legit: Automated Analysis of Subtle Attacks on Protocols that Use Signatures —
Dennis Jackson, Cas Cremers, Katriel Cohn-Gordon and Ralf Sasse

-
_

« Many papers published 1n the past 4 years: symbolic verification proving
(and finding attacks) in Signal, TLS 1.3, Noise, Scuttlebutt, Bluetooth, 5G
and much more!

. This 1s a great way to work, allowing practitioners to reason better about
their protocols before/as they are implemented.

~
J

el results:

Curve Attacks on
kson

« Research in symbolig

o Prime, Order Pleas
Protocols using Di

e S Legit: A [s that Use Si —
e SO WHY ISN'T IT T
/ » Many papers pub usED M OQE':)'/ ication proving \

(and finding atta , Bluetooth, 5G

and much more
o This 1s a great better about
K their protocols'® /

Symbolic Verification
Overview

Main tools: ProVerif, Tamarin.

User writes a model of a protocol in action:
« Signal AKE, bunch of messages between Alice and Bob,
« TLS 1.3 session between a server and a bunch of clients,
« ACME for Let’s Encrypt (with domain name ownership
confirmation...)
User writes queries:
o “Can someone impersonate the server to the clients?”
o “Can a client hijack another client’s simultaneous
connection to the server?”

ProVerif and Tamarin try to find contradictions.

Symbolic Verification
Overview

Main tools: ProVerif, Tamarin.

User writes a model of a protocol in action:
« Signal AKE, bunch of messages between Alice and Bob,
« TLS 1.3 session between a server and a bunch of clients,

« ACME for Let’s Encrypt (with domain name ownership
confirmation...)

User writes queries:
o “Can someone impersonate the server to the clients?”
o “Can a client hijack another client’s simultaneous
connection to the server?”

ProVerif and Tamarin try to find contradictions.

Symbolic Verification
Overview

« Main tools: ProVerif, Tamarin.

« User writes a model of a protocol in action:
« Signal AKE, bunch of messages between Alice and Bob,
« TLS 1.3 session between a server and a bunch of clients,

« ACME for Let’s Encrypt (with domain name ownership
confirmation...)

o User writes queries:
o “Can someone impersonate the server to the clients?”
o “Can a client hijack another client’s simultaneous

connection to the server?”

« ProVerif and Tamarin try to find contradictions.

Symbolic Verification
Overview

Main tools: ProVerif, Tamarin.

User writes a model of a protocol in action:
« Signal AKE, bunch of messages between Alice and Bob,
« TLS 1.3 session between a server and a bunch of clients,
« ACME for Let’s Encrypt (with domain name ownership
confirmation...)
User writes queries:
o “Can someone impersonate the server to the clients?”
o “Can a client hijack another client’s simultaneous
connection to the server?”

ProVerif and Tamarin try to find contradictions.

Tool

Unbound Eqg-thy State Trace Equiv Link

CPSA [17]
F7[18]
Maude-NPA [19]
Pro Verif [20]
Scyther [21]
Tamarin [22]
DEEPSPEC [23]
VERIFPAL

e 000000

® O

AV NONVN

(N
® O

N N NONONON N
e 00000
20000000
® OO0 00O

SoK: Computer-Aided Cryptography

Manuel Barbosa and Gilles Barthe and Karthik Bhargavan and Bruno Blanchet and Cas

Cremers and Kevin Liao and Bryan Parno

Symbolic Verification
Overview

Main tools: ProVerif, Tamarin.

User writes a model of a protocol in action:
« Signal AKE, bunch of messages between Alice and Bob,
« TLS 1.3 session between a server and a bunch of clients,
« ACME for Let’s Encrypt (with domain name ownership
confirmation...)
User writes queries:
o “Can someone impersonate the server to the clients?”
o “Can a client hijack another client’s simultaneous
connection to the server?”

ProVerif and Tamarin try to find contradictions.

Tool

Unbound Eqg-thy State Trace Equiv Link

CPSA [17]
F7[18]
Maude-NPA [19]
Pro Verif [20]
Scyther [21]
Tamarin [22]
DEEPSPEC [23]
VERIFPAL

e 000000

® O

AV NONVN

(N
® O

N N NONONON N
e 00000
20000000
® OO0 00O

SoK: Computer-Aided Cryptography

Manuel Barbosa and Gilles Barthe and Karthik Bhargavan and Bruno Blanchet and Cas

Cremers and Kevin Liao and Bryan Parno

Tamarin and ProVerif: Examples

Tamarin and ProVerif: Examples

rule Get_pk:
['Pk(A, pk) 1
H
[out(pk) 1

// Protocol
rule Init_1:
[Fr(~ekI), !'Ltk($I, 1tkI)]
H
[Init_1(C $I, $R, ~ekI)
, Out(<$I, $R, 'g' ~ ~ekI, sign{'1l', $I, $R,'g' ~ ~ekI }
1tkI>) 1]

rule Init_2:
let Y = 'g' ~ z // think of this as a group element check
in
[Init_2($I, $R, ~ekI)
, 'PK($R, pk(1tkR))
, In(<$R, $I, Y, sign{'2', $R, $I, Y }LtkR>)
]

——[SessionKey($I,$R, Y ~ ~ekI)

, ExpR(z)
1-
[InitiatorKey($I,$R, Y ~ ~ekI) 1]

Tamarin and ProVerif: Examples

rule Get_pk:
['Pk(A, pk) 1
H
[out(pk) 1

// Protocol
rule Init_1:
[Fr(~ekI), !'Ltk($I, 1tkI)]
H
[Init_1(C $I, $R, ~ekI)
, Out(<$I, $R, 'g' ~ ~ekI, sign{'1l', $I, $R,'g' ~ ~ekI }
1tkI>) 1]

rule Init_2:
let Y = 'g' ~ z // think of this as a group element check
in
[Init_2($I, $R, ~ekI)
, 'PK($R, pk(1tkR))
, In(<$R, $I, Y, sign{'2', $R, $I, Y }LtkR>)
]

——[SessionKey($I,$R, Y ~ ~ekI)

, ExpR(z)
1-
[InitiatorKey($I,$R, Y ~ ~ekI) 1]

letfun writeMessage_a(me:principal, them:principal,
hs:handshakestate, payload:bitstring, sid:sessionid) =

let (ss:symmetricstate, s:keypair, e:keypair, rs:key,
re:key, psk:key, initiator:bool) = handshakestateunpack(hs) in

let (ne:bitstring, ns:bitstring, ciphertext:bitstring) =
(empty, empty, empty) in

let e = generate_keypair(key_e(me, them, sid)) in

let ne = key2bit(getpublickey(e)) in

let ss = mixHash(ss, ne) in
let ss = mixKey(ss, getpublickey(e)) in
let ss = mixKey(ss, dh(e, rs)) in

let s = generate_keypair(key_s(me)) in

[..]

event(RecvMsg(bob, alice, stagepack_c(sid_b), m)) =
(event(SendMsg(alice, c, stagepack_c(sid_a), m))) ||
((event(LeakS(phase®, alice))) && (event(LeakPsk(phase0,
alice, bob)))) || ((event(LeakS(phaseB, bob))) &&
(event(LeakPsk(phase®, alice, bob))));

Veritpal: New Protocol
Analysis Software

Veritpal: New Protocol
Analysis Software

1. An intuitive language for modeling
protocols.

TN
"

«'
- 4@“” 4

Veritpal: New Protocol
Analysis Software

1. An intuitive language for modeling ~a
protocols. -

2. Modeling that avoids user error.

Veritpal: New Protocol
Analysis Software

1. An intuitive language for modeling
protocols.

2. Modeling that avoids user error.

3. Analysis output that’s easy to
understand.

Veritpal: New Protocol
Analysis Software

1. An intuitive language for modeling
protocols.

2. Modeling that avoids user error.

3. Analysis output that’s easy to
understand.

4. IDE integration (Visual Studio
Code), translations to ProVerif and
Coq.

A New Approach to Symbolic Verification

User-focused approach... ...without losing strength

« An intuitive language for modeling Can reason about advanced protocols (eg.
protocols. Signal, DP-3T) out of the box.

« Modeling that avoids user error. « Can analyze for forward secrecy, key

compromise impersonation and other

 Analysis output that’s easy to ,
advanced queries.

understand.
« Unbounded sessions, fresh values, and

« Integration with developer workflow. ,
other cool symbolic model features.

A New Approach to Symbolic Verification

User-focused approach... K without losing strength \

« An intuitive language for modeling Can reason about advanced protocols (eg.
protocols. Signal, DP-3T) out of the box.

« Modeling that avoids user error. « Can analyze for forward secrecy, key

compromise impersonation and other

 Analysis output that’s easy to ,
advanced queries.

understand.
« Unbounded sessions, fresh values, and
other cool symbolic model features.

_

« Integration with developer workflow.

Verifpal Language: Simple and Intuitive

Simple Protocol

attacker[active] Alice Bob
principal Bob[] |
principal Alicel[generates a
generates a ga = G"a
ga = G”a
a
] g >

Alice— Bob: ga
principal Bobl[
knows private ml

knows private ml
generates b
gh = G™b

generates b el = AEAD_ENC(ga”™b, ml, gb)
gb = G*b
el = AEAD_ENC(ga”b, ml, gb) < gb, el
1
Bob— Alice: gb, el el dec = AEAD DEC(gh™a, el, gh)?
principal Alicel[|
el_dec = AEAD_DEC(gb”a, el, gb)? Alice Bob
]

Veriftpal Language: Hashing Primitives

« Primitives are built-in. * HASH(a, b...): X.
Secure hash function, similar in practice to, for example, BLAKEZ2s [10].
o« Users cannot define their own primitives. Takes between 1 and 5 inputs and returns one output.

.. * MAC(key, message): hash.
Bug, not a feature: eliminate user error on Keyed hash function. Useful for message authentication and for some other protocol

the primitive level. constructions.

. . . . e HKDF(salt, ikm, info): a, b....
Verlfpal not targ@tlng users lntereSted mn Hash-based key derivation function inspired by the Krawczyk HKDF scheme [11].

h . s e P V . f Essentially, HKDF is used to extract more than one key out a single secret value. salt and
their own pI'lIIllth@S (USC roveril or info help contextualize derived keys. Produces between 1 and 5 outputs.
Tamarin, they’re really quite excellent!)

* PW_HASH(a...): x.
Password hashing function, similar in practice to, for example, Scrypt [12] or Argon2 [13].
Hashes passwords and produces output that is suitable for use as a private key, secret
key or other sensitive key material. Useful in conjunction with values declared using

Verifpal will never be “better” than ProVerif, knous password a.
Tamarin, etc. — we are targeting a different
class of user entirely

11

Veriftpal Language: Hashing Primitives

Primitives are built-in.

Users cannot define their own primitives.

Bug, not a feature: eliminate user error on
the primitive level.

Verifpal not targeting users interested in
their own primitives (use ProVerif or
Tamarin, they’re really quite excellent!)

Verifpal will never be “better” than ProVerif,
Tamarin, etc. — we are targeting a different
class of user entirely

e ENC(key, plaintext): ciphertext.

Symmetric encryption, similar for example to AES-CBC or to ChaCha20.

DEC(key, ENC(key, plaintext)): plaintext.
Symmetric decryption.

AEAD_ENC(key, plaintext, ad): ciphertext.

Authenticated encryption with associated data.

ad represents an additional payload that is not encrypted, but that must be provided exactly
in the decryption function for authenticated decryption to succeed. Similar for example to
AES-GCM or to ChaCha20-Poly1305.

AEAD_DEC(key, AEAD_ENC(key, plaintext, ad), ad): plaintext.
Authenticated decryption with associated data.
See §2.3.2 below for information on how to validate successfully authenticated decryption.

PKE_ENC(GAkey, plaintext): ciphertext.
Public-key encryption.

PKE_DEC(key, PKE_ENC(G”*key, plaintext)): plaintext.
Public-key decryption.

11

Veriftpal Language: Hashing Primitives

Primitives are built-in. .

Users cannot define their own primitives.

Bug, not a feature: eliminate user error on
the primitive level.

Verifpal not targeting users interested in
their own primitives (use ProVerif or
Tamarin, they’re really quite excellent!) .

Verifpal will never be “better” than ProVerif,
Tamarin, etc. — we are targeting a different .
class of user entirely

SIGN(key, message): signature.
Classic signature primitive. Here, key is a private key, for example a.

SIGNVERIF(GAkey, message, SIGN(key, message)): message.

Verifies if signature can be authenticated.

If key a was used for SIGN, then SIGNVERIF will expect G*a as the key value. Output value
is not necessarily used; see §2.3.2 below for information on how to validate this check.

RINGSIGN(key_a, GAkey_b, GAkey_c, message): signature.

Ring signature.

In ring signatures, one of three parties (Alice, Bob and Charlie) signs a message. The
resulting signature can be verified using the public key of any of the three parties, and the
signature does not reveal the signatory, only that they are a member of the signing ring
(Alice, Bob or Charlie). The first key must be the private key of the actual signer, while
the subsequent two keys must be the public keys of the other potential signers.

RINGSIGNVERIF(G”a, GAb, GAc, m, RINGSIGN(a, G”b, GAc, m)): m.

Verifies if a ring signature can be authenticated.

The signer’s public key must match one or more of the public keys provided, but the
public keys may be provided in any order and not necessarily in the order used during the
RINGSIGN operation. Output value is not necessarily used; see §2.3.2 below for information
on how to validate this check.

BLIND(k, m): m.

Message blinding primitive, useful for the implementation of blind signatures. Here, the
sender uses the secret “blinding factor” k in order to blind message m, which can then be
sent to the signer, who will be able to produce a signature on m without knowing m. Used
in conjunction with UNBLIND — see UNBLIND’s documentation for more information.

11

Veriftpal Language: Hashing Primitives

Primitives are built-in.

Users cannot define their own primitives.

® SHAMIR_SPLIT(K): sl1, s2, s3.

i Bug, not a feature: ehmlnate user error on In Verifpal, we allow splitting the key into three shares such that only two shares are
the prlmltlve leVel required to reconstitute it.
. . . . e SHAMIR_JOIN(sa, sb): k.
° Verlfpal not targ@tlng users lnterested 1mn Here, sa and sb must be two distinct elements out of the set (s1, s2, s3) in order to
obtain k.

their own primitives (use ProVerif or
Tamarin, they’re really quite excellent!)

Verifpal will never be “better” than ProVerif,
Tamarin, etc. — we are targeting a different
class of user entirely

Guarded Constants, Checked Primitives

Challenge-Response Protocol

attacker[active]
principal Server [
knows private s
gs = G”s
1
principal Client[
knows private c
gc = G”c
generates nonce
]
Client— Server: nonce
principal Server[
proof = SIGN(s, nonce)
1
Server— Client: gs, proof
principal Client[
valid = SIGNVERIF(gs, nonce, proof)
generates attestation
signed = SIGN(c, attestation)
1
Client— Server: [gc], attestation, signed
principal Server[
storage = SIGNVERIF(gc, attestation, signed)?
1
queries|[
authentication? Server— Client: proof
auvthentication? Client— Server: signed

1

12

Guarded Constants, Checked Primitives

 This challenge-response protocol 1s
broken:

« Attacker can man-in-the-middle gs.

 Client will send valid even if
signature verification fails.

Challenge-Response Protocol

attacker[active]
principal Server [
knows private s
gs = G”s
1
principal Client[
knows private c
gc = G”c
generates nonce
]
Client— Server: nonce
principal Server[
proof = SIGN(s, nonce)
1
Server— Client: gs, proof
principal Client[
valid = SIGNVERIF(gs, nonce, proof)
generates attestation
signed = SIGN(c, attestation)
1
Client— Server: [gc], attestation, signed
principal Server[
storage = SIGNVERIF(gc, attestation, signed)?
1
queries|[
authentication? Server— Client: proof
auvthentication? Client— Server: signed

1

12

Guarded Constants, Checked Primitives

 This challenge-response protocol 1s
broken:

« Attacker can man-in-the-middle gs.

 Client will send valid even if
signature verification fails.

« Adding brackets around gs “guards” it
against replacement by the active attacker.

« Adding a question mark after SIGNVERIF
makes the model abort execution if it fails.

Challenge-Response Protocol

attacker[active]
principal Server [
knows private s
gs = G”s
1
principal Client[
knows private c
gc = G”c
generates nonce
]
Client— Server: nonce
principal Server[
proof = SIGN(s, nonce)
1
Server— Client: gs, proof
principal Client[
valid = SIGNVERIF(gs, nonce, proof)
generates attestation
signed = SIGN(c, attestation)
1
Client— Server: [gc], attestation, signed
principal Server[
storage = SIGNVERIF(gc, attestation, signed)?
1
queries|[
authentication? Server— Client: proof
auvthentication? Client— Server: signed

1

12

Guarded Constants, Checked Primitives

 This challenge-response protocol 1s
broken:

« Attacker can man-in-the-middle gs.

 Client will send valid even if
signature verification fails.

« Adding brackets around gs “guards” it
against replacement by the active attacker.

« Adding a question mark after SIGNVERIF
makes the model abort execution if it fails.

Challenge-Response Protocol

attacker[active]
principal Server [
knows private s
gs = G”s
1
principal Client[
knows private c
gc = G”c
generates nonce
]
Client— Server: nonce
principal Server[
proof = SIGN(s, nonce)
1
Server— Client:| gs|, proof
principal Client[
valid = SIGNVERIF(gs, nonce, proof)
generates attestation
signed = SIGN(c, attestation)
1
Client— Server: [gc], attestation, signed
principal Server[
storage = SIGNVERIF(gc, attestation, signed)?
1
queries|[
authentication? Server— Client: proof
auvthentication? Client— Server: signed

1

12

Guarded Constants, Checked Primitives

 This challenge-response protocol 1s
broken:

« Attacker can man-in-the-middle gs.

 Client will send valid even if
signature verification fails.

« Adding brackets around gs “guards” it
against replacement by the active attacker.

« Adding a question mark after SIGNVERIF
makes the model abort execution if it fails.

Challenge-Response Protocol

attacker[active]
principal Server [
knows private s
gs = G”s
1
principal Client[
knows private c
gc = G”c
generates nonce
]
Client— Server: nonce
principal Server[
proof = SIGN(s, nonce)
1
Server— Client:| gs|, proof
principal Client[
valid = SIGNVERIF(gs, nonce, proof)
generates attestation
signed = SIGN(c, attestation)
1
Client— Server: [gc], attestation, signed
principal Server[
storage = SIGNVERIF(gc, attestation, signed)?
1
queries|[
authentication? Server— Client: proof
auvthentication? Client— Server: signed

1

12

Constant y O
| Knowl M
8 Fresh, KnownBy, Guard, Leaked, Parse g:‘;:glg;alsap Mutate
Q. Declaration, Qualifier — | . Const — Value PrincipalState
) « Creator for Next Run
- || [Primitive y) EﬂownBy
] . ase.. Ga =
g Na‘me.r,' Arguments, Check, glattacker
,c—qc [PrimitiveSpec = gb..
> Equation
Values, rules (ghe=g) ga, el
—
e ™ [gb], e2
RecomposeRule -—
DecomposeRule Recompose(a,b)
Decompose(ENC(k, X & a,b,_ <
m),k) = m SHAMIR _SPLIT(x)
I | \ |]
AN
(Rewrlte(Rule . Rebuﬂde(lle | Resolve Deconstmw, 4 \i{_eiconstruct Equivalize
DEC(k,ENC(k, m SHAMIR_JOIN(a,b _ oA “Kom - A L oA
>m > X © a,b,_ = §a = ¢3a DEC(km)'/(_' " MAC(X, m) ga’b = gb"a
- SHAMIR_SPLITCO) =) | oL

Queries Analysis Translate to Coq

Protocol Modeling and
Verification

*Work with Coq Library to perform more

*Check for contradiction to queries after . \
each run in-depth analysis

e|terative process through intuitive
modeling and optional further Coq

*Terminate when no new values are being sosloline

learned

Veritpal: Advanced Features

« Protocol phases for temporal logic « Password values that are “crackable”
(forward secrecy, post-compromise unless first hashed using a password-
security). hashing function.

o Leaking values to the attacker (without « Query preconditions: check if a query is
necessarily sending a message). satisfied if and only if another query 1s

. Unlinkability queries, freshness queries. satisfied also.

Verifpal for Visual Studio Code

« Syntax highlighting, model formatting,
code completion.

 Protocol diagrams, update live with your
model,

o Insight on hover: show more
information about values, queries, etc.

« Live analysis within Visual Studio

Code!

15

Verifpal Translations: Coq and ProVerit

« Verifpal models can be translated to
Coq models (complete with formal
semantics, lemmas and proofs on
primitives),

« ProVerif model templates for further
analysis in ProVerif and potentially
CryptoVerif.

Verifpal Translations: Coq and ProVerit

« Verifpal models can be translated to
Coq models (complete with formal
semantics, lemmas and proofs on
primitives),

« ProVerif model templates for further
analysis in ProVerif and potentially
CryptoVerif.

Coq: Verifpal Symmetric Encryption

match ciphertext with

Listing 1.1. ProVerif Attack Trace

Easier to Read Analysis Output

Listing 1.2. Verifpal Attack Trace

new skB: skey creating skB_2 at {1}

out(c, ~M) with ~M = pk(skB_2) at {3}

new nl_1: nonce creating n1_2 at {9} in copy a

new n2_1: nonce creating n2_2 at {10} in copy a

out(c, (~M_1,~M_2)) with ~M_1 = n1_2, ~M_2 = n2_2 at
{11} in copy a

new nl_1: nonce creating n1_3 at {9} in copy a_1

new n2_1: nonce creating n2_3 at {10} in copy a_1

out(c, (~M_3,~M_4)) with ~M_3 = n1_3, ~M_4 = n2_3 at
{11} in copy a_1

in(c, (~M_3,~M_1)) with ~M_3 = n1_3, ~M_1 = n1_2 at {5}

in copy a_2

out(c, ~M_5) with ~M_5 = encrypt((n1_3,n1_2,M),pk(skB_2
)) at {6} in copy a_2

in(c, ~M_5) with ~M_5 = encrypt((n1_3,n1_2,M),pk(skB_2)
) at {12} in copy a_1

out(c, (~M_6,~M_7)) with ~M_6 = n1_2, ~M_7 = encrypt((
n1_2,M,n1_3),pk(skB_2)) at {14} in copy a_1

in(c, ~M_7) with ~M_7 = encrypt((n1_2,M,n1_3),pk(skB_2)
) at {12} in copy a

out(c, (~M_8,~M_9)) with ~M_8 = M, ~M_9 = encrypt((M,
n1_3,n1_2),pk(skB_2)) at {14} in copy a

The attacker has the message ~M_8 = M.

Result + confidentiality? m — When:

nl 2 nil ¢ mutated by Attacker (was n1l1)

n2 > nil ¢ mutated by Attacker (was n2)

msg > PKE_ENC(G~skb, CONCAT(nil, n1, m))

clear & CONCAT(nil, n1, m)

X > nil

yl > nl

y2 > m

unnamed_0 > ASSERT(nil, n1)?

msg2 > PKE_ENC(G~skb, CONCAT(nl, m, nl)) ¢
obtained by Attacker

m is obtained:

msg > PKE_ENC(G”skb, CONCAT(n1, m, nl)) ¢
mutated by Attacker

(was PKE_ENC(pkb, CONCAT(n1, n2, m)))

clear > CONCAT(n1, m, nl)

X > nl

vyl > m ¢ obtained by Attacker

y2 > nl

unnamed_0 2 ASSERT(n1, n1)?

msg2 > PKE_ENC(G~skb, CONCAT(m, nl1, n1))

m (m) is obtained by Attacker.

17

Protocols Analyzed with Verifpal

Signal secure messaging protocol.
Scuttlebutt decentralized protocol.
ProtonMail encrypted email service.
Telegram secure messaging protocol.

DP-3T contact tracing protocol.

[N J fish /Users/nadim/Documents/git/verifpal

it, nil), nil), nil), nil, nil)
d > AEAD_DEC(HKDF(MAC (HKDF (G"ae2”bs, HKDF(HASH(G”alongterm”bs, G”“ael”blongterm, G“ael”bs, G’ael
Abo), nil, nil), nil), nil), nil, nil), AEAD_ENC(HKDF(MAC(HKDF(6”nil”ae2, HKDF(HASH(G”nil”alongterm, G”nil’ael
, 6”nil”*ael, G"nil’ael nil, nil), nil), nil), nil, nil), m1, HASH(G”alongterm, 6*nil, G"ae2)), HASH(G”alongt
erm, G*blongterm, G"ae2))
ml (m1) is obtained by Attacker.

« authentication? Alice — Bob: el - When:
gblongterm » 67nil
gbs > 67nil
gho > G”nil
ghssig > SIGN(blongterm, G"bs)

nil is obtained

galongterm - il

gbssig > SIGN(blongterm, G”bs)

gael > 67nil

amaster > HASH(G”bs”alongterm, G”blongterm”ael, G"bs”ael, G"bo’ael)

arkbal > HKDF(HASH(G”bs”alongterm, G”blongterm”ael, G*bs”ael, G"bo“ael), nil, nil)

ackbal > HKDF(HASH(G”bs“alongterm, G”blongterm”ael, G”bs”ael, G"bo“ael), nil, nil)

gae2 > 6”nil

valid 5 nil

aksharedl > G"bs”ae2

arkabl > HKDF(G"bs”ae2, HKDF(HASH(G"bs”alongterm, G“blongterm”ael, G"bs”ael, G”bo”ael), nil, nil),
nit)

ackabl > HKDF(G"bs”ae2, HKDF(HASH(G"bs”alongterm, G“blongterm”ael, G”bs”ael, G”bo”ael), nil, nil),
nit)

akencl > HKDF(MAC(HKDF (G"bs”ae2, HKDF(HASH(G"bs”alongterm, G*blongterm”ael, G"bs”ael, G”bo”ael), n
il, nil), nil), nil), nil, nil)

akenc2 > HKDF (MAC(HKDF (6"bs”ae2, HKDF(HASH(G"bs”alongterm, G”blongterm”ael, G"bs”ael, G”bo”ael), n
il, nil), nil), nil), nil, nil)

el > AEAD_ENC (HKDF (MAC (HKDF(6”nil”bs, HKDF(HASH(G"nil” G”nil”blongterm, 6”nil”bs, G”nil”bo), ni
1, nil), nil), nil), nil, nil), nil, HASH(6”nil, G”blongterm, 6"nil))

bmaster > HASH(G"nil”bs, G”nil”blongterm, 6*nil”bs, G”nil”bo)

brkbal > HKDF(HASH(6”nil”bs, G”nil”blongterm, G”nil”bs, G6”nil”bo), nil, nil)

bckbal > HKDF(HASH(G”nil”bs, G”nil”blongterm, G”nil”bs, 6”nil”bo), nil, nil)

bksharedl 5 6”nil”bs

brkabl > HKDF(6”nil”bs, HKDF(HASH(G”nil”bs, G”nil”blongterm, 6*nil”bs, G”nil”bo), nil, nil), nil)

bckabl > HKDF(6*nil”bs, HKDF(HASH(G”nil”bs, G”nil”blongterm, 6*nil”bs, G”nil”bo), nil, nil), nil)

bkencl > HKDF(MAC(HKDF(G”nil”bs, HKDF(HASH(G”nil”bs, G”nil”blongterm, G”nil”bs, G”nil”bo), nil, ni
1), nil), nil), nil, nil)

bkenc2 > HKDF(MAC(HKDF(67nil”bs, HKDF(HASH(6”nil”bs, G”nil”blongterm, 6”nil”bs, G6”nil”bo), nil, ni

nil), nil), nil, nil)

mi_d > nil

el (AEAD_ENC(HKDF(MAC(HKDF(6”nil”bs, HKDF(HASH(6”nil”bs, G”nil”blongterm, 6”nil”bs, 6”nil”bo), nil
, nil), nil), nil), nil, nil), nil, HASH(G*nil, G”blongterm, G”nil))), sent by Attacker and not by Alice, is s
uvccessfully used in AEAD_DEC (HKDF (MAC (HKDF (6”nil”bs, HKDF(HASH(6”nil”bs, G”nil“blongterm, G*nil”bs, G”nil”bo),
nil, nil), nil), nil), nil, nil), AEAD_ENC(HKDF (MAC(HKDF(G*nil”bs, HKDF(HASH(G”nil”bs, G”nil”blongterm, 6”nil
Abs, 6”nil”bo), nil, nil), nil), nil), nil, nil), nil, HASH(6”nil, G”blongterm, G6”nil)), HASH(6”nil, G”blongte
rm, 6%nil)) within Bob's state.

Verifpal - Thank you for using Verifpal.

05:47:03 PM

18

[_.imitations and Context

« Does not produce proofs (like CryptoVerif)

o Is not formally proven to not miss attacks (like ProVerif)

Working towards obtaining higher confidence through building relationship to
Coq models of verification method, more scrutiny, more protocols analyzed...

Usefulness is more towards engineers and students.

Who's Using Veritpal?

ASSA ABLOY
Quarkslat

EEEEEEEEEEEEEEEEEEEEEEEEEE

”
-3

Z00Mm

ALICE'S EPHEMERAL KEY...
IT’S THE ONLY THING
KEEPING HER MESSAGES
SAFELY ENCRYPTED...

50...
THIS IS SUPPOSED

USING TO
COMMUNICATE...

I'M SURE I'VE,
MODOELED IT
CORRECTLY...

"8UT
SOMETHING'S
NOT RIGHT.."

1S CHAINED
DOWN PAST

THE KE!
EXCHANGE

15—

BUT

PROVERIF-SAMA/!
THE LONG-TERM
KEYS HAVE MUWAL

Veritpal in the
Classroom

CHAPTER 2. THE VERIFPAL LANGUAGE 17

Example Equations

principal Server[
generates x
generates y
gx = 67
9y = 6%y
gxy = gx"y
ayx = gy"x

In the above, gxy and gyx are considered equivalent by Verifpal. In Verifpal,
all equations must have the constant G as their root generator. This mirrors
Diffie-Hellman behavior. Furthermore, all equations can only have two
constants (a*b), but as we can see above, equations can be built on top of
other equations (as in the case of gxy and gyx).

2.6 MESSAGES

Sending messages over the network is simple. Only constants may be sent
within messages:

Example: Messages

Alice -> Bob: ga, el
Bob -> Alice: [gb], e2

Let’s look at the two messages above. In the first, Alice is the sender and Bob
is the recipient. Notice how Alice is sending Bob her long-term public key
ga = G"a. An active attacker could intercept ga and replace it with a value
that they control. But what if we want to model our protocol such that Alice
has pre-authenticated? Bob’s public key gb = 6~b? This is where guarded
constants become useful.

2“Pre-authentication " refers to Alice confirming the value of Bob's public key before
the protocol session begins. This helps avoid having an active attacker trick Alice to use a
fake public key for Bob. This fake public key could instead be the attacker’s own public key.

18 Verifpal User Manual

Guarding the Right Constants
Verifpal allows you to guard constants against modi-
fication by the active attacker. However, guarding all of a

3 //1 principal’s public keys, for example, might not reflect real-
b world attack scenarios, where keys are rarely guarded from
.U\ being modified as they cross the network.

TR What interesting new insights will you discover using
o e guarded constants?

In the second message from the above example, we see that, gb is surrounded
by brackets ([1). This makes it a “guarded” constant, meaning that while an
active attacker can still read it, they cannot tamper with it. In that sense it is

“guarded” against the active attacker.

2.7 QUERIES

A Verifpal model is always concluded with a queries block, which contains
essentially the questions that we will ask Verifpal to answer for us as a result
of the model’s analysis. Queries have an important role to play in a Verifpal
model’s constitution. The Verifpal language makes them very simple to
describe, but you may benefit from learning more on how to properly use
them in your models. For more information on queries, see §3. §2.8 below
shows a quick example of how to illustrate queries in your model.

2.8 A SIMPLE COMPLETE EXAMPLE

Figure 2.1 provides a full model of a naive protocol where Alice and Bob only
ever exchange unauthenticated public keys (6*a and 6*b). Bob then proceeds
to send an encrypted message to Alice using the derived Diffie-Hellman
shared secret to encrypt the message. We then want to ask Verifpal three
questions:

‘We call this a Mayor-in-the-Middle attack.

« Verifpal User Manual: easiest way to learn how to model and analyze
protocols on the planet. Comes with 3 example protocol models!

« NYU test run: huge success. 20-year-old American undergraduates with
no background whatsoever in security were modeling protocols in the first
two weeks of class and understanding security goals/analysis results.

21

Veritpal Heroes

[llustrated Guide to Protocol Verification

Covers Coq, F*, Tamarin, ProVerif, Crypto Verif,
EasyCrypt and Verifpal

Enhanced relationship between Verifpal and other
paradigms + lots of new pedagogical materials

Interactive online version + book version
Coming in 2021

22

Protocol Bu \t\
‘Nnrkbam:h

Both attending RWC 2021!

Talk to them! These are great people to work with!

Verifpal is released as free and open source software, under version
3 of the GPL.

Check out Verifpal today: Protocol Builder's

. kb h
verifpal.com Jorkbene

