
Rishabh Poddar, Sukrit Kalra, Avishay Yanai 1, Ryan Deng,
Raluca Ada Popa, and Joseph M. Hellerstein

Senate
A Maliciously Secure MPC Platform for

Collaborative Analytics

USENIX Security 2021

UC Berkeley 1 VMware Research

Rich collaborative analytics on shared data

Financial servicesMedical studies Online advertising

Rich collaborative analytics on shared data

SELECT diagnosis, COUNT (*) count

FROM diagnoses|P1 U diagnoses|P2 U diagnoses|P3

WHERE has_cdiff = ‘True’

GROUP BY diagnosis ORDER BY count LIMIT 10

Example query: Disease comorbidity
P1 P2

P3

[Bater+17]

Rich collaborative analytics on shared data

SELECT diagnosis, COUNT (*) count

FROM patients|P1 U patients|P2 U patients|P3

WHERE has_cdiff = ‘True’

GROUP BY diagnosis ORDER BY count LIMIT 10

Example query: Disease comorbidity
P1 P2

P3

[Bater+17]

Rich collaborative analytics on shared data

SELECT diagnosis, COUNT (*) count

FROM patients|P1 U patients|P2 U patients|P3

WHERE has_cdiff = ‘True’

GROUP BY diagnosis ORDER BY count LIMIT 10

Example query: Disease comorbidity
P1 P2

P3

[Bater+17]

Rich collaborative analytics on shared data

SELECT diagnosis, COUNT (*) count

FROM patients|P1 U patients|P2 U patients|P3

WHERE has_cdiff = ‘True’

GROUP BY diagnosis ORDER BY count LIMIT 10

Example query: Disease comorbidity
P1 P2

P3

[Bater+17]

Rich collaborative analytics on shared data

SELECT diagnosis, COUNT (*) count

FROM patients|P1 U patients|P2 U patients|P3

WHERE has_cdiff = ‘True’

GROUP BY diagnosis ORDER BY count LIMIT 10

Example query: Disease comorbidity
P1 P2

P3

[Bater+17]

Problem: Privacy

SELECT diagnosis, COUNT (*) count

FROM patients|P1 U patients|P2 U patients|P3

WHERE has_cdiff = ‘True’

GROUP BY diagnosis ORDER BY count LIMIT 10

Example query: Disease comorbidity
P1 P2

P3

Problem: Privacy

• Privacy concerns

• Laws and regulations

• Business competition

P1 P2

P3

Secure multiparty computation (MPC)

• Enables parties to share and compute
on encrypted data

[Yao82, GMW87, BGW88]

P1 P2

P3

Secure multiparty computation (MPC)

• Enables parties to share and compute
on encrypted data

• No party learns any party’s input
beyond the final result

[Yao82, GMW87, BGW88]

P1 P2

P3

Threat model & Desired security guarantees

P1 P2

P3

Threat model & Desired security guarantees

P1 P2

P3

• All parties can provide arbitrary input

P1 P2

P3

Threat model & Desired security guarantees

• All parties can provide arbitrary input

• Protocol should be secure even if all
other parties collude
(dishonest majority)

• All parties can provide arbitrary input

• Protocol should be secure even if all
other parties collude
(dishonest majority)

• Protocol should be secure even if the
adversary deviates from the protocol
(malicious security)

P1 P2

P3

Threat model & Desired security guarantees

Current state of the art: Monolithic circuits
e.g. [WRK17]

All parties need to execute a monolithic
cryptographic computation together to
evaluate the desired function

JOIN

JOIN JOIN

SELECT

x1 x2 x3 x4

Monolithic MPC

P1 P2 P3 P4

Can we “decompose” monolithic MPC?

JOIN

JOIN JOIN

SELECT

x1 x2 x3 x4

Monolithic MPC

P1 P2 P3 P4

Can we “decompose” monolithic MPC?

JOIN

JOIN JOIN

SELECT

x1 x2 x3 x4

JOIN

JOIN JOIN

SELECT

x1 x2 x3 x4

Monolithic MPC Plaintext execution

P1 P2 P3 P4 P1 P2 P3 P4

JOIN

JOIN JOIN

SELECT

x1 x2 x3 x4

Monolithic MPC

JOIN

JOIN JOIN

SELECT

x1 x2 x3 x4

Plaintext execution

P1 P2 P3 P4 P1 P2 P3 P4

Can we “decompose” monolithic MPC?

Local
operation

JOIN

JOIN JOIN

SELECT

x1 x2 x3 x4

Monolithic MPC

JOIN

JOIN JOIN

x1 x2 x3 x4

Plaintext execution

P1 P2 P3 P4 P1 P2 P3 P4

Can we “decompose” monolithic MPC?

SELECT
Parallel

operations

JOIN

JOIN JOIN

SELECT

P1 P2 P3 P4

x1 x2 x3 x4

Monolithic MPC

JOIN

JOIN JOIN

P1 P2 P3 P4

x1 x2 x3 x4

Plaintext execution

Can we “decompose” monolithic MPC?

SELECT

JOIN

JOIN JOIN

SELECT

P1 P2 P3 P4

x1 x2 x3 x4

Monolithic MPC

Drawbacks

• No parallelism across parties

Can we “decompose” monolithic MPC?

JOIN

JOIN JOIN

SELECT

P1 P2 P3 P4

x1 x2 x3 x4

Monolithic MPC

Drawbacks

• No parallelism across parties

• No local plaintext computation

Can we “decompose” monolithic MPC?

JOIN

JOIN JOIN

SELECT

P1 P2 P3 P4

x1 x2 x3 x4

Monolithic MPC

Drawbacks

• No parallelism across parties

• No local plaintext computation

• All parties jointly execute every sub-
computation, regardless of whether it
directly involves their input

Can we “decompose” monolithic MPC?

JOIN

JOIN JOIN

SELECT

P1 P2 P3 P4

x1 x2 x3 x4

Monolithic MPC

Drawbacks

• No parallelism across parties

• No local plaintext computation

• All parties jointly execute every sub-
computation, regardless of whether it
directly involves their input

Can we “decompose” monolithic MPC?

JOIN

JOIN JOIN

SELECT

P1 P2 P3 P4

x1 x2 x3 x4

Monolithic MPC

How to decompose without
compromising security?

Can we “decompose” monolithic MPC?

Challenges in MPC decomposition

JOIN

JOIN JOIN

SELECT

x1 x2 x3 x4

Strawman MPC decomposition

P1 P2 P3 P4

JOIN

JOIN JOIN

SELECT

x1 x2 x3 x4

Strawman MPC decomposition

P1 P2 P3 P4

Challenges

• Decomposition reveals intermediate
results to the adversary

1

Challenges in MPC decomposition

JOIN

SELECT

JOIN

JOIN JOIN

SELECT

x1 x2 x3 x4

Strawman MPC decomposition

P1 P2 P3 P4

Challenges

• Decomposition reveals intermediate
results to the adversary

• Adversary can provide invalid
intermediate inputs

1

2

Challenges in MPC decomposition

JOIN

JOIN

x1 x2

x3

x4

Strawman MPC decomposition

P1 P2 P3 P4

Challenges

• Decomposition reveals intermediate
results to the adversary

• Adversary can provide invalid
intermediate inputs

• Adversary can provide inconsistent
inputs

SELECT

JOIN

x3’

1

2

3

x3

Challenges in MPC decomposition

Key technique: Secure MPC decomposition

JOIN

JOIN

x1 x4

Senate’s MPC protocol

P1 P2 P3 P4

SELECT

JOIN

x2 x3

Challenges

• Decomposition reveals intermediate
results to the adversary

• Adversary can provide invalid
intermediate inputs

• Adversary can provide inconsistent
inputs

1

2

3

Key technique: Secure MPC decomposition

JOIN

JOIN

x1 x4

Senate’s MPC protocol

P1 P2 P3 P4

SELECT

JOIN

x2 x3

Challenges

• Decomposition reveals intermediate
results to the adversary

• Adversary can provide invalid
intermediate inputs

• Adversary can provide inconsistent
inputs

1

2

3

Key technique: Secure MPC decomposition

JOIN

JOIN

x1 x4

Senate’s MPC protocol

P1 P2 P3 P4

SELECT

JOIN

x2 x3

Secure MPC decomposition even in
the presence of malicious
adversaries

Key technique: Secure MPC decomposition

JOIN

JOIN

x1 x4

Senate’s MPC protocol

P1 P2 P3 P4

SELECT

JOIN

x2 x3

Secure MPC decomposition even in
the presence of malicious
adversaries

• Enables local computation

Key technique: Secure MPC decomposition

JOIN

JOIN

x1 x4

Senate’s MPC protocol

P1 P2 P3 P4

SELECT

JOIN

x2 x3

Secure MPC decomposition even in
the presence of malicious
adversaries

• Enables local computation

• Sub-computations involving different
parties can proceed in parallel

Key technique: Secure MPC decomposition

JOIN

JOIN

x1 x4

Senate’s MPC protocol

P1 P2 P3 P4

SELECT

JOIN

x2 x3

Secure MPC decomposition even in
the presence of malicious
adversaries

• Enables local computation

• Sub-computations involving different
parties can proceed in parallel

• Sub-computations involve only the
required subset of parties

Senate’s contributions

Secure MPC decomposition protocol
• Solders sub-computations together for security of intermediate inputs

• Enforces integrity of sub-computations

• Formalizes class of admissible decompositions

Designing efficient circuits for SQL operations
• New Boolean circuit primitives for multiparty operations: m-SI, m-SU, m-Sort, Verifiers

• Realizing SQL operators using the circuit primitives: joins, group by, order by, filters

Executing queries using Senate’s MPC decomposition protocol
• New algorithms for planning the representation and execution of SQL queries

• Cost model for determining the optimal decomposition

Senate’s contributions

Secure MPC decomposition protocol
• Solders sub-computations together for security of intermediate inputs

• Enforces integrity of sub-computations

• Formalizes class of admissible decompositions

Designing efficient circuits for SQL operations
• New Boolean circuit primitives for multiparty operations: m-SI, m-SU, m-Sort, Verifiers

• Realizing SQL operators using the circuit primitives: joins, group by, order by, filters

Executing queries using Senate’s MPC decomposition protocol
• New algorithms for planning the representation and execution of SQL queries

• Cost model for determining the optimal decomposition

Senate’s contributions

Secure MPC decomposition protocol
• Solders sub-computations together for security of intermediate inputs

• Enforces integrity of sub-computations

• Formalizes class of admissible decompositions

Designing efficient circuits for SQL operations
• New Boolean circuit primitives for multiparty operations: m-SI, m-SU, m-Sort, Verifiers

• Realizing SQL operators using the circuit primitives: joins, group by, order by, filters

Executing queries using Senate’s MPC decomposition protocol
• New algorithms for planning the representation and execution of SQL queries

• Cost model for determining the optimal decomposition

Senate’s contributions

Secure MPC decomposition protocol
• Solders sub-computations together for security of intermediate inputs

• Enforces integrity of sub-computations

• Formalizes class of admissible decompositions

Designing efficient circuits for SQL operations
• New Boolean circuit primitives for multiparty operations: m-SI, m-SU, m-Sort, Verifiers

• Realizing SQL operators using the circuit primitives: joins, group by, order by, filters

Executing queries using Senate’s MPC decomposition protocol
• New algorithms for planning the representation and execution of SQL queries

• Cost model for determining the optimal decomposition

Senate’s MPC decomposition
protocol

JOIN

JOIN JOIN

SELECT

x1 x2 x3 x4

P1 P2 P3 P4

Preventing leakage of intermediate values1

JOIN

JOIN JOIN

SELECT

x1 x2 x3 x4

P1 P2 P3 P4

Preventing leakage of intermediate values1

JOIN

JOIN JOIN

SELECT

x1 x2 x3 x4

P1 P2 P3 P4

Key technique:

• New lightweight “soldering”
technique for WRK [WRK17] circuits
that masks intermediate values

Soldering

Preventing leakage of intermediate values1

JOIN

JOIN JOIN

SELECT

x1 x2 x3 x4

P1 P2 P3 P4

Key technique:

• New lightweight “soldering”
technique for WRK [WRK17] circuits
that masks intermediate values

• Set of parties in first circuit can be a
subset of second

Soldering

Preventing leakage of intermediate values1

JOIN

JOIN JOIN

SELECT

x1 x2 x3 x4

P1 P2 P3 P4

Ensuring validity of intermediate inputs2

Key technique:

• Parent circuit verifies the validity
of intermediate inputs

JOIN

JOIN JOIN

SELECT

x1 x2 x3 x4

P1 P2 P3 P4

Ensuring validity of intermediate inputs2

Key technique:

• Parent circuit verifies the validity
of intermediate inputs

• Formalize the class of admissible
decompositions — every sub-
computation must be easily
invertible

JOIN

JOIN JOIN

SELECT

x1 x2 x3 x4

P1 P2 P3 P4

Ensuring validity of intermediate inputs2

JOIN

JOIN

x1 x2

x3

x4

P1 P2 P3 P4

SELECT

JOIN

x3’

x3

Ensuring consistency of inputs3

JOIN

JOIN

x1 x2 x4

P1 P2 P3 P4

SELECT

JOIN

x3

Key technique:

• Restrict admissible decompositions
to trees and not graphs

Ensuring consistency of inputs3

Evaluation Highlights

Performance on TPC-H analytics benchmark

Industry standard benchmark for analytics queries
• Comprises a rich set of 22 complex queries on data split across 8 tables

• No notion of multiple “parties”, so we assume one table per party

[http://www.tpc.org/tpch/]

http://www.tpc.org/tpch/

Performance on TPC-H analytics benchmark
[http://www.tpc.org/tpch/]

[https://github.com/emp-toolkit/emp-agmpc] [WRK17]

Industry standard benchmark for analytics queries
• Comprises a rich set of 22 complex queries on data split across 8 tables

• No notion of multiple “parties”, so we assume one table per party

Methodology
• r5.12x large AWS instances in LAN and WAN settings

• Baseline: AGMPC framework (implements monolithic WRK protocol)

http://www.tpc.org/tpch/
https://github.com/emp-toolkit/emp-agmpc

Senate supports 13 of 22 queries, up to 145x faster than the baseline

Performance on TPC-H analytics benchmark

Summary

Senate is an MPC platform for securely executing collaborative analytical queries
in the presence of malicious adversaries

Improves performance over the state of the art by up to 145x:

• Protocol for secure MPC decomposition

• Efficient query planning and execution algorithms based on a cost model

Summary

Senate is an MPC platform for securely executing collaborative analytical queries
in the presence of malicious adversaries

Improves performance over the state of the art by up to 145x:

• Protocol for secure MPC decomposition

• Efficient query planning and execution algorithms based on a cost model

rishabhp@berkeley.edu

Thanks!

mailto:rishabhp@berkeley.edu

