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Rich collaborative analytics on shared data

Financial servicesMedical studies Online advertising



Rich collaborative analytics on shared data

SELECT diagnosis, COUNT (*) count 

FROM diagnoses|P1 U diagnoses|P2 U diagnoses|P3 

WHERE has_cdiff = ‘True’ 

GROUP BY diagnosis ORDER BY count LIMIT 10

Example query: Disease comorbidity
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Problem: Privacy

• Privacy concerns 

• Laws and regulations 

• Business competition

P1 P2

P3



Secure multiparty computation (MPC)

• Enables parties to share and compute 
on encrypted data

[Yao82, GMW87, BGW88]
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• Enables parties to share and compute 
on encrypted data 

• No party learns any party’s input 
beyond the final result

[Yao82, GMW87, BGW88]
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• All parties can provide arbitrary input 

• Protocol should be secure even if all 
other parties collude  
(dishonest majority) 

• Protocol should be secure even if the 
adversary deviates from the protocol 
(malicious security)

P1 P2

P3

Threat model & Desired security guarantees



Current state of the art: Monolithic circuits
e.g. [WRK17]

All parties need to execute a monolithic 
cryptographic computation together to 
evaluate the desired function
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Monolithic MPC
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Monolithic MPC

How to decompose without 
compromising security?

Can we “decompose” monolithic MPC?



Challenges in MPC decomposition

JOIN

JOIN JOIN

SELECT

x1 x2 x3 x4

Strawman MPC decomposition

P1 P2 P3 P4



JOIN

JOIN JOIN

SELECT

x1 x2 x3 x4

Strawman MPC decomposition

P1 P2 P3 P4

Challenges 

• Decomposition reveals intermediate 
results to the adversary

1

Challenges in MPC decomposition



JOIN

SELECT

JOIN

JOIN JOIN

SELECT

x1 x2 x3 x4

Strawman MPC decomposition

P1 P2 P3 P4

Challenges 

• Decomposition reveals intermediate 
results to the adversary 

• Adversary can provide invalid 
intermediate inputs

1

2

Challenges in MPC decomposition



JOIN

JOIN

x1 x2

x3

x4

Strawman MPC decomposition

P1 P2 P3 P4

Challenges 

• Decomposition reveals intermediate 
results to the adversary 

• Adversary can provide invalid 
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Key technique: Secure MPC decomposition

JOIN

JOIN

x1 x4

Senate’s MPC protocol

P1 P2 P3 P4

SELECT

JOIN

x2 x3

Secure MPC decomposition even in 
the presence of malicious 
adversaries 

• Enables local computation 

• Sub-computations involving different 
parties can proceed in parallel 

• Sub-computations involve only the 
required subset of parties



Senate’s contributions

Secure MPC decomposition protocol 
• Solders sub-computations together for security of intermediate inputs 

• Enforces integrity of sub-computations 
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Designing efficient circuits for SQL operations 
• New Boolean circuit primitives for multiparty operations: m-SI, m-SU, m-Sort, Verifiers 

• Realizing SQL operators using the circuit primitives: joins, group by, order by, filters 

Executing queries using Senate’s MPC decomposition protocol 
• New algorithms for planning the representation and execution of SQL queries 

• Cost model for determining the optimal decomposition
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Senate’s MPC decomposition 
protocol
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SELECT

x1 x2 x3 x4

P1 P2 P3 P4

Key technique: 

• New lightweight “soldering” 
technique for WRK [WRK17] circuits 
that masks intermediate values 

• Set of parties in first circuit can be a 
subset of second

Soldering

Preventing leakage of intermediate values1
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Key technique: 

• Parent circuit verifies the validity  
of intermediate inputs  

• Formalize the class of admissible 
decompositions — every sub-
computation must be easily 
invertible
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JOIN

JOIN

x1 x2 x4

P1 P2 P3 P4

SELECT

JOIN

x3

Key technique: 

• Restrict admissible decompositions 
to trees and not graphs

Ensuring consistency of inputs3
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Performance on TPC-H analytics benchmark

Industry standard benchmark for analytics queries 
• Comprises a rich set of 22 complex queries on data split across 8 tables 

• No notion of multiple “parties”, so we assume one table per party 

[http://www.tpc.org/tpch/]
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Performance on TPC-H analytics benchmark
[http://www.tpc.org/tpch/]

[https://github.com/emp-toolkit/emp-agmpc] [WRK17]

Industry standard benchmark for analytics queries 
• Comprises a rich set of 22 complex queries on data split across 8 tables 

• No notion of multiple “parties”, so we assume one table per party 

Methodology 
• r5.12x large AWS instances in LAN and WAN settings 

• Baseline: AGMPC framework (implements monolithic WRK protocol)

http://www.tpc.org/tpch/
https://github.com/emp-toolkit/emp-agmpc


Senate supports 13 of 22 queries, up to 145x faster than the baseline

Performance on TPC-H analytics benchmark



Summary

Senate is an MPC platform for securely executing collaborative analytical queries  
in the presence of malicious adversaries 

Improves performance over the state of the art by up to 145x: 

• Protocol for secure MPC decomposition 

• Efficient query planning and execution algorithms based on a cost model
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