
Lessons and Challenges in Deploying 
(Heavy) MPC in Different 

Environments 

Yehuda Lindell, Valery Osheter and Samuel Ranellucci
Unbound Tech



2

Background and Context

• Unbound provides key management and key protection in software
• Keys are protected via MPC; shared between two (or more) machines

• Product lines (of relevance)
• Server-side key protection – functions as a virtual HSM
• Endpoint key protection – functions as a virtual smartcard or token

!! MPC message 2

MPC message 1

!"

!!#

!"# 	

MPC messa
ge 2

MPC messa
ge 1



3

Service vs Enterprise Software

• Many solutions today are offered as SaaS (Software as a Service)
• Customer has an API to access the service and doesn’t install anything (or at 

most a small client)

• Important distinction:
• A SaaS company runs its own software

• You know what machines, what network, what environment – you control all!
• Enterprise software solutions are run by customers

• You don’t know if it’s in the cloud, in a data center, what type of machine, etc.
• Mandating specific environments reduces your relevance and can increase cost

• E.g., powerful machines in AWS are much more expensive than weak ones



4

RSA Key Generation

• Consider deployment of CRYPTO 2018 paper
• Fast Distributed RSA Key Generation for Semi-Honest and Malicious 

Adversaries, by T. Frederiksen, Y. Lindell, V. Osheter and B. Pinkas
• Impressive performance – average time of 35 seconds for malicious 

RSA-2048 key generation
• Used Intel Xeon E5-2673 v.4 - 2.3Ghz machines with 64Gb RAM, with 40.0 Gbps 

network
• These machines have 20 cores and 40 threads
• The time of 35 seconds is for an 8-thread implementation



5

Issue 1 – Cost 

• RSA key generation paper used Intel Xeon E5-2673 v.4 - 2.3Ghz 
machines with 64Gb RAM, with 40.0 Gbps network

• These types of machines cost thousands of dollars a year, versus a few 
hundred dollars for a 2-core, 8GB RAM machine (for example)
• When deploying 4 machines in each region over 3 regions, this becomes 

expensive

• This significantly influences the product TCO (total cost of ownership)



6

Issue 2 – Multithreading

• RSA key generation naturally tends to multi-threaded computation
• Multiple candidates are tested – can be done in parallel

• Proposal: automatically detect number of cores and parallelize to that 
number
• Or just use many threads and pay overhead when you have less

• Problem: 
• The machine is used for many cryptographic operations
• Using many cores can choke the machine and slow down ongoing operations

• Database access becomes slow since someone else is generating an RSA key!



7

Issue 3 – High Bandwidth

• RSA key generation is very heavy, and requires many iterations to find 
a modulus
• There is a single honesty check at the end
• Since most candidates are thrown out, defer a proof of honest to the end
• This is OK since if someone cheats, it’s OK that they learned part of the key

• The key will be thrown out

• The proof is run once, and is not significant
• Use dual execution on about 5-6 million gates => each party sends and receives 

about 170MB
• On a 100Gbps network, would take about 15 seconds



8

Bandwidth – Virtual Smartcard Setting

• Generate an RSA key
• Between a mobile and server
• Between a laptop and server

• The laptop is at someone’s home (WFH)
• Typical uploads from home are between 1Mbps and 15Mbps
• At 1 Mbps, uploading 170MB would take 1360 seconds = 23 minutes

• But often the actual upload can be slower (depending on other usage)
• This is before we count anything else

• It is absolutely essential to use a shorter proof, like Ligero and variants
• Other significant bandwidth savings were made (Paillier instead of OT)



10

Additional Changes

• Numerous local optimizations – won’t go through them here
• Verify more candidates in parallel in order to reduce variance
• Better balance of initial filtering to counter speed and communication
• Implemented fixed-base variant of Paillier and faster exponentiation
• Boneh-Franklin biprimality test – part 2 – isn’t needed
• Optimizations in circuit for honest check

• E.g., compare that 𝑁 = 𝑝 ⋅ 𝑞 is expensive (needs multiplication and comparison)
• It is much cheaper to check 𝑁 = 𝑝 ⋅ 𝑞 mod 𝑟, since only multiply 𝑝 mod 𝑟 and 𝑞 mod 𝑟

• We need to prove consistency with AES operations (for PRG and commitments); utilize 
algebraic representation of AES 

• And much more



11

Engineering

• Cryptographers shouldn’t think that all solutions are cryptographic
• Our implementation takes about 5 minutes from home to server

• This is much better than 20-40 minutes, but could be viewed as still too long

• Engineering solutions work
• RSA key generation is run upon smartcard installation

• Run in background (like antivirus installation)
• Much faster than delivering a physical smartcard

• In server setting, generate many RSA keys and have them in reserve

• Complicated engineering solutions are less desired
• Auto-detect bandwidth and computing power is a problem – you don’t know 

what else may run at the same time, or if there is high variance



12

Conclusions

• In non-SaaS settings, it’s hard to assume anything
• There are big cost advantages to running on small and weak machines
• Bandwidth can be very fast and very slow

• Stability and predictability are often more important than speed
• High variance is a challenge

• Not all solutions are cryptographic – a lot is smart engineering design
• Academic papers should continue to push the science forward
• But actual solutions in production need to find different balances
• It’s important to look at “balanced solutions” that don’t necessarily minimize 

time or bandwidth, etc.



13


