CacheOut and SGAXxe:
How SGX Falls in Practice

Stephan van Schaik, Marina Minkin, Andrew Kwong
Daniel Genkin and Yuval Yarom

wd THE UNIVERSITY

o ADELAIDE

”
COMPUTER SCIENCE
m [:SEAND ENGINEERING | & |
UNIVERSITY OF MICHIGAN
\ /

Recap (2018)

FORESHADOW

CVE-2018-3619
CVE-2018-3620
CVE-2018-3646

Disclosed in 2018: speculative- and transient-execution attacks

Recap (2018) - Meltdown & Foreshadow

L2 Cache
Y

L1d Cache
Y

Execution
Core

Basic cache hierarchy

Recap (2018) - Meltdown & Foreshadow

L2 Cache
Y

!:: 2Cache

Execution
Core

Meltdown and Foreshadow leak data from caches

Recap (2018) - Meltdown & Foreshadow

L2 Cache
y

\/ L1d Cache

Y

Execution
Core

Prompted wide mitigation effort

Recap (2018) - Meltdown & Foreshadow

L2 Cache
y

\/ L1d Cache

Y

Execution
Core

No longer possible to leak from caches

Recap (2019) - MDS Attacks

L2 Cache
Y
v | Lidcache |=| Fill Buffer
Y |
Store Buffer [»= » » - -
Y
Load Port
Y
Execution
Core

Turns out there are more buffers

Recap (2019) - MDS Attacks

L2 Cache

\/ L1d Cache <ffer
y
‘ ¥ Buffer [» » <« =
Y

Execution
Core

Disclosed in 2019: Micro-architectural Data Sampling

Recap (2019) - MDS Attacks

L2 Cache

\/ L1d Cache 4ffer
y
‘ g Buffer | » » <« =
Y

Execution
Core

MDS targets internal CPU buffers

Micro-architectural Data Sampling

* Access other people's data through faulting or assisting loads
* Across processes, VMs and Intel SGX

TEE second Meltdown: New Intel
CPU attacks leak secrets

10

Micro-architectural Data Sampling

11

L2 Cache

y
‘ ¥ Buffer |» » -v*-

‘/ L1d Cache | = ffer

Execution
Core

MDS samples data passing thro

ugh these buffers

Micro-architectural Data Sampling

=

MDS attacks are like drinking from a fire hose

12

Micro-architectural Data Sampling

You just get whatever data is in flight!

13

o

Micro-architectural Data Sampling

=

Hence the name: "Micro-architectural Data Sampling"

14

Micro-architectural Data Sampling

No control over what you are getting

15

=
e

Mitigating MDS

L2 Cache

/ L1d Cache
y Y
M» - - - g
><

\

Execution
Core

Mitigation: verw to flush the internal CPU buffers

16

Part 2: CacheOut
O

Mitigating MDS

18

Flush internal CPU buffers

Does not fix the root cause behind MDS!
You can still leak data from those buffers

Is flushing buffers sufficient as a mitigation?
Bonus: can we get some more control?

Observations

"... evicting the previous caches line from the L1d cache ... the
processor has to write them back through the memory hierarchy

and will do this through the LFB ..."
The RIDL paper ()

 Evicting the cache forces data into the fill buffer
« ZombielLoad reports 0.1 B/s leakage despite mitigations
* This residual leakage Is worrisome

19

https://mdsattacks.com/files/ridl.pdf

New Data Path

20

v

L1d Cache | =| Fill Buffer

Store Buffer

Data path for eviction through the LFB

Load Port
Y

Execution
Core

New Data Path

v

L1d Cache @ Buffer

Store Buffer

Load Port
Y

Execution
Core

But the LFB is still leaky!

21

22

So how do we exploit evictions?

Exploiting Evictions

23

Program

Fill Buffer

Attacker

\ Faster

 Slower

Exploiting Evictions

Program Attacker

A Faster

Fill Buffer ------------------------

v Slower
The victim's data i1s in the fill buffer and cache

24

Exploiting Evictions

Program Attacker
I VERW I e _ | Faster
FI I I B u ff e r é ;'.'.'.'.'.'.'.'_'_'_'_'_'_'_ """""""""
" Cache
DRAM
v Slower

However, verw flushes that data from the fill buffer

25

Exploiting Evictions

Program Attacker

A Faster

Fill Buffer """"""""

v Slower
How do we leak the data from the cache?

26

Exploiting Evictions

27

Program

Fill Buffer

Cache Set

Attacker

pgaces

......................

\ Faster

 Slower

The cache iIs divided into sets

Exploiting Evictions

Program Attacker

_________________________________ A Faster
Fill Buffer |y
CaChe Set é.E_'_E-
Cache
DRAM
v Slower

The address determines in which set the data Is

28

Exploiting Evictions

Program Attacker
_________________________________ A Faster
FI I I B u ff e r é i:-:::::: """"""""""
" Cache
[[[[DRAM
v Slower

The attacker reads addresses mapping to the same set

29

Exploiting Evictions

Program Attacker

A Faster

v Slower
and fills the cache set with its own data

30

Exploiting Evictions

Program Attacker

- Faster

v Slower
evicting the victim's data into the fill buffer

31

Exploiting Evictions

Program Attacker

A Faster

 Slower

While the data gets written back to DRAM

<

32

Exploiting Evictions

Program Attacker

Fau |W
A Faster

FilllB \;J\If.er
rite ===
Back L _IL_JL_JL I
" Cache
DRAM

v Slower
The attacker uses a faulty load to leak the data

22

Exploiting Evictions

Program Attacker

Fau |W
A Faster

QU [T

Fill Buffer """"""""

v Slower
The attacker uses a faulty load to leak the data

34

Exploiting Evictions

Program Attacker

V
A Faster

FilllB \;J\If.er
rite ===
Back L _IL_JL_JL I
" Cache
DRAM

v Slower
The attacker uses a faulty load to leak the data

35

Exploiting CacheOut

36

CacheOut leaks at 2.85 KiB/s (rather than 0.1 B/s)

Targets data at rest:
— Control when we push the data into the LFB
— Long after the victim accessed the data

Leak AES and RSA keys

Leak neural network weights

Break KASLR and leak kernel data

Even across VMs, including the hypervisor

Exploiting CacheOut

Dump data from SGX enclaves

37

SGX based Applications

Software Guard Extensions (SGX) Security Model

Client

40

Software Guard Extensions (SGX) Security Model

Takeaway: trust
is based on the
EPID key

R
5}
B

" Enhanced Privacy ID

Remote
Client

SGAxe-Bot @SGAxe_AaaS - Jun 9
Aa a S Replying to @bascule
Your quote "Honest Andrew’s Jsed Cars, Certificates, and Genuine Intel SGX

(Att e Sta t | O n a S a S e rv I C e) Enclaves" has been signed. Your quote and instructions on how to verify it can

be found at gist.github.com/1afd7a8efa3e0e.... Visit sgaxe.com for more

information.
Will attest to anything tweeted at it il LSS at i
; : : EPID Group ID: 0xb5 0x0b 0x00 0x00
Slgned 100+ quotes Wlthln 2 hours Extended Group ID: 0x00 0x00 0x00 0x00
PCE SVN: 0x0a Ox00
° - QE SVN: 0x0b 0x00
BIOCkEd by G Ith u b MRSIGNER: SGAxe: How SGX Fails in Practice
. MRENCLAVE: Wh d | bad xe Aaa
After the public release of the paper, CPU SUN: K50 60 2 0 0 o I
c Ox00 O0x00 O0x00 Ox00 Ox00 Ox0O0 Ox00 Ox00
key was still trusted for a whole Basename: oxb4 0x47 Oxed Oxf8 G:Sa 0:1e oxcc O:fe
month ol W o ot e 1 Bt s
Oxfb 0xb6 0x98 0Oxa8 Ox8f 0x53 Oxf8 0x23
Ca n't u pd ate TC B q u |C kly beca use : Hones Andrew’s sed Cars, Certificates, and Ger{liihe fitel SGX'E
SG X u Se rS n e ed to i n Sta | | B I OS . .- his quoe has been signed for you by a genuine Intel SGX eclave.
u pd ates <« c o © | a8 github.com
H a rd COd ed M RS I G N E R p reve ntS O Pull requests Issues Marketplace Explore
a b u S e Your account has been flagged.

Because of that, your profile is hidden from the public. If you believe this is a mistake, contact support to have your account status reviewed.

SGX in Signal

* In May, Signal started prompting users to
add pins

* Secure Value Recovery (SVR)
e Backup contacts in cloud
* Non-phone # based addressing

* Isn’t selling point of signal is that they
don’t store info about users?

* Data is encrypted under a key derived from
both the user’s pin and a random seed

* Designed so that Signal themselves cannot
decrypt the data

 Problem: relies on SGX

Secure Value Recovery

b

Stored On Signal’s Servers

likely just a 4-digit

pin__ In Enclave
C2
User’s Pin
256-bit
random seed Enclave rate limits

guessing attempts

1010 Encrypted
1100 User’s Data
User’s Data

* Encryption key derived from both user’s secret pin and a random seed

* User’s data still secure even when the user’s pin is short and memorable

Leaking C2

Attacker with access to the Signal servers storing
C2:

* Use CacheOut can recover C2 from L1-cache
* Requires some side-channel knowledge

Alternatively: exploit the trust placed in the EPID keys

Values are replicated across a Raft cluster
* Raft stores C2 and the random seed as a distributed log

If cluster’s network is compromised (subpoena,
coercion, hacked machines, etc):

» Attacker can then use the stolen EPID keys to forge quote
proving that the malicious replica is running on SGX

* Even though fake replica is not using SGX
* request Raft network to replicate the entire log
* Can then be read in plaintext

256-bit
random seed

Fake Replica
D

quote
)

-

Summary

e CacheOut breaches SGX’s confidentiality,
allowing an attacker to masquerade as a
legitimate SGX enclave

* Good that Signal is thinking about side-
channels against SGX
* insert LFENCE before each branch

* also use retpolines to defend against speculation
attacks

* Doesn’t mitigate CacheOut

* SGX cannot be relied upon to limit guessing
attempts

 Signal should still require strong passwords for SVR

e Attack assumes a malicious Signal Server with
access to the cluster
e Cannot do this at home
* Subpoena, insider threat, hacked machines

Countermeasures

» Dedicated Microcode update
released on June 20%

— Patch your machine

 More detalls at
CacheOutAttack.com

Thank you!
Questions?

(ankwong@umich.edu)

46

(stephvs@umich.edu)

