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Recap (2018)

FORESHADOW

CVE-2018-3619
CVE-2018-3620
CVE-2018-3646

Disclosed in 2018: speculative- and transient-execution attacks



Recap (2018) - Meltdown & Foreshadow
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Recap (2018) - Meltdown & Foreshadow
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Meltdown and Foreshadow leak data from caches



Recap (2018) - Meltdown & Foreshadow
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Prompted wide mitigation effort



Recap (2018) - Meltdown & Foreshadow
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Recap (2019) - MDS Attacks
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Recap (2019) - MDS Attacks
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Disclosed in 2019: Micro-architectural Data Sampling



Recap (2019) - MDS Attacks
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MDS targets internal CPU buffers



Micro-architectural Data Sampling

* Access other people's data through faulting or assisting loads
* Across processes, VMs and Intel SGX

TEE second Meltdown: New Intel
CPU attacks leak secrets
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Micro-architectural Data Sampling
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Micro-architectural Data Sampling
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MDS attacks are like drinking from a fire hose
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Micro-architectural Data Sampling

You just get whatever data is in flight!
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Micro-architectural Data Sampling
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Hence the name: "Micro-architectural Data Sampling"
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Micro-architectural Data Sampling

No control over what you are getting
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Mitigating MDS
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Mitigation: verw to flush the internal CPU buffers

16



Part 2: CacheOut
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Mitigating MDS
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Flush internal CPU buffers

Does not fix the root cause behind MDS!
You can still leak data from those buffers

Is flushing buffers sufficient as a mitigation?
Bonus: can we get some more control?




Observations

"... evicting the previous caches line from the L1d cache ... the
processor has to write them back through the memory hierarchy

and will do this through the LFB ..."
The RIDL paper ( )

 Evicting the cache forces data into the fill buffer
« ZombielLoad reports 0.1 B/s leakage despite mitigations
* This residual leakage Is worrisome
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https://mdsattacks.com/files/ridl.pdf

New Data Path
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New Data Path
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But the LFB is still leaky!

21



22

So how do we exploit evictions?



Exploiting Evictions
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Exploiting Evictions
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The victim's data i1s in the fill buffer and cache
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Exploiting Evictions
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However, verw flushes that data from the fill buffer
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Exploiting Evictions
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How do we leak the data from the cache?
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Exploiting Evictions
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Exploiting Evictions
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Exploiting Evictions
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The attacker reads addresses mapping to the same set
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Exploiting Evictions
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Exploiting Evictions
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Exploiting Evictions
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Exploiting Evictions
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Exploiting Evictions
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Exploiting Evictions
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Exploiting CacheOut
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CacheOut leaks at 2.85 KiB/s (rather than 0.1 B/s)

Targets data at rest:
— Control when we push the data into the LFB
— Long after the victim accessed the data

Leak AES and RSA keys

Leak neural network weights

Break KASLR and leak kernel data

Even across VMs, including the hypervisor



Exploiting CacheOut

Dump data from SGX enclaves
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SGX based Applications




Software Guard Extensions (SGX) Security Model

Client
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Software Guard Extensions (SGX) Security Model

Takeaway: trust
is based on the
EPID key
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SGX in Signal

* In May, Signal started prompting users to
add pins

* Secure Value Recovery (SVR)
e Backup contacts in cloud
* Non-phone # based addressing

* Isn’t selling point of signal is that they
don’t store info about users?

* Data is encrypted under a key derived from
both the user’s pin and a random seed

* Designed so that Signal themselves cannot
decrypt the data

 Problem: relies on SGX




Secure Value Recovery

b

Stored On Signal’s Servers

likely just a 4-digit

pin__ In Enclave
C2
User’s Pin
256-bit
random seed Enclave rate limits

guessing attempts

1010 Encrypted
1100 User’s Data
User’s Data

* Encryption key derived from both user’s secret pin and a random seed

* User’s data still secure even when the user’s pin is short and memorable



Leaking C2

Attacker with access to the Signal servers storing
C2:

* Use CacheOut can recover C2 from L1-cache
* Requires some side-channel knowledge

Alternatively: exploit the trust placed in the EPID keys

Values are replicated across a Raft cluster
* Raft stores C2 and the random seed as a distributed log

If cluster’s network is compromised (subpoena,
coercion, hacked machines, etc):

» Attacker can then use the stolen EPID keys to forge quote
proving that the malicious replica is running on SGX

* Even though fake replica is not using SGX
* request Raft network to replicate the entire log
* Can then be read in plaintext

256-bit
random seed

Fake Replica
D

quote
)

-




Summary

e CacheOut breaches SGX’s confidentiality,
allowing an attacker to masquerade as a
legitimate SGX enclave

* Good that Signal is thinking about side-
channels against SGX
* insert LFENCE before each branch

* also use retpolines to defend against speculation
attacks

* Doesn’t mitigate CacheOut

* SGX cannot be relied upon to limit guessing
attempts

 Signal should still require strong passwords for SVR

e Attack assumes a malicious Signal Server with
access to the cluster
e Cannot do this at home
* Subpoena, insider threat, hacked machines




Countermeasures

» Dedicated Microcode update
released on June 20%

— Patch your machine

 More detalls at
CacheOutAttack.com

Thank you!
Questions?

(ankwong@umich.edu)
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(stephvs@umich.edu)



