
From Crypto-Paper to Crypto-Currency:
the Cardano Consensus Layer

 Real-World Crypto Symposium (RWC) 2021

Christian
Badertscher

IOHK

Duncan Coutts
IOHK

Well-Typed

Philipp Kant
IOHK

Joint work with Peter Gaži, Aggelos Kiayias, Alexander Russell

Overview

1

2

3

From Theory to Practice

Formal Methods and Implementation
Correctness

What Could Have Gone Wrong

4 Path to Decentralisation

Overview

1

2

3

From Theory to Practice

Formal Methods and Implementation
Correctness

What Could Have Gone Wrong

4 Path to Decentralisation

Distributed Computation over a Network

Distributed Computation over a Network

Protocol execution model:

- Interactive machines

Distributed Computation over a Network

Protocol execution model:

- Interactive machines
- Formalizations of assumed

resources (network, clock,
random oracle, …)

Protocol execution model:

- Interactive machines
- Formalizations of assumed

resources (network, clock,
random oracle, …)

Distributed Computation over a Network

Distributed Computation over a Network

Protocol execution model:

- Interactive machines
- Abstracting objects that are

assumed (network, clock,
random oracle…)

Interplay between theory and engineering: relevant
properties must be captured by the abstraction

Distributed Computation over a Network

Protocol execution model:

- Interactive machines
- Formalizations of assumed

resources (network, clock,
random oracle, …)

- Byzantine behavior

Distributed Computation over a Network

Protocol execution model:

- Interactive machines
- Formalizations of assumed

resources (network, clock,
random oracle, …)

- Byzantine behavior
- Rational behavior

Distributed Computation over a Network

Protocol execution model:

- Interactive machines
- Formalizations of assumed

resources (network, clock,
random oracle, …)

- Byzantine behavior
- Rational behavior
- Machine failures

Distributed Computation over a Network

Protocol execution model:

- Interactive machines
- Formalizations of assumed

resources (network, clock,
random oracle, …)

- Byzantine behavior
- Rational behavior
- Machine failures

Fine-Grained security model

+ Security under composition:
Each external input might depend on the entire
view of this and other protocols

⇒ A security proof is meaningful to practice.

Consensus Layer of Cardano

Ouroboros:

A Nakamoto-style Proof-of-Stake
Blockchain Protocol realizing a ledger

Realize

Goal:

Result:

Ledger:

- Persistence
- Liveness

(Consensus on
ledger state)

Consensus Layer of Cardano

Ouroboros:

A Nakamoto-style Proof-of-Stake
Blockchain Protocol realizing a ledger

Realize

Goal:

Result:

Ledger:

- Persistence
- Liveness

(Consensus on
ledger state)

Nakamoto-Style Blockchain:

Genesis
Block

Consensus Layer of Cardano

Ouroboros:

A Nakamoto-style Proof-of-Stake
Blockchain Protocol realizing a ledger

Realize

Goal:

Result:

Ledger:

- Persistence
- Liveness

(Consensus on
ledger state)

Nakamoto-Style Blockchain:

- Lottery on next block proposer(s).
- Proposers elected proportional to

owned stake.
Genesis
Block

Consensus Layer of Cardano

Ouroboros:

A Nakamoto-style Proof-of-Stake
Blockchain Protocol realizing a ledger

Realize

Goal:

Result:

Ledger:

- Persistence
- Liveness

(Consensus on
ledger state)

Nakamoto-Style Blockchain:

Fork structure
Security proof:
Establish common-prefix, chain-growth, chain-quality properties (under
honest majority of stake assumption).

Theory + Practice Interplay

- Series of results to overcome specific design
challenges

- Theoretical papers live in an abstract,
proof-oriented world:

- Abstraction of components
- Pseudocode
- Asymptotic statements
- Not usually implementation friendly

- Series of results to overcome specific design
challenges

- Theoretical papers live in an abstract,
proof-oriented world:

- Abstraction of components
- Pseudocode
- Asymptotic statements
- Not usually implementation friendly

Theory + Practice Interplay

Synchronous model of computation and static corruption

- Series of results to overcome specific design
challenges

- Theoretical papers live in an abstract,
proof-oriented world:

- Abstraction of components
- Pseudocode
- Asymptotic statements
- Not usually implementation friendly

Theory + Practice Interplay

Remove rigid message-passing round structure and tolerate adaptive
corruptions

- Series of results to overcome specific design
challenges

- Theoretical papers live in an abstract,
proof-oriented world:

- Abstraction of components
- Pseudocode
- Asymptotic statements
- Not usually implementation friendly

Theory + Practice Interplay

Reward sharing scheme for stake pools to establish an equilibrium with
a large number of pools with high commitment to the system

- Series of results to overcome specific design
challenges

- Theoretical papers live in an abstract,
proof-oriented world:

- Abstraction of components
- Pseudocode
- Asymptotic statements
- Not usually implementation friendly

Theory + Practice Interplay

Dealing with fluctuating participation, joining after disconnection in a
decentralized manner

- Series of results to overcome specific design
challenges

- Theoretical papers live in an abstract,
proof-oriented world:

- Abstraction of components
- Pseudocode
- Asymptotic statements
- Not usually implementation friendly

Theory + Practice Interplay

More resilience by less dependency on external timing services

- Series of results to overcome specific design
challenges

- Theoretical papers live in an abstract,
proof-oriented world:

- Abstraction of components
- Pseudocode
- Asymptotic statements
- Not usually implementation friendly

Theory + Practice Interplay

More functionality by privacy

Theory + Practice Interplay

Everything so ordered ...

Theory + Practice InterplayOuroboros Preprint +
Engineering launches 2016

2019 “reboot” of system with
new codebase

September
2017 - first
version live

Autumn 2018 -
second implementation starts,
designed so that there is a
built-in protocol evolution
functionality

Summer 2020 Decentralization

improved
understanding

of the
requirements

Monolithic
implementation

Overview

1

2

3

From Theory to Practice

Formal Methods and Implementation
Correctness

What Could Have Gone Wrong

4 Path to Decentralisation

Implementing Correctly or Quickly?

Questions before implementation
- Required level of confidence?
- Time available?
- Requirements fixed?
- Difficulty of Problem?

Confidence in
Correctness

Implementation
Speed

“Agile Startup”
“Light Formal”

“Full Formal”

and

Correctness Toolbox

Variety of Tools
- Formal specifications
- Proofs (machine verifiable or manual)
- Model checking
- Property-based tests

System Properties
- Determinism?
- Concurrency?
- Finite state space?

Separating the Concerns

Blockchains are messy
- Forks,

eventual consistency
- Distributed system,

concurrency
Ledger can be simple

- Single, linear view
of history

isolate complexity

+

Transaction Ledger

Formal/executable specifications
- Describe microscopic behaviour

“small step operational semantics”
Correctness:

- Formulate macroscopic properties
“money is conserved”

- Property-based testing

- Prove them (manually, assisted)

Consensus and Networking

Harder: Concurrency, Distributed Computing
- Language of process calculi
- Not feasible to start from full formal specification within timeframe

Strategy
- Write testable code → deterministic simulation

property-based testing

- Use type system for guaranteeing invariants
- “Catch Up” on the formal side

Testing Concurrent Code in Simulation

Application Code

Interface library

Deterministic
Simulation

Production
standard libs

Tests are fast and reproducible

Shrink to minimal counterexample

Network Protocols: Session Types

Race Condition Too many are talking
Deadlock Everyone is waiting

Typed Protocols
- Always one sender, one receiver
- Enforced by Haskell type system

 type class
- Violations prevented at compile time

Example: Fetching Blocks

Formal Treatment

Goal is to prove equivalence of high and low-level designs
- High level: described exactly as in the papers
- Low level:

- a practical design;
- matching how networks work; and
- operate in bounded resources.

- Modular design: high and low-level related by a series of refinements
- Modular proof: prove equivalence of each refinement and compose
- Machine checked proofs

Formal Treatment

Results so far
- Formalised an asynchronous process calculus

- Inspired by the π-calculus
- Using Isabelle theorem prover
- Proved all the usual properties of a process calculus
- Framework for proving bisimilarity results

- Formalised high-level paper versions of Ouroboros BFT and Praos
- Proved equivalence of message broadcast vs relay over a network
- Proved equivalence of bulk vs incremental Ouroboros chain selection

Formal Treatment

≈

Message broadcast
(async, with loss and duplication)

Relay over a directed graph
(async, with loss and duplication)

Bisimilarity(*) proved within
the process calculus.

The graphical notation has a syntactic
equivalent in the process calculus.

(*) Bisimilarity modulo more structure to the
message loss in the relay graph:
in relay from A ⇒ B ⇒ C, if a message
arrives at C we can infer it also arrived at
B, which is not true for broadcast.

Connecting theory with implementation
Ouroboros Praos

(Eurocrypt 2018)

Ouroboros Genesis
(CCS 2018)

Other business
requirements

Reward Schemes
(EuroS&P, SCN 2020)

Informs

Formal ledger rules

Executable ledger rules

Audit and
property testingFeedback

Testable consensus
properties and

test environment

Informs

Implementation
● executable in simulation
● executable in reality

Systematic randomised
property testing in a
simulated environment

Overview

1

2

3

From Theory to Practice

Formal Methods and Implementation
Correctness

What Could Have Gone Wrong

4 Path to Decentralisation

Block-Fetch, Forecasting, Denial of Service

Tension: Open Participation, Limited Resources
- Needs aggressive filtering
- Select chain based on headers before downloading blocks

Forecast Range

?

Block-Fetch, Forecasting, Denial of Service

Edge Cases Require Block Download Before Choosing a Chain
- Proposal: only do that when there is no other way to follow any chain

Implemented: tests show disagreement between nodes

Note: general, randomised test, not unit test

Hard-Fork Combinator

Research: One protocol, starting from scratch
Real-World System: Protocol evolves, but history is immutable

Ouroboros Classic Ouroboros BFT Ouroboros Praos

Challenges:
- One codebase needs to understand the whole chain
- Need agreement on when to transition

Hard-Fork Combinator:
- Define new protocol as sequential composition of protocols

De-Risking Decentralisation

Risks in Switching to Decentralised Protocol
- Operators need to gain experience → system not stable
- Little active stake → danger of 51% attack

Gradual Transition
- Fraction of blocks produced by fixed federation
- Gradually hand over control, from to

Real-World Concern: Finite Resources

Open Participation, Limited Resources: worry about DoS
- Proof of Work: producing a chain is much more difficult than validating it

→ obvious, significant advantage for honest nodes
- Proof of Stake: finer balance

→ problem: attacker can cheaply occupy honest resources
- Design needs to analyse worst-case behaviour

excludes many off-the-shelf libraries

e.g. aggressive filtering
Forecast Range

Refine Carefully

Papers are Quite Abstract, Implementation Introduces Details
- Interactions of the adversary with the system also more detailed
- Avoid creating new interactions that are detrimental to the security, which

are not describable at the high level
- Mind the resource balance between honest and adversarial nodes

Future Work

- Close remaining gaps between theory and implementation
- Formalised version of the security guarantees of Ouroboros

Ph.D. thesis, using Isabelle theorem prover
- Implement newer versions of Ouroboros
- Adding additional ledger functionality

smart contracts, decentralised software updates

