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1National Technical University of Athens

2CISPA Helmholtz Center for Information Security

3Max Planck Institute for Security and Privacy

TCC 2021



2/28

Table of Contents

Introduction

Existing Quantum Fully Homomorphic Encryption Schemes

Rate-1 QFHE Construction

Conclusion



3/28

Fully Homomorphic Encryption Scheme

A FHE scheme allows Alice to encrypt some message m such that

later Bob (holding any function F ) can compute Enc(F (m)).
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Fully Homomorphic Encryption Scheme
Semantic Security

I Semantic Security: Alice’s input m must be hidden in an

indistinguishability sense.

FHE.Enc(pk,m0) ≈c FHE.Enc(pk,m1)
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Fully Homomorphic Encryption Scheme
Circuit Privacy

Circuit Privacy: Bob’s message must be statistically independent

of F , conditioned on the output F (m).

I Semi-Honest Circuit Privacy: Statistical circuit privacy is

required to hold only for well-formed messages from Alice (pk

and ciphertext).

vs

I Malicious Circuit Privacy: Statistical circuit privacy holds

for any arbitrary message from Alice.

Malicious circuit privacy in classical FHE

Any classical FHE scheme can be converted into one with

malicious circuit privacy [OPP14].
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Fully Homomorphic Encryption Scheme
Communication Complexity

Ensure that communication overhead introduced for security

doesn’t nullify the efficiency of outsourcing computations.
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Fully Homomorphic Encryption Scheme
Communication Complexity

I Communication complexity should be compact (independent

of the size of the circuit).

I Useful in applications such as:
I secure function evaluation
I encrypted databases
I private information retrieval [CGKS95]

I Best communication complexity approaches that of the

insecure protocol (where Alice sends her input m in plain),

assuming the hardness of LWE [BDGM19].
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Fully Homomorphic Encryption Scheme
Rate

I Rate denotes the message-to-ciphertext ratio.

I Rate ρ: size of F (m)
size of FHE.Eval(F ,m) ≥ ρ.

I Rate-1 schemes asymptotically approach rate ρ = 1.
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Quantum FHE Scheme

In a Quantum FHE scheme Alice can encrypt a quantum state |ψ〉
whereas Bob (holding any unitary U) can compute

Communication complexity with a quantum output?
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Results

We construct quantum FHE in a malicious setting with

communication complexity:

(| |ψ〉 |+ |C (|ψ〉)|) · (1 + o(1))

Maliciously Circuit Private Quantum FHE

Assuming the quantum hardness of LWE, there exists a maliciously

circuit private (levelled) QFHE scheme

Rate-1 Quantum FHE

Assuming the quantum hardness of LWE, there exists a (levelled)

QFHE scheme with rate-1.
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Classical Techniques for Quantum FHE

Interference

Elements of a superposition representing the same bit string but

with opposite amplitudes must cancel out.

Example

I Hadamard Transformation:

H (|0〉) =
1√
2
|0〉+

1√
2
|1〉 , H (|1〉) =

1√
2
|0〉 − 1√

2
|1〉

I H
(

1√
2
|0〉+ 1√

2
|1〉
)

= 1
2 (|0〉+ |1〉+ |0〉 − |1〉) = |0〉

I 1
2 (|Enc(0)〉+ |Enc(1)〉+ |Enc(0)〉 − |Enc(1)〉)
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Quantum One-Time Pad

I Solve using Quantum One-Time Pad [BJ15,Mah18,Bra18].

I Pauli Operators:

X =

[
0 1

1 0

]
,Z =

[
1 0

0 −1

]
.

I For a superposition |φ〉 = α |0〉+ β |1〉 we sample

otk = (x , z) ∈ {0, 1}2 and implement the QOTP as

QOTP(otk, |φ〉) ≡ X xZ z |φ〉 = α |x〉+ (−1)zβ |1⊕ x〉
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Quantum FHE [Mah18]
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Quantum FHE
Mahadev Protocol

I Classical homomorphic computation along with a dependent

quantum computation.

I X xZ z |ψ〉
Enc(x , z)

U→ X x ′Z z ′U |ψ〉
Enc(x ′, z ′)

I Clifford Gates: U X xZ z |ψ〉 = X x′
Z z′U |ψ〉.

I Toffoli Gate: quantum operation dependent on the classically
encrypted keys.

I Quantum Capable FHE Scheme: A classical FHE that can be

used to evaluate quantum circuits.
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Quantum FHE
Properties of Interest

I The scheme has hybrid ciphertexts consisting of:
I a Quantum OTP state.
I a classical encryption of the completely classical otk .

I The classical component of the ciphertext satisfies

(semi-honest) circuit privacy.
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Quantum FHE
Our Contribution

Maliciously Circuit Private QFHE

We lift the protocol from the semi-honest to the malicious setting,

providing security for any choice of Alice’s first message.

Rate-1 QFHE

We construct a QFHE scheme with nearly optimal ciphertext

expansion.
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Existing QFHE Rate

I Rate ρ (Mahadev’s scheme):

|C (|ψ〉)|
|QFHE.QEval (pk,C , |φ〉)|

=
`

`+ size of HE keys
≥ ρ

I Classical FHE is not rate-1.

I Overall Inverse Polynomial Rate!
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Failed Approach

I Shrink classical information.

I Sample seed ←$ {0, 1}λ for PRG.

I Compute QOTP(PRG(seed), |ψ〉),QEnc(pk , seed)

I After homomorphic evaluation new one-time key :(

I Stuck with FHE.Enc(pk, otk), where two classical bits are

necessary to encrypt a qubit.
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Spooky Interactions [BDGM19]

I Some FHE schemes pack k classical bits (m1, . . . ,mk) in

ciphertexts of the form c = (c0, c1, . . . , ck) ∈ Zn+1
q ×{0, 1}k .

I The last k-bits of the ciphertexts are non-locally correlated

with the secret key sk.

I Spooky Decryption:

Dec(sk, c) = F (sk, c0)⊕ (c1, . . . , ck)
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Construction

I Use spooky encryption scheme to get a Rate-1 form.

I Use the quantum capable FHE to perform homomorphic

evaluations and the rate-1 to store the classical information.
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QFHE Construction

I Convert Enc(pk, otk) into an FHE ciphertext with spooky

decryption via bootstrapping:

I Return c0 and
⊗
i∈[l ]

(X ci,xZ ci,z ) · QOTP(otk, |ψ〉).
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QFHE Construction

I Alter the one time key: xi , zi → xi ⊕ ci ,x , zi ⊕ ci ,z

I The result of the function F is:

F (sk , c0) = Dec(sk , c)⊕ (c1,x , c1,z , . . . , c`,x , c`,z)

= (x1, z1, . . . , x`, z`)⊕ (c1,x , c1,z , . . . , c`,x , c`,z)

= the updated one time key
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QFHE Construction
Rate

I Evaluated Plaintext |ψ〉: `-qubit state.

I Compressed Evaluated Ciphertext:

I quantum information: `-qubit state |φ〉.

I classical information: c0.

ρ(λ) =
`

size of c0 + `
= 1− size of c0

size of c0 + `
.

I By setting the parameters accordingly, the rate asymptotically

approaches 1, assuming standard LWE.
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Non-Generic Approach

I Construct a different classical FHE scheme.
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Conclusion

I We construct maliciously circuit private rate-1 quantum FHE.

For any QFHE with a hybrid ciphertext form we:

I Lift the protocol from semi-honest to maliciously circuit private
FHE.

I Get optimal (rate-1) communication complexity.

I https://eprint.iacr.org/2020/1454

Orestis Chardouvelis, Nico Döttling and Giulio Malavolta.

https://eprint.iacr.org/2020/1454
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