Vector and Functional Commitments from Lattices

Chris Peikert, Zachary Pepin, Chad Sharp

Vector Commitments: (Stateless) Updates

Vector Commitments: (Stateless) Updates

ml	m ₂		mj'		m _{d-1}	m _d
----	----------------	--	-----	--	------------------	----------------

Functional Commitments [LRY16]

Functional Commitments [LRY16]

Merkle trees [Mer87], not statelessly updatable.

- Merkle trees [Mer87], not statelessly updatable.
- Statelessly updatable VCs based on RSA, pairings [LY10, CF13].

- Merkle trees [Mer87], not statelessly updatable.
- Statelessly updatable VCs based on RSA, pairings [LY10, CF13].
- Merkle-like statelessly updatable VC scheme based on SIS (post quantum) [PSTY13].

- Merkle trees [Mer87], not statelessly updatable.
- Statelessly updatable VCs based on RSA, pairings [LY10, CF13].
- Merkle-like statelessly updatable VC scheme based on SIS (post quantum) [PSTY13].
- Applications: verifiable oursourcing of storage [CF13, BGV11], verifiable zero knowledge sets [MRK03], cryptographic accumulators [BdM93], pseudononymous credentials [KZG10], cryptocurrencies [CPSZ18].

FC scheme for linear functions [LRY16] based on pairings.

- FC scheme for linear functions [LRY16] based on pairings.
- FC scheme for "sparse polynomials" [LP20].

- FC scheme for linear functions [LRY16] based on pairings.
- FC scheme for "sparse polynomials" [LP20].

- FC scheme for linear functions [LRY16] based on pairings.
- FC scheme for "sparse polynomials" [LP20].
- SNARKs for NP let us go further than linearizable functions [LRY16], but these cannot be constructed from falsifiable assumptions [GW11].

- FC scheme for linear functions [LRY16] based on pairings.
- FC scheme for "sparse polynomials" [LP20].
- SNARKs for NP let us go further than linearizable functions [LRY16], but these cannot be constructed from falsifiable assumptions [GW11].
- Applications: verifiable secret sharing [LRY10], content extraction signatures [SBZ01], and zero-knowledge SNARKS [BFS20, BDFG20].

New post-quantum (SIS), statelessly updatable VC with significantly shorter proofs than the only other one.

New post-quantum (SIS), statelessly updatable VC with significantly shorter proofs than the only other one.

Scheme	pp	c	$ \pi $	Setup	PQ
[PSTY13] (SIS)	h^2d	$h \log d$	$h^3 d \log^2 d$	Public	1
Tree construction (SIS)	$h^2 d^2$	$h \log d$	$h^3 \log^2 d$	Private	1

- New post-quantum (SIS), statelessly updatable VC with significantly shorter proofs than the only other one.
- 2 New SIS-based FC scheme for *arbitrary (bounded) Boolean circuits*.

- New post-quantum (SIS), statelessly updatable VC with significantly shorter proofs than the only other one.
- 2 New SIS-based FC scheme for *arbitrary (bounded) Boolean circuits.*
 - First to go beyond linearizable functions based on a falsifiable assumption.

- New post-quantum (SIS), statelessly updatable VC with significantly shorter proofs than the only other one.
- 2 New SIS-based FC scheme for *arbitrary (bounded) Boolean circuits.*
 - First to go beyond linearizable functions based on a falsifiable assumption.
 - First post-quantum FC scheme from a falsifiable assumption.

- New post-quantum (SIS), statelessly updatable VC with significantly shorter proofs than the only other one.
- 2 New SIS-based FC scheme for *arbitrary (bounded) Boolean circuits.*
 - First to go beyond linearizable functions based on a falsifiable assumption.
 - First post-quantum FC scheme from a falsifiable assumption.
 - Works in a new model in which a permanently online authority generates reusable "opening keys" for desired functions.

- New post-quantum (SIS), statelessly updatable VC with significantly shorter proofs than the only other one.
- 2 New SIS-based FC scheme for *arbitrary (bounded) Boolean circuits.*
 - First to go beyond linearizable functions based on a falsifiable assumption.
 - First post-quantum FC scheme from a falsifiable assumption.
 - Works in a new model in which a permanently online authority generates reusable "opening keys" for desired functions.

Secondary contributions:

- New post-quantum (SIS), statelessly updatable VC with significantly shorter proofs than the only other one.
- 2 New SIS-based FC scheme for *arbitrary (bounded) Boolean circuits.*
 - First to go beyond linearizable functions based on a falsifiable assumption.
 - First post-quantum FC scheme from a falsifiable assumption.
 - Works in a new model in which a permanently online authority generates reusable "opening keys" for desired functions.

Secondary contributions:

 Formal definition and generic construction of a zero-knowledge vector commitment scheme.

- New post-quantum (SIS), statelessly updatable VC with significantly shorter proofs than the only other one.
- 2 New SIS-based FC scheme for *arbitrary (bounded) Boolean circuits.*
 - First to go beyond linearizable functions based on a falsifiable assumption.
 - First post-quantum FC scheme from a falsifiable assumption.
 - Works in a new model in which a permanently online authority generates reusable "opening keys" for desired functions.

Secondary contributions:

- Formal definition and generic construction of a zero-knowledge vector commitment scheme.
- 2 Formal analysis of a (folklore) Merkle-like tree transformation for VC schemes that makes them suitable for vectors of large arity.

Short Integer Solution (SIS_{n,m,q,β})

Given uniformly random $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, find nonzero $\mathbf{x} \in \mathbb{Z}^m$ such that

 $\mathbf{A}\mathbf{x} = \mathbf{0} \mod q$

and

$$\|\mathbf{x}\| \leq \boldsymbol{\beta}.$$

Setup(1^{*n*}, 1^{*d*}) :

Sample $\mathbf{U} = [\mathbf{u}_0 \mid \cdots \mid \mathbf{u}_{d-1}] \in \mathbb{Z}_q^{n \times d}$ u.a.r.

Setup(1^{*n*}, 1^{*d*}) :

- Sample $\mathbf{U} = [\mathbf{u}_0 \mid \cdots \mid \mathbf{u}_{d-1}] \in \mathbb{Z}_q^{n \times d}$ u.a.r.
- For all distinct $i, j \in [d]$, sample $\mathbf{A}_i \in \mathbb{Z}_q^{n \times m}$ and (short) $\mathbf{r}_{i,j} \in \mathbb{Z}^m$ (via trapdoor pre-image sampling) such that:

$$\mathbf{A}_i \mathbf{r}_{i,j} = \mathbf{u}_j.$$

Output \mathbf{A}_i s, $\mathbf{r}_{i,j}$ s, and \mathbf{U} as public parameters.

Setup(1^{*n*}, 1^{*d*}) :

- Sample $\mathbf{U} = [\mathbf{u}_0 \mid \cdots \mid \mathbf{u}_{d-1}] \in \mathbb{Z}_q^{n \times d}$ u.a.r.
- For all distinct $i, j \in [d]$, sample $\mathbf{A}_i \in \mathbb{Z}_q^{n \times m}$ and (short) $\mathbf{r}_{i,j} \in \mathbb{Z}^m$ (via trapdoor pre-image sampling) such that:

$$\mathbf{A}_i \mathbf{r}_{i,j} = \mathbf{u}_j.$$

Output \mathbf{A}_i s, $\mathbf{r}_{i,j}$ s, and \mathbf{U} as public parameters.

$$\begin{bmatrix} A_0 & 0 & \cdots & 0 \\ 0 & A_1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_{d-1} \end{bmatrix} \underbrace{\begin{bmatrix} 0 & r_{0,1} & \cdots & r_{0,d-1} \\ r_{1,0} & 0 & \cdots & r_{1,d-1} \\ \vdots & \vdots & \ddots & \vdots \\ r_{d-1,0} & r_{d-1,1} & \cdots & 0 \end{bmatrix}}_{\tilde{R}} = \begin{bmatrix} 0 & u_1 & \cdots & u_{d-1} \\ u_0 & 0 & \cdots & u_{d-1} \\ \vdots & \vdots & \ddots & \vdots \\ u_0 & u_1 & \cdots & 0 \end{bmatrix}$$

Commit_{pp}($\mathbf{m} \in \{0,1\}^d$):

 $\mathbf{c}:=\mathbf{U}\mathbf{m}$

Commit_{pp}($\mathbf{m} \in \{0, 1\}^d$):

 $\mathbf{c}:=\mathbf{U}\mathbf{m}$

Open_{pp}($\mathbf{m} \in \{0, 1\}^{d}, i$):

$$\mathbf{p}_i = \tilde{\mathbf{R}}_{i,*}\mathbf{m}$$

Commit_{pp}($\mathbf{m} \in \{0, 1\}^d$):

 $\mathbf{c}:=\mathbf{U}\mathbf{m}$

Open_{pp}($\mathbf{m} \in \{0, 1\}^d, i$):

$$\mathbf{p}_i = \tilde{\mathbf{R}}_{i,*} \mathbf{m}$$

= $\begin{bmatrix} \mathbf{r}_{i,0} & \cdots & \mathbf{r}_{i,i-1} & \mathbf{0} & \mathbf{r}_{i,i+1} & \cdots & \mathbf{r}_{i,d-1} \end{bmatrix} \mathbf{m}$

Commit_{pp}($\mathbf{m} \in \{0, 1\}^d$):

 $\mathbf{c} := \mathbf{U}\mathbf{m}$

Open_{pp}($\mathbf{m} \in \{0, 1\}^{d}, i$):

$$\mathbf{p}_i = \tilde{\mathbf{R}}_{i,*} \mathbf{m}$$

= [$\mathbf{r}_{i,0} \cdots \mathbf{r}_{i,i-1} \quad \mathbf{0} \quad \mathbf{r}_{i,i+1} \cdots \mathbf{r}_{i,d-1}$] \mathbf{m}

Verify_{pp}($\mathbf{c}, i, m_i, \mathbf{p}_i$):

accept iff. \mathbf{p}_i is sufficiently short and $\mathbf{c} = \mathbf{A}_i \mathbf{p}_i + m_i \mathbf{u}_i$

Commit_{pp}($\mathbf{m} \in \{0, 1\}^d$):

 $\mathbf{c} := \mathbf{U}\mathbf{m}$

 $\operatorname{Open}_{pp}(\mathbf{m} \in \{0,1\}^d, i)$:

$$\mathbf{p}_i = \tilde{\mathbf{R}}_{i,*} \mathbf{m}$$

= $\begin{bmatrix} \mathbf{r}_{i,0} & \cdots & \mathbf{r}_{i,i-1} & \mathbf{0} & \mathbf{r}_{i,i+1} & \cdots & \mathbf{r}_{i,d-1} \end{bmatrix} \mathbf{m}$

Verify_{pp}($\mathbf{c}, i, m_i, \mathbf{p}_i$):

accept iff. \mathbf{p}_i is sufficiently short and $\mathbf{c} = \mathbf{A}_i \mathbf{p}_i + m_i \mathbf{u}_i$

$$\mathbf{A}_i(\mathbf{\tilde{R}}_{i,*}\mathbf{m}) + m_i\mathbf{u}_i = \sum_{j \neq i} m_j\mathbf{A}_i\mathbf{r}_{i,j} + m_i\mathbf{u}_i = \sum_{j \neq i} m_j\mathbf{u}_j + m_i\mathbf{u}_i = \mathbf{U}\mathbf{m} = \mathbf{c}$$

SIS-based VC scheme: Updates

UpdateC_{pp}($\mathbf{c}, j, \boldsymbol{\delta}$):

$$c' = c + \delta u_j$$

SIS-based VC scheme: Updates

UpdateC_{pp}($\mathbf{c}, j, \boldsymbol{\delta}$):

$$\mathbf{c}' = \mathbf{c} + \mathbf{\delta} \mathbf{u}_j$$

Update $P_{pp}(\mathbf{p}_i, j, \boldsymbol{\delta})$:

$$\mathbf{p}_i' = \mathbf{p}_i + \mathbf{\delta}\mathbf{r}_{i,j}$$

Functional Commitments with Authority

 $\text{Com}_{\textbf{A}}(\textbf{x};\textbf{R}) = \textbf{A}\textbf{R} + \text{Encode}(\textbf{x})$

 $\text{Com}_{\textbf{A}}(\textbf{x};\textbf{R}) = \textbf{A}\textbf{R} + \text{Encode}(\textbf{x})$

• $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ is some public matrix.

 $\text{Com}_{\textbf{A}}(\textbf{x};\textbf{R}) = \textbf{A}\textbf{R} + \text{Encode}(\textbf{x})$

- **A** $\in \mathbb{Z}_q^{n \times m}$ is some public matrix.
- **R** $\in \mathbb{Z}^{m \times w}$ is sufficiently "short" randomness.

 $\text{Com}_{\textbf{A}}(\textbf{x};\textbf{R}) = \textbf{A}\textbf{R} + \text{Encode}(\textbf{x})$

- **A** $\in \mathbb{Z}_q^{n \times m}$ is some public matrix.
- **R** $\in \mathbb{Z}^{m \times w}$ is sufficiently "short" randomness.
- Additive and multiplicative homomorphisms.

Eval(f, $C_x[, R_x]$) outputs ($C_{x,f}[, R_{x,f}]$) such that $R_{x,f}$ is still short and if

 $\mathbf{C}_{x}=\operatorname{Com}_{\mathbf{A}}(x;\mathbf{R}_{x}),$

then

$$\mathbf{C}_{x,f} = \operatorname{Com}_{\mathbf{A}}(f(x), \mathbf{R}_{x,f}).$$

Setup (1^n) :

Generate matrix $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$ with trapdoor **T** and uniformly random **C**.

Setup (1^n) :

Generate matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ with trapdoor \mathbf{T} and uniformly random \mathbf{C} .

Store ek = (C, A, T), output pp = (C, A).

Setup (1^n) :

- Generate matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ with trapdoor \mathbf{T} and uniformly random \mathbf{C} .
- Store ek = (C, A, T), output pp = (C, A).
- We use tagged trapdoor techniques to map A to a unique A_f for each f ∈ F.

Setup (1^n) :

- Generate matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ with trapdoor \mathbf{T} and uniformly random \mathbf{C} .
- Store ek = (C, A, T), output pp = (C, A).
- We use tagged trapdoor techniques to map A to a unique A_f for each f ∈ F.
- Think of **C** as a superposition of commitments to all $f \in \mathcal{F}$.

 $Extract_{ek}(f)$:

- Use **T** to generate a witness **R**_f that **C** is a commitment to f wrt **A**_f.
- That is, generate an \mathbf{R}_f such that $\mathbf{C} = \operatorname{Com}_{\mathbf{A}_f}(f; \mathbf{R}_f)$.

 $Extract_{ek}(f)$:

- Use T to generate a witness R_f that C is a commitment to f wrt A_f.
- That is, generate an \mathbf{R}_f such that $\mathbf{C} = \operatorname{Com}_{\mathbf{A}_f}(f; \mathbf{R}_f)$.

Commit_{pp}(**m**):

- output $\mathbf{C}_{\mathbf{m}} = \text{Eval}(U_{\mathbf{m}}, \mathbf{C})$ where $U_{\mathbf{m}}(f) = f(\mathbf{m})$.
- Think of C_m as a superposition of commitments to $f(\mathbf{m})$ for all $f \in \mathcal{F}$.

 $Extract_{ek}(f)$:

- Use T to generate a witness R_f that C is a commitment to f wrt A_f.
- That is, generate an \mathbf{R}_f such that $\mathbf{C} = \operatorname{Com}_{\mathbf{A}_f}(f; \mathbf{R}_f)$.

Commit_{pp}(**m**):

• output $\mathbf{C}_{\mathbf{m}} = \text{Eval}(U_{\mathbf{m}}, \mathbf{C})$ where $U_{\mathbf{m}}(f) = f(\mathbf{m})$.

Think of C_m as a superposition of commitments to $f(\mathbf{m})$ for all $f \in \mathcal{F}$.

Open_{pp}(
$$\mathbf{m}$$
, f , $ok_f = \mathbf{R}_f$):
compute ($\mathbf{C}_{\mathbf{m}}$; $\mathbf{R}_{\mathbf{m},f}$) = Eval($U_{\mathbf{m}}$, \mathbf{C} ; \mathbf{R}_f) and output $\mathbf{R}_{\mathbf{m},f}$.

 $Extract_{ek}(f)$:

- Use T to generate a witness R_f that C is a commitment to f wrt A_f.
- That is, generate an \mathbf{R}_f such that $\mathbf{C} = \operatorname{Com}_{\mathbf{A}_f}(f; \mathbf{R}_f)$.

Commit_{pp}(**m**):

• output $\mathbf{C}_{\mathbf{m}} = \text{Eval}(U_{\mathbf{m}}, \mathbf{C})$ where $U_{\mathbf{m}}(f) = f(\mathbf{m})$.

Think of C_m as a superposition of commitments to $f(\mathbf{m})$ for all $f \in \mathcal{F}$.

Open_{pp}(
$$\mathbf{m}$$
, f , $ok_f = \mathbf{R}_f$):
compute ($\mathbf{C}_{\mathbf{m}}$; $\mathbf{R}_{\mathbf{m},f}$) = Eval($U_{\mathbf{m}}$, \mathbf{C} ; \mathbf{R}_f) and output $\mathbf{R}_{\mathbf{m},f}$.

Verify_{pp}(
$$\mathbf{C}_{\mathbf{m}}, f, \mathbf{y}, p_{\mathbf{m}, f} = \mathbf{R}_{\mathbf{m}, f}$$
):
accept if $\mathbf{R}_{\mathbf{m}, f}$ is short and $\mathbf{C}_{\mathbf{m}} = \operatorname{Com}_{\mathbf{A}_{f}}(\mathbf{y}; \mathbf{R}_{\mathbf{m}, f})$