
Vector and Functional
Commitments from Lattices

Chris Peikert, Zachary Pepin,
Chad Sharp

Vector Commitments [LY10, CF13]

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 1 / 20

Vector Commitments [LY10, CF13]

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 2 / 20

Vector Commitments [LY10, CF13]

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 3 / 20

Vector Commitments [LY10, CF13]

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 4 / 20

Vector Commitments: (Stateless) Updates

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 5 / 20

Vector Commitments: (Stateless) Updates

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 6 / 20

Functional Commitments [LRY16]

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 7 / 20

Functional Commitments [LRY16]

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 8 / 20

Prior work
Merkle trees [Mer87], not statelessly updatable.

Statelessly updatable VCs based on RSA, pairings [LY10, CF13].
Merkle-like statelessly updatable VC scheme based on SIS (post
quantum) [PSTY13].
Applications: verifiable oursourcing of storage [CF13, BGV11],
verifiable zero knowledge sets [MRK03], cryptographic
accumulators [BdM93], pseudononymous credentials [KZG10],
cryptocurrencies [CPSZ18].

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 9 / 20

Prior work
Merkle trees [Mer87], not statelessly updatable.
Statelessly updatable VCs based on RSA, pairings [LY10, CF13].

Merkle-like statelessly updatable VC scheme based on SIS (post
quantum) [PSTY13].
Applications: verifiable oursourcing of storage [CF13, BGV11],
verifiable zero knowledge sets [MRK03], cryptographic
accumulators [BdM93], pseudononymous credentials [KZG10],
cryptocurrencies [CPSZ18].

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 9 / 20

Prior work
Merkle trees [Mer87], not statelessly updatable.
Statelessly updatable VCs based on RSA, pairings [LY10, CF13].
Merkle-like statelessly updatable VC scheme based on SIS (post
quantum) [PSTY13].

Applications: verifiable oursourcing of storage [CF13, BGV11],
verifiable zero knowledge sets [MRK03], cryptographic
accumulators [BdM93], pseudononymous credentials [KZG10],
cryptocurrencies [CPSZ18].

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 9 / 20

Prior work
Merkle trees [Mer87], not statelessly updatable.
Statelessly updatable VCs based on RSA, pairings [LY10, CF13].
Merkle-like statelessly updatable VC scheme based on SIS (post
quantum) [PSTY13].
Applications: verifiable oursourcing of storage [CF13, BGV11],
verifiable zero knowledge sets [MRK03], cryptographic
accumulators [BdM93], pseudononymous credentials [KZG10],
cryptocurrencies [CPSZ18].

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 9 / 20

Prior work
FC scheme for linear functions [LRY16] based on pairings.

FC scheme for “sparse polynomials” [LP20].
SNARKs for NP let us go further than linearizable functions
[LRY16], but these cannot be constructed from falsifiable
assumptions [GW11].
Applications: verifiable secret sharing [LRY10], content extraction
signatures [SBZ01], and zero-knowledge SNARKS [BFS20,
BDFG20].

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 10 / 20

Prior work
FC scheme for linear functions [LRY16] based on pairings.
FC scheme for “sparse polynomials” [LP20].

SNARKs for NP let us go further than linearizable functions
[LRY16], but these cannot be constructed from falsifiable
assumptions [GW11].
Applications: verifiable secret sharing [LRY10], content extraction
signatures [SBZ01], and zero-knowledge SNARKS [BFS20,
BDFG20].

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 10 / 20

Prior work
FC scheme for linear functions [LRY16] based on pairings.
FC scheme for “sparse polynomials” [LP20].

SNARKs for NP let us go further than linearizable functions
[LRY16], but these cannot be constructed from falsifiable
assumptions [GW11].
Applications: verifiable secret sharing [LRY10], content extraction
signatures [SBZ01], and zero-knowledge SNARKS [BFS20,
BDFG20].

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 10 / 20

Prior work
FC scheme for linear functions [LRY16] based on pairings.
FC scheme for “sparse polynomials” [LP20].
SNARKs for NP let us go further than linearizable functions
[LRY16], but these cannot be constructed from falsifiable
assumptions [GW11].

Applications: verifiable secret sharing [LRY10], content extraction
signatures [SBZ01], and zero-knowledge SNARKS [BFS20,
BDFG20].

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 10 / 20

Prior work
FC scheme for linear functions [LRY16] based on pairings.
FC scheme for “sparse polynomials” [LP20].
SNARKs for NP let us go further than linearizable functions
[LRY16], but these cannot be constructed from falsifiable
assumptions [GW11].
Applications: verifiable secret sharing [LRY10], content extraction
signatures [SBZ01], and zero-knowledge SNARKS [BFS20,
BDFG20].

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 10 / 20

Contributions
1 New post-quantum (SIS), statelessly updatable VC with

significantly shorter proofs than the only other one.

2 New SIS-based FC scheme for arbitrary (bounded) Boolean
circuits.

First to go beyond linearizable functions based on a falsifiable
assumption.
First post-quantum FC scheme from a falsifiable assumption.
Works in a new model in which a permanently online authority
generates reusable “opening keys” for desired functions.

Secondary contributions:
1 Formal definition and generic construction of a zero-knowledge

vector commitment scheme.
2 Formal analysis of a (folklore) Merkle-like tree transformation for

VC schemes that makes them suitable for vectors of large arity.

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 11 / 20

Contributions
1 New post-quantum (SIS), statelessly updatable VC with

significantly shorter proofs than the only other one.

2 New SIS-based FC scheme for arbitrary (bounded) Boolean
circuits.

First to go beyond linearizable functions based on a falsifiable
assumption.
First post-quantum FC scheme from a falsifiable assumption.
Works in a new model in which a permanently online authority
generates reusable “opening keys” for desired functions.

Secondary contributions:
1 Formal definition and generic construction of a zero-knowledge

vector commitment scheme.
2 Formal analysis of a (folklore) Merkle-like tree transformation for

VC schemes that makes them suitable for vectors of large arity.

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 11 / 20

Contributions
1 New post-quantum (SIS), statelessly updatable VC with

significantly shorter proofs than the only other one.
2 New SIS-based FC scheme for arbitrary (bounded) Boolean

circuits.

First to go beyond linearizable functions based on a falsifiable
assumption.
First post-quantum FC scheme from a falsifiable assumption.
Works in a new model in which a permanently online authority
generates reusable “opening keys” for desired functions.

Secondary contributions:
1 Formal definition and generic construction of a zero-knowledge

vector commitment scheme.
2 Formal analysis of a (folklore) Merkle-like tree transformation for

VC schemes that makes them suitable for vectors of large arity.

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 11 / 20

Contributions
1 New post-quantum (SIS), statelessly updatable VC with

significantly shorter proofs than the only other one.
2 New SIS-based FC scheme for arbitrary (bounded) Boolean

circuits.
First to go beyond linearizable functions based on a falsifiable
assumption.

First post-quantum FC scheme from a falsifiable assumption.
Works in a new model in which a permanently online authority
generates reusable “opening keys” for desired functions.

Secondary contributions:
1 Formal definition and generic construction of a zero-knowledge

vector commitment scheme.
2 Formal analysis of a (folklore) Merkle-like tree transformation for

VC schemes that makes them suitable for vectors of large arity.

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 11 / 20

Contributions
1 New post-quantum (SIS), statelessly updatable VC with

significantly shorter proofs than the only other one.
2 New SIS-based FC scheme for arbitrary (bounded) Boolean

circuits.
First to go beyond linearizable functions based on a falsifiable
assumption.
First post-quantum FC scheme from a falsifiable assumption.

Works in a new model in which a permanently online authority
generates reusable “opening keys” for desired functions.

Secondary contributions:
1 Formal definition and generic construction of a zero-knowledge

vector commitment scheme.
2 Formal analysis of a (folklore) Merkle-like tree transformation for

VC schemes that makes them suitable for vectors of large arity.

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 11 / 20

Contributions
1 New post-quantum (SIS), statelessly updatable VC with

significantly shorter proofs than the only other one.
2 New SIS-based FC scheme for arbitrary (bounded) Boolean

circuits.
First to go beyond linearizable functions based on a falsifiable
assumption.
First post-quantum FC scheme from a falsifiable assumption.
Works in a new model in which a permanently online authority
generates reusable “opening keys” for desired functions.

Secondary contributions:
1 Formal definition and generic construction of a zero-knowledge

vector commitment scheme.
2 Formal analysis of a (folklore) Merkle-like tree transformation for

VC schemes that makes them suitable for vectors of large arity.

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 11 / 20

Contributions
1 New post-quantum (SIS), statelessly updatable VC with

significantly shorter proofs than the only other one.
2 New SIS-based FC scheme for arbitrary (bounded) Boolean

circuits.
First to go beyond linearizable functions based on a falsifiable
assumption.
First post-quantum FC scheme from a falsifiable assumption.
Works in a new model in which a permanently online authority
generates reusable “opening keys” for desired functions.

Secondary contributions:

1 Formal definition and generic construction of a zero-knowledge
vector commitment scheme.

2 Formal analysis of a (folklore) Merkle-like tree transformation for
VC schemes that makes them suitable for vectors of large arity.

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 11 / 20

Contributions
1 New post-quantum (SIS), statelessly updatable VC with

significantly shorter proofs than the only other one.
2 New SIS-based FC scheme for arbitrary (bounded) Boolean

circuits.
First to go beyond linearizable functions based on a falsifiable
assumption.
First post-quantum FC scheme from a falsifiable assumption.
Works in a new model in which a permanently online authority
generates reusable “opening keys” for desired functions.

Secondary contributions:
1 Formal definition and generic construction of a zero-knowledge

vector commitment scheme.

2 Formal analysis of a (folklore) Merkle-like tree transformation for
VC schemes that makes them suitable for vectors of large arity.

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 11 / 20

Contributions
1 New post-quantum (SIS), statelessly updatable VC with

significantly shorter proofs than the only other one.
2 New SIS-based FC scheme for arbitrary (bounded) Boolean

circuits.
First to go beyond linearizable functions based on a falsifiable
assumption.
First post-quantum FC scheme from a falsifiable assumption.
Works in a new model in which a permanently online authority
generates reusable “opening keys” for desired functions.

Secondary contributions:
1 Formal definition and generic construction of a zero-knowledge

vector commitment scheme.
2 Formal analysis of a (folklore) Merkle-like tree transformation for

VC schemes that makes them suitable for vectors of large arity.

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 11 / 20

Short Integer Solution (SISn,m,q,β)

Given uniformly random A ∈ Zn×m
q , find nonzero x ∈ Zm such that

Ax = 0 mod q

and
∥x∥ ≤ β.

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 12 / 20

SIS-based VC scheme
Setup(1n,1d) :

Sample U = [u0 | · · · | ud−1] ∈ Zn×d
q u.a.r.

For all distinct i , j ∈ [d], sample Ai ∈ Zn×m
q and (short) ri,j ∈ Zm (via

trapdoor pre-image sampling) such that:

Airi,j = uj .

Output Ais, ri,js, and U as public parameters.


A0 0 · · · 0
0 A1 · · · 0
...

...
. . .

...
0 0 · · · Ad−1




0 r0,1 · · · r0,d−1

r1,0 0 · · · r1,d−1
...

...
. . .

...
rd−1,0 rd−1,1 · · · 0


︸ ︷︷ ︸

R̃

=


0 u1 · · · ud−1

u0 0 · · · ud−1
...

...
. . .

...
u0 u1 · · · 0



Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 13 / 20

SIS-based VC scheme
Setup(1n,1d) :

Sample U = [u0 | · · · | ud−1] ∈ Zn×d
q u.a.r.

For all distinct i , j ∈ [d], sample Ai ∈ Zn×m
q and (short) ri,j ∈ Zm (via

trapdoor pre-image sampling) such that:

Airi,j = uj .

Output Ais, ri,js, and U as public parameters.


A0 0 · · · 0
0 A1 · · · 0
...

...
. . .

...
0 0 · · · Ad−1




0 r0,1 · · · r0,d−1

r1,0 0 · · · r1,d−1
...

...
. . .

...
rd−1,0 rd−1,1 · · · 0


︸ ︷︷ ︸

R̃

=


0 u1 · · · ud−1

u0 0 · · · ud−1
...

...
. . .

...
u0 u1 · · · 0



Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 13 / 20

SIS-based VC scheme
Setup(1n,1d) :

Sample U = [u0 | · · · | ud−1] ∈ Zn×d
q u.a.r.

For all distinct i , j ∈ [d], sample Ai ∈ Zn×m
q and (short) ri,j ∈ Zm (via

trapdoor pre-image sampling) such that:

Airi,j = uj .

Output Ais, ri,js, and U as public parameters.


A0 0 · · · 0
0 A1 · · · 0
...

...
. . .

...
0 0 · · · Ad−1




0 r0,1 · · · r0,d−1

r1,0 0 · · · r1,d−1
...

...
. . .

...
rd−1,0 rd−1,1 · · · 0


︸ ︷︷ ︸

R̃

=


0 u1 · · · ud−1

u0 0 · · · ud−1
...

...
. . .

...
u0 u1 · · · 0



Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 13 / 20

SIS-based VC scheme
Commitpp(m ∈ {0,1}d):

c := Um

Openpp(m ∈ {0,1}d , i):

pi = R̃i,∗m

=
[
ri,0 · · · ri,i−1 0 ri,i+1 · · · ri,d−1

]
m

Verifypp(c, i ,mi ,pi):

accept iff. pi is sufficiently short and c = Aipi + miui

Ai(R̃i,∗m) + miui =
∑
j ̸=i

mjAiri,j + miui =
∑
j ̸=i

mjuj + miui = Um = c

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 14 / 20

SIS-based VC scheme
Commitpp(m ∈ {0,1}d):

c := Um

Openpp(m ∈ {0,1}d , i):

pi = R̃i,∗m

=
[
ri,0 · · · ri,i−1 0 ri,i+1 · · · ri,d−1

]
m

Verifypp(c, i ,mi ,pi):

accept iff. pi is sufficiently short and c = Aipi + miui

Ai(R̃i,∗m) + miui =
∑
j ̸=i

mjAiri,j + miui =
∑
j ̸=i

mjuj + miui = Um = c

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 14 / 20

SIS-based VC scheme
Commitpp(m ∈ {0,1}d):

c := Um

Openpp(m ∈ {0,1}d , i):

pi = R̃i,∗m

=
[
ri,0 · · · ri,i−1 0 ri,i+1 · · · ri,d−1

]
m

Verifypp(c, i ,mi ,pi):

accept iff. pi is sufficiently short and c = Aipi + miui

Ai(R̃i,∗m) + miui =
∑
j ̸=i

mjAiri,j + miui =
∑
j ̸=i

mjuj + miui = Um = c

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 14 / 20

SIS-based VC scheme
Commitpp(m ∈ {0,1}d):

c := Um

Openpp(m ∈ {0,1}d , i):

pi = R̃i,∗m

=
[
ri,0 · · · ri,i−1 0 ri,i+1 · · · ri,d−1

]
m

Verifypp(c, i ,mi ,pi):

accept iff. pi is sufficiently short and c = Aipi + miui

Ai(R̃i,∗m) + miui =
∑
j ̸=i

mjAiri,j + miui =
∑
j ̸=i

mjuj + miui = Um = c

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 14 / 20

SIS-based VC scheme
Commitpp(m ∈ {0,1}d):

c := Um

Openpp(m ∈ {0,1}d , i):

pi = R̃i,∗m

=
[
ri,0 · · · ri,i−1 0 ri,i+1 · · · ri,d−1

]
m

Verifypp(c, i ,mi ,pi):

accept iff. pi is sufficiently short and c = Aipi + miui

Ai(R̃i,∗m) + miui =
∑
j ̸=i

mjAiri,j + miui =
∑
j ̸=i

mjuj + miui = Um = c

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 14 / 20

SIS-based VC scheme: Updates

UpdateCpp(c, j ,δδδ):
c′ = c + δδδuj

UpdatePpp(pi , j ,δδδ):
p′

i = pi + δδδri,j

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 15 / 20

SIS-based VC scheme: Updates

UpdateCpp(c, j ,δδδ):
c′ = c + δδδuj

UpdatePpp(pi , j ,δδδ):
p′

i = pi + δδδri,j

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 15 / 20

Functional Commitments with Authority

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 16 / 20

Homomorphic commitments [GSW13]

ComA(x;R) = AR + Encode(x)

A ∈ Zn×m
q is some public matrix.

R ∈ Zm×w is sufficiently “short” randomness.
Additive and multiplicative homomorphisms.

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 17 / 20

Homomorphic commitments [GSW13]

ComA(x;R) = AR + Encode(x)

A ∈ Zn×m
q is some public matrix.

R ∈ Zm×w is sufficiently “short” randomness.
Additive and multiplicative homomorphisms.

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 17 / 20

Homomorphic commitments [GSW13]

ComA(x;R) = AR + Encode(x)

A ∈ Zn×m
q is some public matrix.

R ∈ Zm×w is sufficiently “short” randomness.

Additive and multiplicative homomorphisms.

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 17 / 20

Homomorphic commitments [GSW13]

ComA(x;R) = AR + Encode(x)

A ∈ Zn×m
q is some public matrix.

R ∈ Zm×w is sufficiently “short” randomness.
Additive and multiplicative homomorphisms.

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 17 / 20

Homomorphic commitments [GSW13]

Eval(f ,Cx [,Rx]) outputs (Cx ,f [,Rx ,f])

such that Rx ,f is still short and if

Cx = ComA(x ;Rx),

then

Cx ,f = ComA(f (x),Rx ,f).

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 18 / 20

SIS-based FC scheme

Setup(1n):
Generate matrix A ∈ Zn×m

q with trapdoor T and uniformly random C.

Store ek = (C,A,T), output pp = (C,A).
We use tagged trapdoor techniques to map A to a unique Af for
each f ∈ F .
Think of C as a superposition of commitments to all f ∈ F .

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 19 / 20

SIS-based FC scheme

Setup(1n):
Generate matrix A ∈ Zn×m

q with trapdoor T and uniformly random C.
Store ek = (C,A,T), output pp = (C,A).

We use tagged trapdoor techniques to map A to a unique Af for
each f ∈ F .
Think of C as a superposition of commitments to all f ∈ F .

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 19 / 20

SIS-based FC scheme

Setup(1n):
Generate matrix A ∈ Zn×m

q with trapdoor T and uniformly random C.
Store ek = (C,A,T), output pp = (C,A).
We use tagged trapdoor techniques to map A to a unique Af for
each f ∈ F .

Think of C as a superposition of commitments to all f ∈ F .

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 19 / 20

SIS-based FC scheme

Setup(1n):
Generate matrix A ∈ Zn×m

q with trapdoor T and uniformly random C.
Store ek = (C,A,T), output pp = (C,A).
We use tagged trapdoor techniques to map A to a unique Af for
each f ∈ F .
Think of C as a superposition of commitments to all f ∈ F .

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 19 / 20

SIS-based FC scheme
Extractek (f):

Use T to generate a witness Rf that C is a commitment to f wrt Af .
That is, generate an Rf such that C = ComAf (f ;Rf).

Commitpp(m):
output Cm = Eval(Um,C) where Um(f) = f (m).
Think of Cm as a superposition of commitments to f (m) for all
f ∈ F .

Openpp(m, f ,okf = Rf):
compute (Cm;Rm,f) = Eval(Um,C;Rf) and output Rm,f .

Verifypp(Cm, f ,y,pm,f = Rm,f):
accept if Rm,f is short and Cm = ComAf (y;Rm,f)

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 20 / 20

SIS-based FC scheme
Extractek (f):

Use T to generate a witness Rf that C is a commitment to f wrt Af .
That is, generate an Rf such that C = ComAf (f ;Rf).

Commitpp(m):
output Cm = Eval(Um,C) where Um(f) = f (m).
Think of Cm as a superposition of commitments to f (m) for all
f ∈ F .

Openpp(m, f ,okf = Rf):
compute (Cm;Rm,f) = Eval(Um,C;Rf) and output Rm,f .

Verifypp(Cm, f ,y,pm,f = Rm,f):
accept if Rm,f is short and Cm = ComAf (y;Rm,f)

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 20 / 20

SIS-based FC scheme
Extractek (f):

Use T to generate a witness Rf that C is a commitment to f wrt Af .
That is, generate an Rf such that C = ComAf (f ;Rf).

Commitpp(m):
output Cm = Eval(Um,C) where Um(f) = f (m).
Think of Cm as a superposition of commitments to f (m) for all
f ∈ F .

Openpp(m, f ,okf = Rf):
compute (Cm;Rm,f) = Eval(Um,C;Rf) and output Rm,f .

Verifypp(Cm, f ,y,pm,f = Rm,f):
accept if Rm,f is short and Cm = ComAf (y;Rm,f)

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 20 / 20

SIS-based FC scheme
Extractek (f):

Use T to generate a witness Rf that C is a commitment to f wrt Af .
That is, generate an Rf such that C = ComAf (f ;Rf).

Commitpp(m):
output Cm = Eval(Um,C) where Um(f) = f (m).
Think of Cm as a superposition of commitments to f (m) for all
f ∈ F .

Openpp(m, f ,okf = Rf):
compute (Cm;Rm,f) = Eval(Um,C;Rf) and output Rm,f .

Verifypp(Cm, f ,y,pm,f = Rm,f):
accept if Rm,f is short and Cm = ComAf (y;Rm,f)

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from LatticesNovember 2, 2021 20 / 20

