Vector and Functional
Commitments from Lattices

Chris Peikert, Zachary Pepin,
Chad Sharp

Vector Commitments [LY10, CF13]

Commit

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021

Vector Commitments [LY10, CF13]

m

my

|

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021

Vector Commitments [LY10, CF13]

m
c +-p
\—Veify—)—:

1 iff. my is
the ith
entry of m

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021

Vector Commitments [LY10, CF13]

m

Position binding: it
should be infeasible
to open a Verify
commitment at
position i at two
different message
entries mizm;.

1if m is
the ith
entry of m

ikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021

Vector Commitments: (Stateless) Updates

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021

Vector Commitments: (Stateless) Updates

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021 6/20

Functional Commitments [LRY16]

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021

Functional Commitments [LRY16]

Function binding: it
should be infeasible Verify
to open a
commitment at
function f at two
different outputs y =y
1ir
fm=y

ikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021

Prior work

m Merkle trees [Mer87], not statelessly updatable.

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021 9/20

Prior work

m Merkle trees [Mer87], not statelessly updatable.
m Statelessly updatable VCs based on RSA, pairings [LY10, CF13].

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021 9/20

Prior work

m Merkle trees [Mer87], not statelessly updatable.
m Statelessly updatable VCs based on RSA, pairings [LY10, CF13].

m Merkle-like statelessly updatable VC scheme based on SIS (post
quantum) [PSTY13].

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021 9/20

Prior work

m Merkle trees [Mer87], not statelessly updatable.
m Statelessly updatable VCs based on RSA, pairings [LY10, CF13].

m Merkle-like statelessly updatable VC scheme based on SIS (post
quantum) [PSTY13].

m Applications: verifiable oursourcing of storage [CF13, BGV11],
verifiable zero knowledge sets [MRKO03], cryptographic
accumulators [BdM93], pseudononymous credentials [KZG10],
cryptocurrencies [CPSZ18].

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021 9/20

Prior work

m FC scheme for linear functions [LRY16] based on pairings.

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021 10/20

Prior work

m FC scheme for linear functions [LRY16] based on pairings.
m FC scheme for “sparse polynomials” [LP20].

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021 10/20

Prior work

m FC scheme for linear functions [LRY16] based on pairings.
m FC scheme for “sparse polynomials” [LP20].

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021 10/20

Prior work

m FC scheme for linear functions [LRY16] based on pairings.
m FC scheme for “sparse polynomials” [LP20].

m SNARKsS for NP let us go further than linearizable functions
[LRY16], but these cannot be constructed from falsifiable
assumptions [GW11].

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021 10/20

Prior work

m FC scheme for linear functions [LRY16] based on pairings.

m FC scheme for “sparse polynomials” [LP20].

m SNARKsS for NP let us go further than linearizable functions
[LRY16], but these cannot be constructed from falsifiable
assumptions [GW11].

m Applications: verifiable secret sharing [LRY10], content extraction
signatures [SBZ01], and zero-knowledge SNARKS [BFS20,
BDFG20].

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021 10/20

Contributions

New post-quantum (SIS), statelessly updatable VC with
significantly shorter proofs than the only other one.

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021 11/20

Contributions

New post-quantum (SIS), statelessly updatable VC with
significantly shorter proofs than the only other one.

Scheme ool | Il || Setup PQ

[PSTYT3] (SIS) h%d || hlogd h3dlog?d Public v
Tree construction (SIS) h2d? || hlogd h*log®d Private v

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021 11/20

Contributions

New post-quantum (SIS), statelessly updatable VC with
significantly shorter proofs than the only other one.

New SIS-based FC scheme for arbitrary (bounded) Boolean
circuits.

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021 11/20

Contributions

New post-quantum (SIS), statelessly updatable VC with
significantly shorter proofs than the only other one.

New SIS-based FC scheme for arbitrary (bounded) Boolean
circuits.

m First to go beyond linearizable functions based on a falsifiable
assumption.

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021 11/20

Contributions

New post-quantum (SIS), statelessly updatable VC with
significantly shorter proofs than the only other one.

New SIS-based FC scheme for arbitrary (bounded) Boolean
circuits.

m First to go beyond linearizable functions based on a falsifiable
assumption.
m First post-quantum FC scheme from a falsifiable assumption.

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021 11/20

Contributions

New post-quantum (SIS), statelessly updatable VC with
significantly shorter proofs than the only other one.
New SIS-based FC scheme for arbitrary (bounded) Boolean
circuits.
m First to go beyond linearizable functions based on a falsifiable
assumption.
m First post-quantum FC scheme from a falsifiable assumption.
m Works in a new model in which a permanently online authority
generates reusable “opening keys” for desired functions.

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021 11/20

Contributions

New post-quantum (SIS), statelessly updatable VC with
significantly shorter proofs than the only other one.
New SIS-based FC scheme for arbitrary (bounded) Boolean
circuits.
m First to go beyond linearizable functions based on a falsifiable

assumption.
m First post-quantum FC scheme from a falsifiable assumption.
m Works in a new model in which a permanently online authority
generates reusable “opening keys” for desired functions.

Secondary contributions:

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021 11/20

Contributions

New post-quantum (SIS), statelessly updatable VC with
significantly shorter proofs than the only other one.
New SIS-based FC scheme for arbitrary (bounded) Boolean
circuits.
m First to go beyond linearizable functions based on a falsifiable
assumption.
m First post-quantum FC scheme from a falsifiable assumption.
m Works in a new model in which a permanently online authority
generates reusable “opening keys” for desired functions.
Secondary contributions:

Formal definition and generic construction of a zero-knowledge
vector commitment scheme.

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021 11/20

Contributions

El New post-quantum (SIS), statelessly updatable VC with
significantly shorter proofs than the only other one.
New SIS-based FC scheme for arbitrary (bounded) Boolean
circuits.
m First to go beyond linearizable functions based on a falsifiable
assumption.
m First post-quantum FC scheme from a falsifiable assumption.
m Works in a new model in which a permanently online authority
generates reusable “opening keys” for desired functions.
Secondary contributions:
Formal definition and generic construction of a zero-knowledge
vector commitment scheme.
Formal analysis of a (folklore) Merkle-like tree transformation for
VC schemes that makes them suitable for vectors of large arity.

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021 11/20

Short Integer Solution (SIS, , ; 5)

Given uniformly random A € Zg*™, find nonzero x € Z™ such that
Ax=0mod q

and

x| < B

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021 12/20

SIS-based VC scheme
Setup(17,19) :
m Sample U= [ug | --- | ug_4] € Z3*% u.ar.

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021 13/20

SIS-based VC scheme
Setup(1”,19) :
m Sample U= [ug | -~ | ug_4] € Z§*% u.ar.

m For all distinct /,j € [d], sample A; € Zg*™ and (short) r;; € Z™ (via
trapdoor pre-image sampling) such that:

A,-r,-,/- = u,.

m Output Ajs, r; s, and U as public parameters.

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021

SIS-based VC scheme
Setup(1”,19) :
m Sample U= [ug | -~ | ug_4] € Z§*% u.ar.

m For all distinct /,j € [d], sample A; € Zg*™ and (short) r;; € Z™ (via
trapdoor pre-image sampling) such that:

A,-r,-,/- = u,.

m Output Ajs, r; s, and U as public parameters.

Ao 0 s 0 0 o1 s Fo,d—1 0 u -+ Ug_q
0 A1 0 ri0 0 F,d—1 Ug 0 Ug_1
0 0 e Agoy Fg—10 FYog—1,1 -+ 0 U uy - 0

R

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021 13/20

SIS-based VC scheme

Commitp,(m € {0,119):
c:=Um

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021 14/20

SIS-based VC scheme

Commitp,(m € {0,119):
c:=Um

Open,,(m € {0,1}9,/):

Pi = IE‘{i,*m

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021 14/20

SIS-based VC scheme

Commitp,(m € {0,119):

c:=Um
Open,,(m € {0,1}9,/):
Pi= IE‘{i,*m
=[ro -+ i1 0 Fijyq -+ Figqm

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021 14/20

SIS-based VC scheme

Commitp,(m € {0,119):

c:=Um
Open,,(m € {0,1}9,/):
Pi = ﬁ,-7*m
=ro - T4 0 Fijg - Tigq|m

Verify (€, i, m;, pi):

accept iff. p; is sufficiently short and ¢ = A;p; + m;u;

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021

SIS-based VC scheme

Commitp,(m € {0,119):

c:=Um
Open,,(m € {0,1}9,/):
Pi = ﬁ,-7*m
=ro - T4 0 Fijg - Tigq|m

Verify (€, i, m;, pi):

accept iff. p; is sufficiently short and ¢ = A;p; + m;u;

A,'(ﬁ,'7*m) + miju; = Z m,-A,-r,-’,- + mju; = Z mu; + miu; = Un=c
J#i J#i

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021 14/20

SIS-based VC scheme: Updates

UpdateC,,(c, j, 8):
¢’ =c+8u;

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021

SIS-based VC scheme: Updates

UpdateC,,(c, j, 8):

¢’ =c+8u;
UpdateP,,(pi, /, 8):

pj = Pi + 8ri

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021

Functional Commitments with Authority

m my ™y | mg-1 ™y
L J
£

‘ Commit ’ ‘ Open oks

Verify

1 iff
fim=y

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021

Homomorphic commitments [GSW13]

Coma(x; R) = AR + Encode(x)

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021 17/20

Homomorphic commitments [GSW13]

Coma(x; R) = AR + Encode(x)

m A c Zg*™ is some public matrix.

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021 17/20

Homomorphic commitments [GSW13]

Coma(x; R) = AR + Encode(x)

m A c Zg*™ is some public matrix.
m R € Z™*¥ s sufficiently “short” randomness.

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021 17/20

Homomorphic commitments [GSW13]

Coma(x; R) = AR + Encode(x)

m A c Zg*™ is some public matrix.
m R € 2™V is sufficiently “short” randomness.
m Additive and multiplicative homomorphisms.

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021

Homomorphic commitments [GSW13]

Eval(f,Cx[, Rx]) outputs (Cy [, Rx])
such that Ry ¢ is still short and if
Cx = Coma(x;Ry),
then

cx,f = ComA(f(X)a |:{x,f)-

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021

SIS-based FC scheme

Setup(17):
m Generate matrix A € Zg*" with trapdoor T and uniformly random C.

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021 19/20

SIS-based FC scheme

Setup(17):
m Generate matrix A € Zg*" with trapdoor T and uniformly random C.
m Store ek = (C,A,T), output pp = (C, A).

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021 19/20

SIS-based FC scheme

Setup(1”):
m Generate matrix A € Zg*" with trapdoor T and uniformly random C.
m Store ek = (C,A,T), output pp = (C, A).

m We use tagged trapdoor techniques to map A to a unique Ay for
each f € F.

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021 19/20

SIS-based FC scheme

Setup(1”):
m Generate matrix A € Zg*" with trapdoor T and uniformly random C.
m Store ek = (C,A,T), output pp = (C, A).

m We use tagged trapdoor techniques to map A to a unique Ay for
each f € F.

m Think of C as a superposition of commitments to all f € F.

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021 19/20

SIS-based FC scheme

Extractex(f):
m Use T to generate a witness Ry that C is a commitment to f wrt Ay.
m That is, generate an Ry such that C = Comp, (f; Ry).

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021 20/ 20

SIS-based FC scheme

Extractex(f):
m Use T to generate a witness Ry that C is a commitment to f wrt Ay.
m That is, generate an Ry such that C = Comp, (f; Ry).

Commitpp(m):
m output Cp, = Eval(Um, C) where Un(f) = f(m).
m Think of Cr, as a superposition of commitments to f(m) for all
feF.

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021 20/ 20

SIS-based FC scheme

Extractex(f):
m Use T to generate a witness Ry that C is a commitment to f wrt Ay.
m That is, generate an Ry such that C = Comp, (f; Ry).

Commitpp(m):
m output Cp, = Eval(Um, C) where Un(f) = f(m).
m Think of Cm as a superposition of commitments to f(m) for all
felF.

Open,,(m, f, ok; = Ry):
m compute (Cm; Rm r) = Eval(Un, C; Rr) and output Ry, 1.

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021 20/20

SIS-based FC scheme

Extractex(f):
m Use T to generate a witness Ry that C is a commitment to f wrt Ay.
m That is, generate an Ry such that C = Comp, (f; Ry).

Commitpp(m):
m output Cp, = Eval(Um, C) where Un(f) = f(m).
m Think of Cm as a superposition of commitments to f(m) for all
felF.

Open,,(m, f, ok; = Ry):
m compute (Cm; Rm) = Eval(Um, C; Ry) and output Ry, 1.

Verifypp(cma f7 Y, pm,f = Rm,f):
m accept if Ry s is short and Cm = Coma,(Y; Rm)

Chris Peikert, Zachary Pepin, Chad SharpVector and Functional Commitments from L November 2, 2021 20/20

