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Collective coin tossing

Collective coin tossing: 𝑛 parties aim to jointly produce a random bit 𝑏.
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Formal definitions

• Protocol Π:

• 𝑛 parties 𝑃1…𝑃𝑛. In round 𝑖, 𝑃𝑖 sends 𝜔𝑖 (can depend on previous messages).

• Protocol’s outputs bit 𝑏 = 𝑓(𝜔1…𝜔𝑛).

• Targeted 𝒌-replacing (strong adaptive1) adversary 𝐴:

• Aims to increase Pr[𝑏 = 1].

• Can override 𝑘 of the messages 𝜔1…𝜔𝑛 at its round:

• In round 𝑖, given 𝜔1…𝜔𝑖−1 and 𝝎𝒊, the adversary can replace 𝜔𝑖 with 𝜔𝑖′. 
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Targeted 𝑘-replacing adversary
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Main question

• Recall: 𝑏′ is the output under the attack and 𝑏 is without attack.

𝜇 = Pr 𝑏 = 1

𝜇′ = Pr 𝑏′ = 1

Adversary’s gain: 𝜇′ − 𝜇

• Main question: assume we have a (𝑛, 𝜇)-protocol Π. 
With a fixed budget 𝑘, how much gain can the adversary achieve?

oMessages are uniform binary (Pr[𝜔𝑖 = 0] = Pr 𝜔𝑖 = 1 = 0.5)

oMessages are arbitrarily long.
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Example: threshold protocol

• Threshold protocol: output follows threshold majority function

𝑓 𝜔1, … , 𝜔𝑛 = 1 iff σ𝑖𝜔𝑖 > 𝑡.

• It only uses uniform binary messages (random bits 𝜔𝑖)!

• All inputs that σ𝑖𝜔𝑖 > 𝑡 shape a Hamming ball.

• Robustness : With budget 𝑘, adversary is limited to σ𝑖𝜔′𝑖 −σ𝑖𝜔𝑖 ≤ 𝑘.
So, adversary can succeed if σ𝑖𝜔𝑖 > 𝑡 − 𝑘 (a bigger Hamming ball ).
(This holds even if adversary is “offline” and can do the changes at the end.)

• Main question: is this protocol optimal? 
What if it runs in polynomial time?
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Our result

Recall: Threshold majority function: 𝑓 𝜔1, … , 𝜔𝑛 = 1 iff σ𝑖𝜔𝑖 > 𝑡.

Let 𝛽n
(𝑡)

= Pr[𝑓 𝜔1, … , 𝜔𝑛 = 1] over uniformly random bits.

• Uniform binary messages: Threshold protocol is optimal.

• For 𝜇 = 𝛽n
(𝑡)

poly-time online attacks can achieve 𝜇′ = 𝛽𝑛
(𝑡−𝑘)

on any protocol, 
which matches the majority's upper bound even for offline attacks

• Any message length: Threshold is optimal up to a constant for 𝜇 = Ω(1)

• We have a poly-time attack that achieves 𝜇′ = 𝜇 + Ω(𝜇𝑘/ 𝑛).
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Related work: Uniform binary messages
(targeted attacks)

• [Lichtenstein et al. 1989]1 shows threshold functions are optimal under 
a weaker adversary model that cannot see the messages before making 

changes; for such attacks adversary can achieve 𝜇′ = 𝛽𝑛−𝑘
𝑡−𝑘

≪ 𝛽𝑛
𝑡−𝑘

.

• [Kalai et al. 2018]2 proposes a polynomial-version attack that works for 
𝑘 = Ω 𝑛 which is optimal up to a constant when 𝜇 = Ω(1).
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Related work: Arbitrary message length
(targeted attacks)

• [Mahloujifar-Mahmoody-ALT19]1 [Etesami et al.-SODA’2020]2

poly-time adversary with budget k = Ω 𝑛 can increase the 
probability to approximately 1.

• We want to have a universal solution on every 𝑘!
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Application 1: Targeted poisoning in machine learning

• Connection built by [Mahloujifar and Mahmoody, TCC 2017]1: 

Targeted attack on coin-tossing 
𝑅𝑒𝑑𝑢𝑐𝑒𝑑

Targeted poisoning attacks on machine learning
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Application 2: computational isoperimetry 
under Hamming distance in product spaces 
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Computational concentration vs. computational isoperimetry

Computational concentration 
[Mahloujifar-Mahmoody-ALT19, Etesami et al. SODA’2020]12
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High level idea of our attack

• Adversary: Parameter 𝜆 and budget 𝑘

• Adversary’s strategy: Make a replacement if 
(1) not already made 𝑘 replacements and (2) the gain is at least 𝜆.

• Namely:

• 𝛼 = Pr[𝑓 𝜔1, … , 𝜔𝑖 , 𝜔𝑖+1, … = 1]

• 𝛼′ = max
𝜔𝑖+1
∗
(Pr 𝑓 𝜔1, … , 𝜔𝑖 , 𝜔𝑖+1

∗ , … = 1 )

• If 𝛼′ − 𝛼 ≥ 𝜆 and the adversary has not made 𝑘 replacements yet, 
the adversary replaces 𝜔𝑖+1 to 𝜔𝑖+1

∗ .
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(over the randomness of remaining inputs)



Connection to previous attacks

• At the high level, the attack is similar to the attack in [Mahloujifar-Mahmoody-
ALT19]1, [Etesami et al.-SODA’2020]2 but with key differences:

• Main difference: These two papers use an analysis that only applies to 𝑘 =
Ω( 𝑛). We want to find a universal solution, especially for small 𝑘 = 𝑜( 𝑛)

• Syntactical differences:

• [Mahloujifar-Mahmoody-ALT19]1: If ത𝛼 − 𝛼 ≥ 𝜆 (where ത𝛼 = Pr[𝑓 𝜔1, … , 𝜔𝑖 , … = 1]), 
it resets the input message. Otherwise, if 𝛼′ − 𝛼 ≥ 𝜆, replace 𝜔𝑖+1 to 𝜔𝑖+1

∗ . 
Our attack has one fewer case and leads to a sharper bound even for 𝑘 = Ω( 𝑛)

• [Etesami et al.-SODA’2020]2 uses the ratio 𝛼′/𝛼 instead of 𝛼′ − 𝛼. 
This leads to a sharper bound than [MM19] and ours, but only for 𝒌 = 𝜴( 𝒏). 
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Why previous analysis only works for large 𝑘 = Ω( 𝑛)

• [Kalai et al.-DISC’2018, Mahloujifar-Mahmoody-ALT19, Etesami et al.-SODA’2020] 

share a similar core which makes them all rely on 𝑘 = Ω( 𝑛) budget.

• Their analysis goes through the following two steps:

1. First, they show an attack with unlimited budget that can fix output to 1.

2. Then by relying on (1) they show that this attack’s budget is at most Θ( 𝑛).

• It can be shown that fixing the output to 1 could require budget ≈ 𝑛.
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High level idea when 𝑘 = 1: Case 1
• Note that 𝑘 = 1 is previously an open question!

𝑘 = 0
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• Let 𝑝1 be the probability of the 1-replacing attack happens, and 𝜇1 = 𝜇′ be 

the probability of 𝑏 = 1 under the 1-replacing attack. Then we have

𝜇1 ≥ 𝜇 + 𝑝1𝜆
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High level idea when 𝑘 = 1: Case 2

𝑘 = 0
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• Let 𝑒𝑟𝑟(𝜆, 𝜇, 𝑛) be the error of the ∞-replacing attack, then we have

𝑝1 ≥ 1 − 𝜇 − 𝑒𝑟𝑟(𝜆, 𝜇, 𝑛)
• Combining with Case 1, we have 𝜇1 ≥ 𝜇 + 𝜆(1 − 𝜇 − 𝑒𝑟𝑟 𝜆, 𝜇, 𝑛 )
• Finally, we get gain 𝜇1 − 𝜇 = Ω(𝜇/ 𝑛) when let 𝜆 = Θ(𝜇/ 𝑛).



Extension to any budget

• Approach 1: Recursively apply the 1-replacing attack for 𝑘 times.

• Unfortunately, it is only polynomial time when 𝑘 = 𝑂(1).

• Approach 2: Directly analyze the 𝑘-replacing attack using induction.

• Let the attack be the ∞-replacing attack that is cut after 𝑘 replacements.

• A generalization of the idea for 1-replacing attack shows:

𝜇𝑘 ≥ 𝜇𝑘−1 + 𝜆(1 − 𝜇𝑘−1 − 𝑒𝑟𝑟 𝜆, 𝜇, 𝑛 )

• Solving the recursion above gives the desired bound

• The attack can be made poly-time using the same tricks as in Mahloujifar-Mahmoody-ALT19]
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Recall: Threshold functions

• Assume each 𝜔𝑖 is uniform binary.

• Threshold function 𝑓 𝜔1, … , 𝜔𝑛 = 1 iff σ𝑖𝜔𝑖 > 𝑡.

• Let 𝛽𝑡 = Pr[σ𝑖𝜔𝑖 > 𝑡]. 

• A 𝑘-replacing offline adversary on the 𝑡-threshold function can only 
achieve Pr 𝑏 = 1 ≤ 𝛽𝑡−𝑘, which is probability of a hamming ball.

• Main question: How much gain can an online adversary achieve?
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High level idea of the proof

• What we care is the online-expansion function OnExp𝑛
(𝑘)

𝜇 which is the optimal gain under the 
best possible 𝑘-replacing attack.

• OnExp𝑛
(𝑘)

𝜇 can be computed by induction on 𝑛.

• The corresponding optimal attack can also be implemented in polynomial time if one is given 
oracle access to the values of OnExp𝑛

(𝑘)
𝜇 , but we do not have it!

• We prove a piece-wise linear (concave) lower bound for OnExp𝑛
(𝑘)

𝜇 as follows:

• ∀𝛽𝑛
𝑡
, ℓ𝑛

𝑘
𝛽𝑡 = OffExp𝑛

(𝑘)
𝛽𝑡 , 

• ℓ𝑛
𝑘

𝑥 is linearly extended on all other points 𝑥.

• This piece-wise linear function is inspired by a similar function from [Khorasgani et al. 2021]1). 
But the induction for proving the lower bound is quite different in our setting.
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High level idea of the proof (Contd.)
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Polynomial version of the attack

• Recall: The optimal attack can be implemented in polynomial time if one is 

given oracle access to the values of OnExp𝑛
(𝑘)

𝜇 . But we do not have access to 

OnExp𝑛
(𝑘)

𝜇 and do not know how to compute or even approximate it!

• To achieve polynomial-time attack, we define an adversary that approximates 

and uses ℓ𝑛
𝑘

instead of OnExp𝑛
(𝑘)

𝜇 .

• The inductive proof still shows that using ℓ𝑛
𝑘

instead of OnExp𝑛
(𝑘)

𝜇 works!
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Conclusion

• For uniform binary protocol, threshold (majority) protocol is optimal for 
online and offline 𝑘-replacing attacks and for any 𝑘.

• This result can be viewed as a computational version of Harper’s isoperimetric inequality!

• For protocol with any message length, the majority protocol is still optimal up 
to a constant factor.

• This result can be used to obtain generic targeted poisoning attacks on learners with small 
budget 𝑘 = o 𝑛 where 𝑛 is the size of the training set.
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Thank you!

I appreciate any questions and comments from you!
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