Synthesizing Quantum Circuits of AES with Lower *T*-depth and Less Qubits

Zhenyu Huang and Siwei Sun

SKLOIS, Institute of Information Engeering, Chinease Academy of Sciences University of Chinese Academy of Sciences

Aisacryt 2022

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへの

Outline

Motivation

- 2 The Round-In-Place Structure for Iterative Primitives
- 3 In-place Circuits for Linear and Nonlinear Components

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- 4 Constructing Low *T*-depth Circuits
- 5 Efficient Quantum Circuits for AES

Outline

Motivation

- 2 The Round-In-Place Structure for Iterative Primitives
- 3 In-place Circuits for Linear and Nonlinear Components

イロト 不得 トイヨト イヨト

э

- 4 Constructing Low *T*-depth Circuits
- **5** Efficient Quantum Circuits for AES

Motivation

- Quantum Cryptanlysis for Symmetric Ciphers
 - Grover's algorithm: the attacker needs to construct a Grover oracle to search the key.
 - Simon's algorithm (Kuwakado and Mori, ISIT 2010; Kaplan et al. Crypto 2016): The attacker needs to access an online quantum encryption oracle.
 - Offline Simon's algorithm (Bonnetain et al. Asiacrypt 2019): the attacker needs to construct different quantum encryption oracles for different keys.
 - The quantum circuit for the encryption process is a part of the Grover oracle or the quantum encryption oracle.
- NIST's call for proposals for PQC
 - The complexity of quantum key search circuit for AES is used as a baseline to categorize the post-quantum public-key schemes

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへの

Motivation

- Quantum Cryptanlysis for Symmetric Ciphers
 - Grover's algorithm: the attacker needs to construct a Grover oracle to search the key.
 - Simon's algorithm (Kuwakado and Mori, ISIT 2010; Kaplan et al. Crypto 2016): The attacker needs to access an online quantum encryption oracle.
 - Offline Simon's algorithm (Bonnetain et al. Asiacrypt 2019): the attacker needs to construct different quantum encryption oracles for different keys.
 - The quantum circuit for the encryption process is a part of the Grover oracle or the quantum encryption oracle.
- NIST's call for proposals for PQC
 - The complexity of quantum key search circuit for AES is used as a baseline to categorize the post-quantum public-key schemes

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

From classical circuits to quantum circuits:

- Classicial gates: XOR, NOT, AND
 - \Rightarrow CNT gate set: CNOT, NOT(Pauli-X), Toffoli
 - \Rightarrow Clifford+T gates: {Pauli gates, CNOT, S, H} + T

Optimization Goals:

- Width: the number of qubits
- Gate count
- Depth: The number of layers of the circuit (gates acting on disjoint sets of qubits can be applied in parallel)
- In fault-tolerant quantum computation (Surface code), the cost of the *T* gate is greatly higher than that of a Clifford gate, and the running time of a circuit is dominated by the *T*-depth.

From classical circuits to quantum circuits:

- Classicial gates: XOR, NOT, AND
 - \Rightarrow CNT gate set: CNOT, NOT(Pauli-X), Toffoli
 - \Rightarrow Clifford+T gates: {Pauli gates, CNOT, S, H} + T

Optimization Goals:

- Width: the number of qubits
- Gate count
- Depth: The number of layers of the circuit (gates acting on disjoint sets of qubits can be applied in parallel)
- In fault-tolerant quantum computation (Surface code), the cost of the *T* gate is greatly higher than that of a Clifford gate, and the running time of a circuit is dominated by the *T*-depth.

Outline

1 Motivation

2 The Round-In-Place Structure for Iterative Primitives

3 In-place Circuits for Linear and Nonlinear Components

4 Constructing Low *T*-depth Circuits

5 Efficient Quantum Circuits for AES

The Pipeline Structure

Round Transformation:

- $Round_i : (key_i, x) \rightarrow (key_i, O(R_i))$
- $O(R_i)$: the output of the round function
- $\mathcal{R}_i : |key_i\rangle |x\rangle |0\rangle \rightarrow |key_i\rangle |x\rangle |O(R_i)\rangle$, an out-of-place implementation

Figure: The pipeline structrue for AES-128

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

• Generates redundant output $O(\mathcal{R}_i)$ after each round

The Zig-zag Structure

Figure: The zig-zag structure for AES-128

• The reverse circuit R^{\dagger} is used to clean some redundant outputs.

イロト 不得 トイヨト イヨト

= 900

The Out-of-Place Based Round-in-Place Structure

- For symmetric ciphers, each round is invertible, so theoretically there is an in-place quantum circuit for each round.
- However, directly obtain a such in-place circuit is very hard.
- We can construct it by combing two out-of-place sub-circuits.
 - Round transformation $R: (k, x) \rightarrow (k, T(x, k))$
 - T': the inverse function of T, T'(k, T(x, k)) = x

ヘロア 人間 アメヨアメヨア

э

Figure: The op-based in-place circuit

The Out-of-Place Based Round-in-Place Structure

- For symmetric ciphers, each round is invertible, so theoretically there is an in-place quantum circuit for each round.
- However, directly obtain a such in-place circuit is very hard.
- We can construct it by combing two out-of-place sub-circuits.
 - Round transformation $R: (k, x) \rightarrow (k, T(x, k))$
 - ► T': the inverse function of T, T'(k, T(x, k)) = x

(日)(四)(日)(日)(日)(日)

Figure: The op-based in-place circuit

Figure: The OP-based round-in-place structure

イロト イヨト イヨト

э

The width does not increase after each round

Comparison of Different Structures

- n qubits for input, n qubits for output, and r rounds.
- Same out-of-place round circuit using αn ancilla qubits .

Table: The widths (number of qubits) of different structures, where t is the minimal number such that $\sum_{i=1}^{t} i > r$.

Pipeline	Zig-zag	Round-in-place
$(r + \alpha + 1)n$	$(t+1+\alpha)n \approx (\sqrt{2r}+\alpha)n$	$(2+\alpha)n$

Table: The depths and DW-costs of the oracles based on different structures

Metric	Туре	Pipeline	Zig-zag	Round-in-place
Depth	Grover Encrypt	2r · d 2r · d	$pprox 4r \cdot d$ $pprox 4r \cdot d$	$\frac{4r \cdot d}{2r \cdot d}$
DW-cost	Grover Encrypt	2r(r+1+lpha)nd 2r(r+1+lpha)nd	$2r(\sqrt{2r}+lpha)$ nd $2r(\sqrt{2r}+lpha)$ nd	4r(2+lpha)nd 2r(2+lpha)nd

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outline

1 Motivation

2 The Round-In-Place Structure for Iterative Primitives

3 In-place Circuits for Linear and Nonlinear Components

<ロト < 同ト < 回ト < 回ト = 三日 - 三日 -

- 4 Constructing Low *T*-depth Circuits
- 5 Efficient Quantum Circuits for AES

Synthesizing Optimal CNOT Circuits

Invertible linear transformation :

 $|x_1, x_2, \ldots, x_n\rangle \rightarrow |L_1(x_1, \ldots, x_n), \ldots, L_n(x_1, \ldots, x_n)\rangle$

- Invertible linear transformation ⇒ In-place CNOT circuit
 - CNOT gate: $|x_1, x_2\rangle \rightarrow |x_1, x_1 \oplus x_2\rangle$, seen as a row addition elementary matrix
 - PLU decomposition: number of gates is large
 - Heuristic algorithm (Xiang et al. FSE 2020): greatly reduce the number of gates, but is not optimal.
- A new SAT-based method for implementing linear transformations with minimal number of CNOT gates
 - Encode the problem of finding a circuit with k gates into a SAT problem

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへの

▶ k-1 (UNSAT), k (SAT) \Rightarrow using k gates is optimal

Synthesizing Optimal CNOT Circuits

Invertible linear transformation :

 $|x_1, x_2, \ldots, x_n\rangle \rightarrow |L_1(x_1, \ldots, x_n), \ldots, L_n(x_1, \ldots, x_n)\rangle$

- Invertible linear transformation ⇒ In-place CNOT circuit
 - CNOT gate: $|x_1, x_2\rangle \rightarrow |x_1, x_1 \oplus x_2\rangle$, seen as a row addition elementary matrix
 - PLU decomposition: number of gates is large
 - Heuristic algorithm (Xiang et al. FSE 2020): greatly reduce the number of gates, but is not optimal.
- A new SAT-based method for implementing linear transformations with minimal number of CNOT gates
 - Encode the problem of finding a circuit with k gates into a SAT problem
 - ▶ k-1 (UNSAT), k (SAT) \Rightarrow using k gates is optimal

The Way of Encoding

- Variable sets: $B = (b_{ij})_{k \times n}$, $C = (c_{ij})_{k \times n}$, $F = (f_{ij})_{n \times n}$, $\Psi = \{\psi_{i,j,s}\}_{k \times n \times n}$.
- *B*, *C*: $b_{ij_1} = c_{ij_2} = 1 \Rightarrow \text{CNOT}_i$: Adds Wire_{*j*₁} to Wire_{*j*₂}.

•
$$F: f_{ij} = 1 \Rightarrow L_i$$
 is the output of Wire_j.

Ψ: ψ_{i,j,k} = 1 ⇒ After CNOT_i, in the boolean expression (ANF) of Wire_j, coeff(x_k) is 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Boolean Equations for the CNOT circuit problem

$$EQN_b = \begin{cases} b_{ij_1}b_{ij_2} = 0, \\ b_{i1} + b_{i2} + \dots + b_{in} + 1 = 0, \\ for \ 1 \le i \le k, 1 \le j_1 \ne j_2 \le n \end{cases} EQN_c = \begin{cases} c_{ij_1}c_{ij_2} = 0, \\ c_{i1} + c_{i2} + \dots + c_{in} + 1 = 0, \\ for \ 1 \le i \le k, 1 \le j_1 \ne j_2 \le n \end{cases}$$

$$EQN_{a} = \begin{cases} f_{i,j}(\psi_{k,j,s} + a_{is}) = 0\\ for \ 1 \le i, j \le n, \ 1 \le s \le m \end{cases} = EQN_{f} = \begin{cases} f_{ij_{1}}f_{ij_{2}} = 0, \\ f_{i1} + f_{i2} + \dots + f_{in} + 1 = 0, \\ for \ 1 \le i \le n, \ 1 \le j_{1} \ne j_{2} \le n \end{cases}$$

$$EQN_{\psi} = \begin{cases} \psi_{i,j,s} + \sum_{t=1}^{n} c_{ij} b_{it} \psi_{i-1,t,s} + \psi_{i-1,j,s} = 0, \\ for \ 1 \le i \le k, \ 1 \le j \le n, \ 1 \le s \le m \end{cases}$$

■ Problems with size < 9 bits can be solved in a reasonable time.

8-bit: 56 threads, SAT:200-300 sec, UNSAT: 1 day

ヘロア 人間 アメヨアメヨア

э

Boolean Equations for the CNOT circuit problem

$$EQN_b = \begin{cases} b_{ij_1}b_{ij_2} = 0, \\ b_{i1} + b_{i2} + \dots + b_{in} + 1 = 0, \\ for \ 1 \le i \le k, 1 \le j_1 \ne j_2 \le n \end{cases} EQN_c = \begin{cases} c_{ij_1}c_{ij_2} = 0, \\ c_{i1} + c_{i2} + \dots + c_{in} + 1 = 0, \\ for \ 1 \le i \le k, 1 \le j_1 \ne j_2 \le n \end{cases}$$

$$EQN_{a} = \begin{cases} f_{i,j}(\psi_{k,j,s} + a_{is}) = 0\\ \text{for } 1 \le i, j \le n, 1 \le s \le m \end{cases} \quad EQN_{f} = \begin{cases} f_{ij_{1}}f_{ij_{2}} = 0,\\ f_{i_{1}} + f_{i_{2}} + \dots + f_{in} + 1 = 0,\\ \text{for } 1 \le i \le n, 1 \le j_{1} \ne j_{2} \le n \end{cases}$$

$$EQN_{\psi} = \left\{ \begin{array}{c} \psi_{i,j,s} + \sum_{t=1}^{n} c_{ij} b_{it} \psi_{i-1,t,s} + \psi_{i-1,j,s} = 0, \\ \\ \text{for } 1 \le i \le k, 1 \le j \le n, 1 \le s \le m \end{array} \right\}$$

- Problems with size < 9 bits can be solved in a reasonable time.
 - 8-bit: 56 threads, SAT:200-300 sec, UNSAT: 1 day

(日)(四)(日)(日)(日)(日)

\mathfrak{C}^0 -circuit and \mathfrak{C}^* -circuit

- $\mathfrak{C}^{0}\text{-circuit of } f: |x\rangle_{a} |0\rangle_{b} |0\rangle_{c} \to |x\rangle_{a} |f(x)\rangle_{b} |0\rangle_{c}.$ $\mathfrak{C}^{*}\text{-circuit of } f: |x\rangle_{a} |y\rangle_{b} |0\rangle \to |x\rangle_{a} |y \oplus f(x)\rangle_{b} |0\rangle_{c}.$
 - A C*-circuit is always a C⁰-circuit.
 - Building a C⁰-circuit is much easier than building a C*-circuit.
 - Some circuits using the output wires as temporary storage space to save the cost of qubits, are 𝔅⁰-circuits but not 𝔅*-circuits.

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへの

AES S-box circuits proposed in [GLRS16,ASAM18,LPS19]

\mathfrak{C}^0 -circuit and \mathfrak{C}^* -circuit

 \mathfrak{C}^{0} -circuit of $f: |x\rangle_{a} |0\rangle_{b} |0\rangle_{c} \rightarrow |x\rangle_{a} |f(x)\rangle_{b} |0\rangle_{c}$.

 \mathfrak{C}^* -circuit of $f : |x\rangle_a |y\rangle_b |0\rangle \to |x\rangle_a |y \oplus f(x)\rangle_b |0\rangle_c$

- A C*-circuit is always a C⁰-circuit.
- Building a \mathfrak{C}^0 -circuit is much easier than building a \mathfrak{C}^* -circuit.
- Some circuits using the output wires as temporary storage space to save the cost of qubits, are C⁰-circuits but not C*-circuits.
 - AES S-box circuits proposed in [GLRS16,ASAM18,LPS19]

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Implementing nonlinear transformations in-place (I)

Figure: Two kinds of classical invertible nonlinear transformations

Feistel-like (Fesitel cipher, NFSR, Key schedule).

$$T:(x,y) \rightarrow (x,y \oplus F(x))$$

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへの

To implement *T* in-place, we only need a \mathfrak{C}^* -circuit of *F*: $|x\rangle |y\rangle \rightarrow |x\rangle |y \oplus F(x)\rangle;$ Implementing nonlinear transformations in-place (II)

Substitution-like (S-box):

 $T:(x,y)\to(S(x,y),y)$

can be implemented by the OP-based in-place circuit

Figure: An OP-based in-place circuit for a substitution-like transformation. S': a function satisfying S'(S(x, y), y) = x.

1 $|x\rangle |y\rangle |0\rangle \rightarrow |x\rangle |y\rangle |S(x,y)\rangle$: \mathfrak{C}^{0} -circuit of S

 $[2] |S(x,y)\rangle |y\rangle |x\rangle \rightarrow |S(x,y)\rangle |y\rangle |x \oplus S'(S(x,y),y)\rangle: \text{ we don't need a} \\ \mathfrak{C}^*\text{-circuit of } S'.$

 $z = S(x, y), |z\rangle |y\rangle |S'(z, y)\rangle \rightarrow |z\rangle |y\rangle |0\rangle.$ Only need to design a \mathfrak{C}^0 -circuit of S', and use its reverse circuit.

Implementing nonlinear transformations in-place (II)

Substitution-like (S-box):

 $T: (x, y) \rightarrow (S(x, y), y)$

can be implemented by the OP-based in-place circuit

Figure: An OP-based in-place circuit for a substitution-like transformation. S': a function satisfying S'(S(x, y), y) = x.

$$1 |x\rangle |y\rangle |0\rangle \rightarrow |x\rangle |y\rangle |S(x,y)\rangle: \mathfrak{C}^{0}\text{-circuit of } S$$

2 $|S(x,y)\rangle |y\rangle |x\rangle \rightarrow |S(x,y)\rangle |y\rangle |x \oplus S'(S(x,y),y)\rangle$: we don't need a \mathfrak{C}^* -circuit of S'.

 $z = S(x, y), |z\rangle |y\rangle |S'(z, y)\rangle \rightarrow |z\rangle |y\rangle |0\rangle$. Only need to design a \mathfrak{C}^0 -circuit of S', and use its reverse circuit.

Constructing a \mathfrak{C}^* -circuit from a \mathfrak{C}^0 -circuit

- Some criteria for efficiently designing \mathfrak{C}^* -circuits are proposed
- Under these criteria, a C*-circuit of f can be constructed from a special C⁰-circuit called Simplex C⁰-circuit:

 $|x\rangle_{a} |y\rangle_{b} |0\rangle_{c} \rightarrow |x\rangle_{a} |A(y) \oplus f(x)\rangle_{b} |0\rangle_{c} , A: a \text{ linear function}$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

Figure: A \mathfrak{C}^* -circuit based on a simplex \mathfrak{C}^0 -circuit

• $U_{A^{-1}}$: a CNOT sub-circuit; in most times uses ≤ 8 qubits.

Application in AES Key Schedule

■ We can construct a C*-circuit of AES S-box (used in the key schedule) from the C⁰-circuit proposed in previous works without increasing #qubit and #Toffoli

Table: Quantum resources for implementing the S-box of AES

	#ancilla	Toffoli-depth	#Toffoli	#CNOT	#NOT	source
\mathfrak{C}^0 -S-box	6	41	52	326	4	Asiacrypt2020
€*-S-box	7 6	60 41	68 52	352 336	4 4	Asiacrypt2020 This paper
€*-S-box	6	41	52	336	4	This pap

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへの

Outline

1 Motivation

- 2 The Round-In-Place Structure for Iterative Primitives
- 3 In-place Circuits for Linear and Nonlinear Components

イロト 不得 トイヨト イヨト

3

4 Constructing Low *T*-depth Circuits

5 Efficient Quantum Circuits for AES

Classical AND-depth v.s. Quantum T-depth

- *T* gates only appears in the Toffoli gates, quantum AND gates (Eurocrypt 2020, a C⁰ circuit of AND), and their adjoint (all have **T-depth-1 implementations**).
- Classical AND-depth = Quantum T-depth ?

Figure: Quantum implementations of a classical circuit with AND-depth 1

▲ロ ▶ ▲周 ▶ ▲ 臣 ▶ ▲ 臣 ▶ → 臣 → の Q @

 AES S-box circuit in Eurocrypt 2020: AND-depth 4, but *T*-depth 6.

The Lowest-T-depth Circuit

Theorem

Given a classical circuit with **AND-depth s**, the *T*-depth of the quantum circuit implementing all the nodes of the classical circuit **is not smaller than s**. Moreover, with sufficiently many ancillae, we can construct a quantum circuit implementing all the nodes of the classical circuit with **T-depth s**.

- Based on Boyar and Peralta's classical circuit for AES S-box (AND-depth-4), we construct a *T*-depth-4 quantum circuit for AES S-box.
- We construct a new improved classical circuit for AES S-box (AND-depth-3), and induce a *T*-depth-3 quantum circuit for AES S-box.

 AES S-box has algebraic degree 7. Needs at least 3 multiplication layers, hence *T*-depth-3 is optimal.

The Lowest-T-depth Circuit

Theorem

Given a classical circuit with **AND-depth s**, the *T*-depth of the quantum circuit implementing all the nodes of the classical circuit **is not smaller than s**. Moreover, with sufficiently many ancillae, we can construct a quantum circuit implementing all the nodes of the classical circuit with **T-depth s**.

- Based on Boyar and Peralta's classical circuit for AES S-box (AND-depth-4), we construct a *T*-depth-4 quantum circuit for AES S-box.
- We construct a new improved classical circuit for AES S-box (AND-depth-3), and induce a *T*-depth-3 quantum circuit for AES S-box.
- AES S-box has algebraic degree 7. Needs at least 3 multiplication layers, hence *T*-depth-3 is optimal.

Outline

1 Motivation

- 2 The Round-In-Place Structure for Iterative Primitives
- 3 In-place Circuits for Linear and Nonlinear Components

イロト 不得 トイヨト イヨト

3

- 4 Constructing Low *T*-depth Circuits
- 5 Efficient Quantum Circuits for AES

Low-width Circuits for AES

Figure: An in-place circuit for generating the first round key

Figure: The in-place implementation of the *i*-th round of AES-128

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Figure: The implementation of the round 0 and round 1 of AES

Table: Quantum resources for implementing AES-128

Width	Toffoli-Depth	#Toffoli	#CNOT	#Pauli-X	source
512	2016	19788	128517	4528	Asiacrypt2020
492	820	17888	126016	2528	р = 18
374	1558	17888	126016	2528	<i>p</i> = 9

p: number of S-boxes applied in parallel

Low-depth circuits for AES

Figure: The out-of-place implementation of the *i*-th round of AES-128

Table: Quantum resources for implementing AES and AES[†].

source	width	Full depth	T-depth	#M	# <i>T</i>	#1qClifford	# CNOT
Eurocrypt 2020	3936	2827	120 (60)	13600	54400	83116	291150
with S-box ₃ with S-box ₄	3936 5576	2198 2312	80 (40) 60 (30)	13600 31200	54400 124800	83295 189026	298720 570785

・ロト・日本・日本・日本・日本

- S-box₄: T-depth-4 S-box, S-box₃: T-depth-3 S-box
- (*): for only implementing the forward circuit of AES

Tradeoff between Width and *T*-depth

Figure: The width and *T*-depth for implementing the Grover oracle of AES-128

イロト イポト イヨト イヨト

Thank you for your attention!

huangzhenyu@iie.ac.cn

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ