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Motivation

Quantum Cryptanlysis for Symmetric Ciphers
▶ Grover’s algorithm: the attacker needs to construct a Grover

oracle to search the key.
▶ Simon’s algorithm (Kuwakado and Mori, ISIT 2010; Kaplan et

al. Crypto 2016): The attacker needs to access an online

quantum encryption oracle.
▶ Offline Simon’s algorithm (Bonnetain et al. Asiacrypt 2019): the

attacker needs to construct different quantum encryption oracles

for different keys.
▶ The quantum circuit for the encryption process is a part of

the Grover oracle or the quantum encryption oracle.

NIST’s call for proposals for PQC
▶ The complexity of quantum key search circuit for AES is

used as a baseline to categorize the post-quantum public-key

schemes
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From classical circuits to quantum circuits:

Classicial gates: XOR, NOT, AND

⇒ CNT gate set: CNOT, NOT(Pauli-X), Toffoli

⇒ Clifford+T gates: {Pauli gates, CNOT, S, H} + T

Optimization Goals:

Width: the number of qubits

Gate count

Depth: The number of layers of the circuit (gates acting on

disjoint sets of qubits can be applied in parallel)

In fault-tolerant quantum computation (Surface code), the cost

of the T gate is greatly higher than that of a Clifford gate,

and the running time of a circuit is dominated by the

T -depth.
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The Pipeline Structure

Round Transformation:

Roundi : (keyi , x) → (keyi ,O(Ri ))

O(Ri ): the output of the round function

Ri : |keyi ⟩ |x⟩ |0⟩ → |keyi ⟩ |x⟩ |O(Ri )⟩, an out-of-place

implementation

|k0⟩ |k0⟩
|m⟩ R1

|m⟩
|0⟩ R2

|O(R1)⟩
|0⟩ R3

|O(R2)⟩
|0⟩ R4

|O(R3)⟩
|0⟩ R5

|O(R4)⟩
|0⟩ R6

|O(R5)⟩
|0⟩ R7

|O(R6)⟩
|0⟩ R8

|O(R7)⟩
|0⟩ R9

|O(R8)⟩
|0⟩ R10

|O(R9)⟩
|0⟩ |c⟩

Figure: The pipeline structrue for AES-128

▶ Generates redundant output O(Ri ) after each round



The Zig-zag Structure

|k0⟩ |k0⟩

|m⟩ R1,i R†
1,i |m⟩

|0⟩ R1,o R2,i R†
2,i R†

1,o
R5,o R6,i R†

6,i R†
5,o

R8,o R9,i R†
8,o

R10,o |c⟩

|0⟩ R2,o R3,i R†
3,i R†

2,o
R6,o R7,i R†

6,o
R9,o R10,i |O(R9)⟩

|0⟩ R3,o R4,i R†
3,o

R7,o R8,i R†
8,i |O(R7)⟩

|0⟩ R4,o R5,i R†
5,i |O(R4)⟩

Figure: The zig-zag structure for AES-128

The reverse circuit R† is used to clean some redundant outputs.



The Out-of-Place Based Round-in-Place Structure

For symmetric ciphers, each round is invertible, so theoretically

there is an in-place quantum circuit for each round.

However, directly obtain a such in-place circuit is very hard.

We can construct it by combing two out-of-place sub-circuits.
▶ Round transformation R : (k , x) → (k ,T (x , k))
▶ T ′: the inverse function of T , T ′(k ,T (x , k)) = x

|k⟩a |k⟩a
|x⟩n |T (x , k)⟩n

|T (x , k)⟩n |x⟩n
|0⟩b |0⟩b

|k⟩a

UR UR−1

|k⟩a
|x⟩n |T (x , k)⟩n
|0⟩n |x ⊕ T ′(T (x , k), k)⟩n = |0⟩n
|0⟩b |0⟩b

Figure: The op-based in-place circuit
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ROUND 1 ROUND 2 ROUND K

· · ·
· · ·
· · ·

|0⟩b |0⟩b |0⟩b |0⟩b
· · ·

|0⟩b |0⟩b

|k0⟩a

UR1
UR−1

1
UR2

UR−1
2

URk
UR−1

k

|k0⟩a
|m⟩n |c⟩n
|0⟩n |0⟩n
|0⟩b |0⟩b

Figure: The OP-based round-in-place structure

The width does not increase after each round



Comparison of Different Structures
n qubits for input, n qubits for output, and r rounds.

Same out-of-place round circuit using αn ancilla qubits .

Table: The widths (number of qubits) of different structures, where t is the

minimal number such that
∑t

i=1 i > r .

Pipeline Zig-zag Round-in-place

(r + α+ 1)n (t + 1 + α)n ≈ (
√
2r + α)n (2 + α)n

Table: The depths and DW-costs of the oracles based on different structures

Metric Type Pipeline Zig-zag Round-in-place

Depth
Grover 2r · d ≈ 4r · d 4r · d
Encrypt 2r · d ≈ 4r · d 2r · d

DW-cost
Grover 2r(r + 1 + α)nd 2r(

√
2r + α)nd 4r(2 + α)nd

Encrypt 2r(r + 1 + α)nd 2r(
√
2r + α)nd 2r(2 + α)nd
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Synthesizing Optimal CNOT Circuits

Invertible linear transformation :

|x1, x2, . . . , xn⟩ → |L1(x1, . . . , xn), . . . , Ln(x1, . . . , xn)⟩
Invertible linear transformation ⇒ In-place CNOT circuit
▶ CNOT gate: |x1, x2⟩ → |x1, x1 ⊕ x2⟩, seen as a row addition

elementary matrix
▶ PLU decomposition: number of gates is large
▶ Heuristic algorithm (Xiang et al. FSE 2020): greatly reduce the

number of gates, but is not optimal.

A new SAT-based method for implementing linear

transformations with minimal number of CNOT gates
▶ Encode the problem of finding a circuit with k gates into a SAT

problem
▶ k − 1 (UNSAT), k (SAT) ⇒ using k gates is optimal
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The Way of Encoding

Variable sets: B = (bij)k×n, C = (cij)k×n, F = (fij)n×n,

Ψ = {ψi ,j ,s}k×n×n.

B, C : bij1 = cij2 = 1 ⇒ CNOTi : Adds Wirej1 to Wirej2 .

F : fij = 1 ⇒ Li is the output of Wirej .

Ψ: ψi ,j ,k = 1 ⇒ After CNOTi , in the boolean expression (ANF)

of Wirej , coeff(xk) is 1.



Boolean Equations for the CNOT circuit problem

EQNb =


bij1 bij2 = 0,

bi1 + bi2 + · · · + bin + 1 = 0,

for 1 ≤ i ≤ k, 1 ≤ j1 ̸= j2 ≤ n

 EQNc =


cij1 cij2 = 0,

ci1 + ci2 + · · · + cin + 1 = 0,

for 1 ≤ i ≤ k, 1 ≤ j1 ̸= j2 ≤ n



EQNa =


fi,j (ψk,j,s + ais ) = 0

for 1 ≤ i, j ≤ n, 1 ≤ s ≤ m

 EQNf =


fij1 fij2 = 0,

fi1 + fi2 + · · · + fin + 1 = 0,

for 1 ≤ i ≤ n, 1 ≤ j1 ̸= j2 ≤ n



EQNψ =


ψi,j,s +

n∑
t=1

cijbitψi−1,t,s + ψi−1,j,s = 0,

for 1 ≤ i ≤ k, 1 ≤ j ≤ n, 1 ≤ s ≤ m



Problems with size < 9 bits can be solved in a reasonable time.

▶ 8-bit: 56 threads, SAT:200-300 sec, UNSAT: 1 day
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C0-circuit and C∗-circuit

C0-circuit of f : |x⟩a |0⟩b |0⟩c → |x⟩a |f (x)⟩b |0⟩c .

C∗-circuit of f : |x⟩a |y⟩b |0⟩ → |x⟩a |y ⊕ f (x)⟩b |0⟩c

A C∗-circuit is always a C0-circuit.

Building a C0-circuit is much easier than building a C∗-circuit.

Some circuits using the output wires as temporary storage space

to save the cost of qubits, are C0-circuits but not C∗-circuits.

▶ AES S-box circuits proposed in [GLRS16,ASAM18,LPS19]
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Implementing nonlinear transformations in-place (I)

n

m

x
T

x

y y ⊕ F (x)

1) Feistel-like

n

m

x
T

S(x , y)

y y

2) Substitution-like

Figure: Two kinds of classical invertible nonlinear transformations

Feistel-like (Fesitel cipher, NFSR, Key schedule).

T : (x , y) → (x , y ⊕ F (x))

To implement T in-place, we only need a C∗-circuit of F :

|x⟩ |y⟩ → |x⟩ |y ⊕ F (x)⟩;



Implementing nonlinear transformations in-place (II)
Substitution-like (S-box):

T : (x , y) → (S(x , y), y)

can be implemented by the OP-based in-place circuit
|x⟩ |S(x, y)⟩
|y⟩ |y⟩

|S(x, y)⟩ |x⟩
|0⟩ |0⟩

Input wires: |x⟩

UT UT−1

|S(x, y)⟩
Input wires: |y⟩ |y⟩

Output wires: |0⟩ |x⊕ S′(S(x, y), y)⟩ = |0⟩
Ancilla wires: |0⟩ |0⟩

Figure: An OP-based in-place circuit for a substitution-like

transformation. S ′: a function satisfying S ′(S(x , y), y) = x .

1 |x⟩ |y⟩ |0⟩ → |x⟩ |y⟩ |S(x , y)⟩: C0-circuit of S

2 |S(x , y)⟩ |y⟩ |x⟩ → |S(x , y)⟩ |y⟩ |x ⊕ S ′(S(x , y), y)⟩: we don’t need a

C∗-circuit of S ′.

z = S(x , y), |z⟩ |y⟩ |S ′(z , y)⟩ → |z⟩ |y⟩ |0⟩. Only need to design a

C0-circuit of S ′, and use its reverse circuit.
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Constructing a C∗-circuit from a C0-circuit

Some criteria for efficiently designing C∗-circuits are proposed

Under these criteria, a C∗-circuit of f can be constructed from a

special C0-circuit called Simplex C0-circuit:

|x⟩a |y⟩ b |0⟩c → |x⟩a |A(y)⊕ f (x)⟩b |0⟩c , A : a linear function

C0-circuit

CNOTS |x⟩
∣∣A−1(y)

〉

|0⟩

|x⟩

Uf

|x⟩

|y⟩ UA−1 |y ⊕ f(x)⟩

|0⟩ |0⟩

Figure: A C∗-circuit based on a simplex C0-circuit

UA−1 : a CNOT sub-circuit; in most times uses ≤ 8 qubits.



Application in AES Key Schedule

We can construct a C∗-circuit of AES S-box (used in the key

schedule) from the C0-circuit proposed in previous works

without increasing #qubit and #Toffoli

Table: Quantum resources for implementing the S-box of AES

#ancilla Toffoli-depth #Toffoli #CNOT #NOT source

C0-S-box 6 41 52 326 4 Asiacrypt2020

C∗-S-box
7 60 68 352 4 Asiacrypt2020

6 41 52 336 4 This paper
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Classical AND-depth v.s. Quantum T-depth

T gates only appears in the Toffoli gates, quantum AND gates

(Eurocrypt 2020, a C0 circuit of AND), and their adjoint (all

have T-depth-1 implementations).

Classical AND-depth = Quantum T-depth ?

d

c

b

a

ab

bd⊕ cd

∧

+
∧

a ∧ b b⊕ c b⊕ c a ∧ b
|a⟩ |a⟩ |a⟩ |a⟩
|b⟩ |b⟩ |b⟩ |b⟩
|c⟩ |c⟩ |c⟩ |c⟩
|d⟩ |d⟩ |d⟩ |d⟩
|0⟩ |ab⟩ |0⟩ |ab⟩
|0⟩ |b⊕ c⟩ |0⟩ |b⊕ c⟩
|0⟩ |bd⊕ cd⟩ |0⟩ |bd⊕ cd⟩

(1) classical circuit (2) T-depth-2 (3) T-depth-1

Figure: Quantum implementations of a classical circuit with AND-depth 1

AES S-box circuit in Eurocrypt 2020: AND-depth 4, but

T-depth 6.



The Lowest-T -depth Circuit

Theorem
Given a classical circuit with AND-depth s, the T-depth of the quantum

circuit implementing all the nodes of the classical circuit is not smaller

than s. Moreover, with sufficiently many ancillae, we can construct a

quantum circuit implementing all the nodes of the classical circuit with

T-depth s .

Based on Boyar and Peralta’s classical circuit for AES S-box

(AND-depth-4), we construct a T-depth-4 quantum circuit for

AES S-box.

We construct a new improved classical circuit for AES S-box

(AND-depth-3), and induce a T-depth-3 quantum circuit for

AES S-box.

AES S-box has algebraic degree 7. Needs at least 3

multiplication layers, hence T-depth-3 is optimal.
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Low-width Circuits for AES

|W5⟩

|W6⟩

|W3⟩ |W7⟩

|W4⟩

|W1⟩32 |W5⟩32
|W2⟩32 |W6⟩32
|W3⟩32

SubByte
|W7⟩32

|W0⟩32 Rcon |W4⟩32

Figure: An in-place circuit for generating the first round key

Phase 1 Phase 2

|ki−1⟩n KeyExpan1 KeyExpan2 |ki⟩n

|ci−1⟩n
ByteSub1 ByteSub−1

ShiftRow MixCol |ci⟩n

|0⟩n |0⟩n

Figure: The in-place implementation of the i-th round of AES-128



Round 0 Round 1
|c0⟩n |c0⟩n |k0⟩n|k0⟩n X

ByteSub1

X KeyExpan |k1⟩n

|0⟩n ShiftRow MixCol |c1⟩n

|0⟩a |0⟩a

Figure: The implementation of the round 0 and round 1 of AES

Table: Quantum resources for implementing AES-128

Width Toffoli-Depth #Toffoli #CNOT #Pauli-X source

512 2016 19788 128517 4528 Asiacrypt2020

492 820 17888 126016 2528 p = 18

374 1558 17888 126016 2528 p = 9

p: number of S-boxes applied in parallel



Low-depth circuits for AES

|ki−1⟩n KeyExpan |ki⟩n

|ci−1⟩n
ByteSub1

|ci−1⟩n

|0⟩n ShiftRow MixCol |ci⟩n

Figure: The out-of-place implementation of the i-th round of AES-128

Table: Quantum resources for implementing AES and AES†.

#CNOT #1qClifford #T #M T -depth Full depth width source

291150 83116 54400 13600 120 (60) 2827 3936 Eurocrypt 2020

298720 83295 54400 13600 80 (40) 2198 3936 with S-box3
570785 189026 124800 31200 60 (30) 2312 5576 with S-box4

S-box4: T-depth-4 S-box, S-box3: T-depth-3 S-box

( ∗ ) : for only implementing the forward circuit of AES



Tradeoff between Width and T -depth

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 6,000

102

103

104

Width

T
-d
ep
th

Strategy 1
Strategy 2
Strategy 3
Strategy 4
Strategy 5
Strategy 6

Eurocrypt2020
Asiacrypt2020
PQCrypto2016

LPS19

Figure: The width and T-depth for implementing the Grover oracle of

AES-128
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