

A signature scheme based on Module-LIP

HAWK: Module-LIP makes lattice signatures fast, compact and simple

Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden 7 October 2021

Centrum Wiskunde & Informatica, Amsterdam

NIST PQC Signature finalists

NIST PQC Signature finalists

IIST recommends Dilithium for general use.

NIST PQC Signature finalists

FALCON	uses the	nash-anu-sign
	· · · · · · · · · · · · · · · · · · ·	1
		·····
		•••••
		••••
		····
		•
		•••••
		ll

FALCON uses the hash-and-sign design.

Sign(m):

- Hash *m* to a target **t**.
- Sample a nearby lattice point s using a trapdoor basis.

Verify(m, s):

- Hash *m* to a target t.
- Check $s \in \Lambda$ and $\|s-t\|$ small.

FALCON uses the hash-and-sign design.

Sign(m):

- Hash *m* to a target **t**.
- Sample a nearby lattice point **s** using a trapdoor basis.

Verify(m, s):

- Hash *m* to a target t.
- Check $s \in \Lambda$ and ||s t|| small.

FALCON uses the hash-and-sign design.

Sign(m):

- Hash *m* to a target **t**.
- Sample a nearby lattice point **s** using a trapdoor basis.

Verify(m, s):

- Hash *m* to a target **t**.
- Check $s \in \Lambda$ and $\|s-t\|$ small.

Falcon

✓ FALCON has small keys and signatures.

- × Gaussian sampling is complicated because it requires high-precision floats.
 - Emulating floats is slow on constrained devices.
 - Masking is difficult.
 - Fundamental to the class of NTRU lattices.

- Sampling on \mathbb{Z}^n is easy.
- How can we hide \mathbb{Z}^n ?

- ✓ FALCON has small keys and signatures.
- × Gaussian sampling is complicated because it requires high-precision floats.
 - Emulating floats is slow on constrained devices.
 - Masking is difficult.
 - Fundamental to the class of NTRU lattices.

- Sampling on \mathbb{Z}^n is easy.
- How can we hide \mathbb{Z}^n ?

- ✓ FALCON has small keys and signatures.
- × Gaussian sampling is complicated because it requires high-precision floats.
 - Emulating floats is slow on constrained devices.
 - Masking is difficult.
 - Fundamental to the class of NTRU lattices.

- Sampling on \mathbb{Z}^n is easy.
- How can we hide \mathbb{Z}^n ?

- ✓ FALCON has small keys and signatures.
- × Gaussian sampling is complicated because it requires high-precision floats.
 - Emulating floats is slow on constrained devices.
 - Masking is difficult.
 - Fundamental to the class of NTRU lattices.

- Sampling on \mathbb{Z}^n is easy.
- How can we hide \mathbb{Z}^n ?

- ✓ FALCON has small keys and signatures.
- × Gaussian sampling is complicated because it requires high-precision floats.
 - Emulating floats is slow on constrained devices.
 - Masking is difficult.
 - Fundamental to the class of NTRU lattices.

- Sampling on \mathbb{Z}^n is easy.
- How can we hide \mathbb{Z}^n ?

Hiding \mathbb{Z}^n with a rotation

Hiding \mathbb{Z}^n with a rotation

Good basis (Secret key)

Bad basis (Public key)

Λ

4

Hiding \mathbb{Z}^n with a rotation

Lattice Isomorphism Problem

Given $\mathcal{L}(B) \cong \mathcal{L}(B')$ for $B, B' \in GL_n(\mathbb{R})$, find $O \in \mathcal{O}_n(\mathbb{R})$ s.t.

 $\mathcal{L}\left(B'\right)=\mathbf{0}\cdot\mathcal{L}\left(B\right).$

- How can we avoid using the floating points in **O** and **B**'?
- Make the embedding implicit, but keep the geometry.

Lattice Isomorphism Problem (bases)

Given $\mathcal{L}(B) \cong \mathcal{L}(B')$ for $B, B' \in \mathrm{GL}_n(\mathbb{R})$, find $O \in \mathcal{O}_n(\mathbb{R})$ and $U \in \mathrm{GL}_n(\mathbb{Z})$ s.t.

 $B' = \mathbf{O} \cdot B \cdot \mathbf{U}.$

- How can we avoid using the floating points in **O** and **B**'?
- Make the embedding implicit, but keep the geometry.

Lattice Isomorphism Problem (bases)

Given $\mathcal{L}(B) \cong \mathcal{L}(B')$ for $B, B' \in \mathrm{GL}_n(\mathbb{R})$, find $O \in \mathcal{O}_n(\mathbb{R})$ and $U \in \mathrm{GL}_n(\mathbb{Z})$ s.t.

 $B' = \mathbf{O} \cdot B \cdot \mathbf{U}.$

- How can we avoid using the floating points in O and B'?
- Make the embedding implicit, but keep the geometry.

Lattice Isomorphism Problem (bases)

Given $\mathcal{L}(B) \cong \mathcal{L}(B')$ for $B, B' \in \mathrm{GL}_n(\mathbb{R})$, find $O \in \mathcal{O}_n(\mathbb{R})$ and $U \in \mathrm{GL}_n(\mathbb{Z})$ s.t.

 $B' = \mathbf{O} \cdot B \cdot \mathbf{U}.$

- How can we avoid using the floating points in O and B'?
- Make the embedding *implicit*, but keep the geometry.

$$(\mathbf{O} \cdot \mathbf{B})^{\mathsf{T}} \cdot (\mathbf{O} \cdot \mathbf{B}) = \mathbf{B}^{\mathsf{T}} \cdot \underbrace{\mathbf{O}^{\mathsf{T}} \cdot \mathbf{O}}_{\mathbb{I}_n} \cdot \mathbf{B} = \mathbf{B}^{\mathsf{T}} \cdot \mathbf{B} = \mathbf{Q}.$$

- Make the Gram matrix $\mathbf{Q}' = \mathbf{B}'^{\mathsf{T}} \cdot \mathbf{B}' = \mathbf{U}^{\mathsf{T}} \mathbf{Q} \mathbf{U}$ public but keep **U** secret.
- Cholesky decomposition on Q' gives the explicit embedding: basis B'.
- [DvW22]¹ shows a generic way to go from a sampleable lattice to a signature scheme that reduces to a variant of LIP.
- Hence we can make a signature scheme on \mathbb{Z}^n with sk = U and pk = U^T · U.
- But how do we make this competitive?

¹Léo Ducas, Wessel van Woerden: On the Lattice Isomorphism Problem, Quadratic Forms, Remarkable Lattices, and Cryptography. In: EUROCRYPT 2022

$$(\mathbf{O} \cdot \mathbf{B})^{\mathsf{T}} \cdot (\mathbf{O} \cdot \mathbf{B}) = \mathbf{B}^{\mathsf{T}} \cdot \underbrace{\mathbf{O}^{\mathsf{T}} \cdot \mathbf{O}}_{\mathbb{I}_n} \cdot \mathbf{B} = \mathbf{B}^{\mathsf{T}} \cdot \mathbf{B} = \mathbf{Q}.$$

- Make the Gram matrix $Q'=B'^{\mathsf{T}}\cdot B'=U^{\mathsf{T}}QU$ public but keep U secret.
- Cholesky decomposition on **Q**′ gives the explicit embedding: basis **B**′.
- [DvW22]¹ shows a generic way to go from a sampleable lattice to a signature scheme that reduces to a variant of LIP.
- Hence we can make a signature scheme on \mathbb{Z}^n with sk = U and pk = U^T · U.
- But how do we make this competitive?

¹Léo Ducas, Wessel van Woerden: On the Lattice Isomorphism Problem, Quadratic Forms, Remarkable Lattices, and Cryptography. In: EUROCRYPT 2022

$$(\mathbf{O} \cdot \mathbf{B})^{\mathsf{T}} \cdot (\mathbf{O} \cdot \mathbf{B}) = \mathbf{B}^{\mathsf{T}} \cdot \underbrace{\mathbf{O}^{\mathsf{T}} \cdot \mathbf{O}}_{\mathbb{I}_n} \cdot \mathbf{B} = \mathbf{B}^{\mathsf{T}} \cdot \mathbf{B} = \mathbf{Q}.$$

- Make the Gram matrix $\mathbf{Q}' = \mathbf{B}'^{T} \cdot \mathbf{B}' = \mathbf{U}^{T} \mathbf{Q} \mathbf{U}$ public but keep U secret.
- Cholesky decomposition on Q' gives the explicit embedding: basis B'.
- [DvW22]¹ shows a generic way to go from a sampleable lattice to a signature scheme that reduces to a variant of LIP.
- Hence we can make a signature scheme on \mathbb{Z}^n with sk = U and pk = U^T · U.
- But how do we make this competitive?

¹Léo Ducas, Wessel van Woerden: On the Lattice Isomorphism Problem, Quadratic Forms, Remarkable Lattices, and Cryptography. In: EUROCRYPT 2022

$$(\mathbf{O} \cdot \mathbf{B})^{\mathsf{T}} \cdot (\mathbf{O} \cdot \mathbf{B}) = \mathbf{B}^{\mathsf{T}} \cdot \underbrace{\mathbf{O}^{\mathsf{T}} \cdot \mathbf{O}}_{\mathbb{I}_n} \cdot \mathbf{B} = \mathbf{B}^{\mathsf{T}} \cdot \mathbf{B} = \mathbf{Q}.$$

- Make the Gram matrix $\mathbf{Q}'=\mathbf{B}'^{T}\cdot\mathbf{B}'=\mathbf{U}^{T}\mathbf{Q}\mathbf{U}$ public but keep \mathbf{U} secret.
- Cholesky decomposition on Q' gives the explicit embedding: basis B'.
- [DvW22]¹ shows a generic way to go from a sampleable lattice to a signature scheme that reduces to a variant of LIP.
- Hence we can make a signature scheme on \mathbb{Z}^n with sk = U and pk = U^T · U.
- But how do we make this competitive?

¹Léo Ducas, Wessel van Woerden: On the Lattice Isomorphism Problem, Quadratic Forms, Remarkable Lattices, and Cryptography. In: EUROCRYPT 2022

$$(\mathbf{O} \cdot \mathbf{B})^{\mathsf{T}} \cdot (\mathbf{O} \cdot \mathbf{B}) = \mathbf{B}^{\mathsf{T}} \cdot \underbrace{\mathbf{O}^{\mathsf{T}} \cdot \mathbf{O}}_{\mathbb{I}_n} \cdot \mathbf{B} = \mathbf{B}^{\mathsf{T}} \cdot \mathbf{B} = \mathbf{Q}.$$

- Make the Gram matrix $\mathbf{Q}' = \mathbf{B}'^{\mathsf{T}} \cdot \mathbf{B}' = \mathbf{U}^{\mathsf{T}} \mathbf{Q} \mathbf{U}$ public but keep U secret.
- Cholesky decomposition on Q' gives the explicit embedding: basis B'.
- [DvW22]¹ shows a generic way to go from a sampleable lattice to a signature scheme that reduces to a variant of LIP.
- Hence we can make a signature scheme on \mathbb{Z}^n with sk = U and $pk = U^T \cdot U$.
- But how do we make this competitive?

¹Léo Ducas, Wessel van Woerden: On the Lattice Isomorphism Problem, Quadratic Forms, Remarkable Lattices, and Cryptography. In: EUROCRYPT 2022

$$(\mathbf{O} \cdot \mathbf{B})^{\mathsf{T}} \cdot (\mathbf{O} \cdot \mathbf{B}) = \mathbf{B}^{\mathsf{T}} \cdot \underbrace{\mathbf{O}^{\mathsf{T}} \cdot \mathbf{O}}_{\mathbb{I}_n} \cdot \mathbf{B} = \mathbf{B}^{\mathsf{T}} \cdot \mathbf{B} = \mathbf{Q}.$$

- Make the Gram matrix $\mathbf{Q}' = \mathbf{B}'^{\mathsf{T}} \cdot \mathbf{B}' = \mathbf{U}^{\mathsf{T}} \mathbf{Q} \mathbf{U}$ public but keep U secret.
- Cholesky decomposition on Q' gives the explicit embedding: basis B'.
- [DvW22]¹ shows a generic way to go from a sampleable lattice to a signature scheme that reduces to a variant of LIP.
- Hence we can make a signature scheme on \mathbb{Z}^n with sk = U and $pk = U^T \cdot U$.
- But how do we make this competitive?

¹Léo Ducas, Wessel van Woerden: On the Lattice Isomorphism Problem, Quadratic Forms, Remarkable Lattices, and Cryptography. In: EUROCRYPT 2022

Making the [DvW22] signature scheme of \mathbb{Z}^n competitive

1. We add extra structure.

- 2. We compress keys and signatures.
- 3. We hash to targets in $\frac{1}{2}\mathbb{Z}^n$ so we can use precomputed distribution tables for sampling from \mathbb{Z} and $\mathbb{Z} + \frac{1}{2}$.

- 1. We add extra structure.
- 2. We compress keys and signatures.
- 3. We hash to targets in $\frac{1}{2}\mathbb{Z}^n$ so we can use precomputed distribution tables for sampling from \mathbb{Z} and $\mathbb{Z} + \frac{1}{2}$.

- 1. We add extra structure.
- 2. We compress keys and signatures.
- 3. We hash to targets in $\frac{1}{2}\mathbb{Z}^n$ so we can use precomputed distribution tables for sampling from \mathbb{Z} and $\mathbb{Z} + \frac{1}{2}$.

- Replace \mathbb{Z}^{2n} by $R \oplus R$, where $R = \mathbb{Z}[\zeta_{2n}] = \mathbb{Z}[X]/(X^n + 1) \cong \mathbb{Z}^n$ for n a power of 2.

The unimodular transformation is secret:

$$sk = U = \begin{bmatrix} u_0 & u_1 \end{bmatrix} = \begin{bmatrix} f & F \\ g & G \end{bmatrix},$$

- Then, F, G are computed s.t. fG gF = 1 (NTRU equation).
- This is basically FALCON'S KeyGen with q = 1.
- The geometry is public:

$$pk = Q = U^* \cdot U = \begin{bmatrix} u_0^* u_0 & u_0^* u_1 \\ u_1^* u_0 & u_1^* u_1 \end{bmatrix}.$$

- Replace \mathbb{Z}^{2n} by $R \oplus R$, where $R = \mathbb{Z}[\zeta_{2n}] = \mathbb{Z}[X]/(X^n + 1) \cong \mathbb{Z}^n$ for n a power of 2.
- The unimodular transformation is secret:

$$sk = U = \begin{bmatrix} u_0 & u_1 \end{bmatrix} = \begin{bmatrix} f & F \\ g & G \end{bmatrix},$$

- Then, F, G are computed s.t. fG gF = 1 (NTRU equation).
- This is basically FALCON'S KeyGen with q = 1.
- The geometry is public:

$$\mathsf{pk} = \mathbf{Q} = \mathbf{U}^* \cdot \mathbf{U} = \begin{bmatrix} u_0^* u_0 & u_0^* u_1 \\ u_1^* u_0 & u_1^* u_1 \end{bmatrix}.$$

- Replace \mathbb{Z}^{2n} by $R \oplus R$, where $R = \mathbb{Z}[\zeta_{2n}] = \mathbb{Z}[X]/(X^n + 1) \cong \mathbb{Z}^n$ for n a power of 2.
- The unimodular transformation is secret:

$$sk = U = \begin{bmatrix} u_0 & u_1 \end{bmatrix} = \begin{bmatrix} f & F \\ g & G \end{bmatrix},$$

- Then, F, G are computed s.t. fG gF = 1 (NTRU equation).
- This is basically FALCON'S KeyGen with q = 1.
- The geometry is public:

$$pk = Q = U^* \cdot U = \begin{bmatrix} u_0^* u_0 & u_0^* u_1 \\ u_1^* u_0 & u_1^* u_1 \end{bmatrix}.$$

- Replace \mathbb{Z}^{2n} by $R \oplus R$, where $R = \mathbb{Z}[\zeta_{2n}] = \mathbb{Z}[X]/(X^n + 1) \cong \mathbb{Z}^n$ for n a power of 2.
- The unimodular transformation is secret:

$$sk = U = \begin{bmatrix} u_0 & u_1 \end{bmatrix} = \begin{bmatrix} f & F \\ g & G \end{bmatrix},$$

- Then, F, G are computed s.t. fG gF = 1 (NTRU equation).
- This is basically FALCON's KeyGen with q = 1.
- The geometry is public:

$$\mathsf{p}\mathsf{k}=\mathsf{Q}=\mathsf{U}^*\!\cdot\mathsf{U}=\begin{bmatrix}u_0^*u_0&u_0^*u_1\\u_1^*u_0&u_1^*u_1\end{bmatrix}.$$

- Replace \mathbb{Z}^{2n} by $R \oplus R$, where $R = \mathbb{Z}[\zeta_{2n}] = \mathbb{Z}[X]/(X^n + 1) \cong \mathbb{Z}^n$ for n a power of 2.
- The unimodular transformation is secret:

$$sk = U = \begin{bmatrix} u_0 & u_1 \end{bmatrix} = \begin{bmatrix} f & F \\ g & G \end{bmatrix},$$

- Then, F, G are computed s.t. fG gF = 1 (NTRU equation).
- This is basically FALCON's KeyGen with q = 1.
- The geometry is public:

$$\mathsf{pk} = \mathbf{Q} = \mathbf{U}^* {\cdot} \, \mathbf{U} = \begin{bmatrix} u_0^* u_0 & u_0^* u_1 \\ u_1^* u_0 & u_1^* u_1 \end{bmatrix}.$$

Compression

- Encode the secret key like FALCON, dropping G = (1 + gF)/f.
- From the public key $\mathbf{Q} = \begin{bmatrix} \mathbf{Q}_{00} & \mathbf{Q}_{01} \\ \mathbf{Q}_{10} & \mathbf{Q}_{11} \end{bmatrix} = \begin{bmatrix} \mathbf{u}_0^* \mathbf{u}_0 & \mathbf{u}_0^* \mathbf{u}_1 \\ \mathbf{u}_1^* \mathbf{u}_0 & \mathbf{u}_1^* \mathbf{u}_1 \end{bmatrix}$ only store \mathbf{Q}_{00} and \mathbf{Q}_{01} as we can recover: $\mathbf{Q}_{10} = \mathbf{Q}_{01}^*$ and $\mathbf{Q}_{11} = \frac{1 + \mathbf{Q}_{10} \mathbf{Q}_{01}}{\mathbf{Q}_{00}}.$
- We can drop s_0 from a signature $\mathbf{s} = (s_0, s_1)$, and recover s_0 (almost always) during verification with a ring generalization of Babai's round-off algorithm.

- Encode the secret key like FALCON, dropping G = (1 + gF)/f.
- From the public key $\mathbf{Q} = \begin{bmatrix} \mathbf{Q}_{00} & \mathbf{Q}_{01} \\ \mathbf{Q}_{10} & \mathbf{Q}_{11} \end{bmatrix} = \begin{bmatrix} \mathbf{u}_0^* \mathbf{u}_0 & \mathbf{u}_0^* \mathbf{u}_1 \\ \mathbf{u}_1^* \mathbf{u}_0 & \mathbf{u}_1^* \mathbf{u}_1 \end{bmatrix}$ only store \mathbf{Q}_{00} and \mathbf{Q}_{01} as we can recover: $\mathbf{Q}_{10} = \mathbf{Q}_{01}^*$ and $\mathbf{Q}_{11} = \frac{1 + \mathbf{Q}_{10} \mathbf{Q}_{01}}{\mathbf{Q}_{00}}.$
- We can drop s_0 from a signature $\mathbf{s} = (s_0, s_1)$, and recover s_0 (almost always) during verification with a ring generalization of Babai's round-off algorithm.

- Encode the secret key like FALCON, dropping G = (1 + gF)/f.
- From the public key $\mathbf{Q} = \begin{bmatrix} \mathbf{Q}_{00} & \mathbf{Q}_{01} \\ \mathbf{Q}_{10} & \mathbf{Q}_{11} \end{bmatrix} = \begin{bmatrix} \mathbf{u}_0^* \mathbf{u}_0 & \mathbf{u}_0^* \mathbf{u}_1 \\ \mathbf{u}_1^* \mathbf{u}_0 & \mathbf{u}_1^* \mathbf{u}_1 \end{bmatrix}$ only store \mathbf{Q}_{00} and \mathbf{Q}_{01} as we can recover: $\mathbf{Q}_{10} = \mathbf{Q}_{01}^*$ and $\mathbf{Q}_{11} = \frac{1 + \mathbf{Q}_{10} \mathbf{Q}_{01}}{\mathbf{Q}_{00}}.$
- We can drop s_0 from a signature $\mathbf{s} = (s_0, s_1)$, and recover s_0 (almost always) during verification with a ring generalization of Babai's round-off algorithm.

- 1. Hash to $h = H(m) \in \{0, 1\}^{2n}$ ' \subseteq ' R^2 .
- 2. Sample $\mathbf{x} \in R^2$ close to $\frac{1}{2}\mathbf{U} \cdot \mathbf{h}$.
- 3. Return $\mathbf{s} = \mathbf{U}^{-1} \cdot \mathbf{x}$.
- Note: **Us** is close to $\frac{1}{2}$ **Uh**, so s_0u_0 is close to $\frac{1}{2}$ **Uh** s_1u_1 .
- \implies Use Babai's round-off (or nearest plane) algorithm:

$$s_0' = \left\lceil \frac{h_0}{2} + \frac{\mathsf{Q}_{01}}{\mathsf{Q}_{00}} \left(\frac{h_1}{2} - s_1 \right) \right\rfloor.$$

– Reject key pairs for which ${f Q}_{00}$ is "too small" \Longrightarrow recovery works "always" (\ge 1 – 2 $^{-100}$).

- 1. Hash to $\mathbf{h} = H(m) \in \{0, 1\}^{2n}$ ' \subseteq ' \mathbb{R}^2 .
- 2. Sample $\mathbf{x} \in R^2$ close to $\frac{1}{2}\mathbf{U} \cdot \mathbf{h}$.
- 3. Return $\mathbf{s} = \mathbf{U}^{-1} \cdot \mathbf{x}$.
- Note: Us is close to $\frac{1}{2}$ Uh, so s_0u_0 is close to $\frac{1}{2}$ Uh s_1u_1 .
- \implies Use Babai's round-off (or nearest plane) algorithm:

$$s'_0 = \left\lceil \frac{h_0}{2} + \frac{Q_{01}}{Q_{00}} \left(\frac{h_1}{2} - s_1 \right) \right
brace.$$

– Reject key pairs for which ${f Q}_{00}$ is "too small" \Longrightarrow recovery works "always" (\ge 1 – 2 $^{-100}$).

- 1. Hash to $\mathbf{h} = H(m) \in \{0, 1\}^{2n}$ ' \subseteq ' \mathbb{R}^2 .
- 2. Sample $\mathbf{x} \in R^2$ close to $\frac{1}{2}\mathbf{U} \cdot \mathbf{h}$.
- 3. Return $\mathbf{s} = \mathbf{U}^{-1} \cdot \mathbf{x}$.
- Note: Us is close to $\frac{1}{2}$ Uh, so s_0u_0 is close to $\frac{1}{2}$ Uh s_1u_1 .
- \implies Use Babai's round-off (or nearest plane) algorithm:

$$s'_{0} = \left\lceil \frac{h_{0}}{2} + \frac{Q_{01}}{Q_{00}} \left(\frac{h_{1}}{2} - s_{1} \right) \right
brace.$$

- Reject key pairs for which ${f Q}_{00}$ is "too small" \Longrightarrow recovery works "always" (\ge 1 – 2 $^{-100}$).

- 1. Hash to $\mathbf{h} = H(m) \in \{0, 1\}^{2n}$ ' \subseteq ' \mathbb{R}^2 .
- 2. Sample $\mathbf{x} \in R^2$ close to $\frac{1}{2}\mathbf{U} \cdot \mathbf{h}$.
- 3. Return $\mathbf{s} = \mathbf{U}^{-1} \cdot \mathbf{x}$.
- Note: Us is close to $\frac{1}{2}$ Uh, so s_0u_0 is close to $\frac{1}{2}$ Uh s_1u_1 .
- \implies Use Babai's round-off (or nearest plane) algorithm:

$$s_0' = \left\lceil \frac{h_0}{2} + \frac{\mathbf{Q}_{01}}{\mathbf{Q}_{00}} \left(\frac{h_1}{2} - s_1 \right) \right\rfloor.$$

- Reject key pairs for which ${f Q}_{00}$ is "too small" \Longrightarrow recovery works "always" (\ge 1 – 2 $^{-100}$).

- 1. Hash to $\mathbf{h} = H(m) \in \{0, 1\}^{2n}$ ' \subseteq ' \mathbb{R}^2 .
- 2. Sample $\mathbf{x} \in R^2$ close to $\frac{1}{2}\mathbf{U} \cdot \mathbf{h}$.
- 3. Return $\mathbf{s} = \mathbf{U}^{-1} \cdot \mathbf{x}$.
- Note: Us is close to $\frac{1}{2}$ Uh, so s_0u_0 is close to $\frac{1}{2}$ Uh s_1u_1 .
- \implies Use Babai's round-off (or nearest plane) algorithm:

$$\mathbf{s}_0' = \left\lceil \frac{h_0}{2} + \frac{\mathbf{Q}_{01}}{\mathbf{Q}_{00}} \left(\frac{h_1}{2} - \mathbf{s}_1 \right) \right\rfloor.$$

- Reject key pairs for which Q_{00} is "too small" \implies recovery works "always" ($\ge 1 - 2^{-100}$).

Performance of HAWK

- HAWK has an *isochronous* implementation in C, using lots of code from FALCON.

	Falcon-512	Наwк-512		Falcon-1024	НАWК-1024	
KeyGen*	7.95 ms	4.25 ms	↓ /1.9	23.60 ms	17.88 ms	↓ /1.3
Sign*	193 µs	50 µs	↓/3.9	382 µs	99 µs	↓/3.9
Verify*	50 µs	19 µs	↓/2.6	99 µs	46 µs	↓ /2.2
sk (bytes)	1281	1153	↓ /1.1	2305	2561	↑ ×1.1
pk (bytes)	897	1006 ± 6	↑ ×1.2	1793	2329 ± 11	↑ ×1.29
sig (bytes)	652 ± 3	542 ± 4	↓ /1.20	1261 ± 4	1195 ± 6	↓ /1.06

Table 1: Performance on an i5-4590 @3.30GHz CPU. *: AVX2 implementation using floats.

Performance of HAWK

- HAWK has an *isochronous* implementation in C, using lots of code from FALCON.
- When floating points are unavailable, FALCON emulates these, but HAWK signs with the NTT instead.

	Falcon-512	Наwк-512		Falcon-1024	Нашк-1024	
KeyGen*	7.95 ms	4.25 ms	↓ /1.9	23.60 ms	17.88 ms	↓ /1.3
KeyGen	19.32 ms	13.14 ms	↓ /1.5	54.65 ms	41.39 ms	↓ /1.3
Sign*	193 µs	50 µs	↓/3.9	382 µs	99 µs	↓/3.9
Sign	2449 µs	168 µs	↓ /15	5273 µs	343 µs	↓ /15
Verify*	50 µs	19 µs	↓ /2.6	99 µs	46 µs	↓ /2.2
Verify	53 µs	178 µs	↑×3.4	105 µs	392 µs	↑ ×3.7
sk (bytes)	1281	1153	↓ /1.1	2305	2561	↑ ×1.1
pk (bytes)	897	1006 ± 6	↑ ×1.2	1793	2329 ± 11	↑×1.29
sig (bytes)	652 ± 3	542 ± 4	↓ /1.20	1261 ± 4	1195 ± 6	↓ /1.06

Table 1: Performance on an i5-4590 @3.30GHz CPU. *: AVX2 implementation using floats.

Open questions

- Can we use a better lattice (sampling closer to a target)?
- More cryptanalysis on (module-)LIP wanted!

- Can we use a better lattice (sampling closer to a target)?
- More cryptanalysis on (module-)LIP wanted!

We hide a rotation of \mathbb{Z}^n .

- $\checkmark\,$ Sampling becomes far simpler and faster.
- $\checkmark\,$ Floating points are avoided.
- $\checkmark\,$ We get a fast and compact signature scheme.

Thank you! Questions?

ePrint: https://ia.cr/2022/1155 code: https://github.com/ludopulles/hawk-sign We hide a rotation of \mathbb{Z}^n .

- $\checkmark\,$ Sampling becomes far simpler and faster.
- $\checkmark\,$ Floating points are avoided.
- $\checkmark\,$ We get a fast and compact signature scheme.

Thank you! Questions?

ePrint: https://ia.cr/2022/1155 code: https://github.com/ludopulles/hawk-sign

Full Key generation code

$KeyGen(1^{\lambda})$

- 1: $f, g \leftarrow D_{\mathbb{Z}^n, \sigma_{\mathrm{pk}}}$
- 2: $q_{00} = f^*f + g^*g$
- 3: if $2 | N(f) \text{ or } 2 | N(g) \text{ or } ||(f,g)||^2 \le \sigma_{\text{sec}}^2 \cdot 2n \text{ or } \langle 1, q_{00}^{-1} \rangle \ge \nu_{\text{dec}}$

4 : restart

5: $(F, G)^{\mathsf{T}} \leftarrow \operatorname{NTRUSolve}_1(f, g), \text{ or restart if it fails}$ 6: $(F, G)^{\mathsf{T}} \leftarrow (F, G)^{\mathsf{T}} - \operatorname{ffNP}_R\left(\frac{f^*F + g^*G}{q_{00}}, q_{00}\right) \cdot (f, g)^{\mathsf{T}}$ 7: $\mathbf{B} = \begin{pmatrix} f & F \\ g & G \end{pmatrix}$ 8: $\mathbf{Q} = \begin{pmatrix} q_{00} & q_{01} \\ q_{10} & q_{11} \end{pmatrix} = \mathbf{B}^* \cdot \mathbf{B}.$

9: return (pk, sk) = (Q, B)

$\operatorname{Sign}_{\mathbf{B}}(m)$

- 1: $r \leftarrow \$ \{0, 1\}^{\text{saltlen}}$
- 2: $\mathbf{h} \leftarrow H(m \| r)$
- $3: t \leftarrow \frac{1}{2}Bh$
- 4: $\mathbf{X} \leftarrow D_{\sigma_{\text{sign}}, \mathbf{t}}$
- 5: $\|\mathbf{x} \mathbf{t}\|^2 > 2n \cdot \sigma_{\text{ver}}^2$:
- 6 : restart
- 7: return $(r, B^{-1} \cdot x)$

$\operatorname{Verify}_{Q}(m,(r,s))$

 $\mathsf{h} \leftarrow \mathsf{H}(m \| r)$

return
$$\left\| \mathbf{s} \in R \oplus R \text{ and } \left\| \frac{\mathbf{h}}{2} - \mathbf{s} \right\|_{\mathbf{Q}}^2 \le 2n \cdot \sigma_{\text{ver}}^2 \right\|$$

A Beware:(r, h - s) would be a weak forgery for m. Fix: demand first nonzero coefficient of $\frac{h}{2} - s$ to be positive.