
A signature scheme based on Module-LIP

Hawk: Module-LIP makes lattice signatures fast, compact and simple

Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

7 October 2021

Centrum Wiskunde & Informatica, Amsterdam

NIST PQC Signature finalists

NIST PQC Signature finalists

SPHINCS+SPHINCS+

7.9 kB7.9 kB

DilithiumDilithium

2.4 kB2.4 kB

FalconFalcon

666 B666 B

NIST recommends Dilithium for general use.

1

NIST PQC Signature finalists

SPHINCS+SPHINCS+

7.9 kB7.9 kB

DilithiumDilithium

2.4 kB2.4 kB

FalconFalcon

666 B666 B

NIST recommends Dilithium for general use.

1

Hash-and-sign

Falcon uses the hash-and-sign design.

Sign(m):

– Hash m to a target t.

– Sample a nearby lattice point s using a trapdoor

basis.

Verify(m, s):

– Hash m to a target t.

– Check s ∈ Λ and ‖s− t‖ small.

2

Hash-and-sign

Falcon uses the hash-and-sign design.

t

Sign(m):

– Hash m to a target t.

– Sample a nearby lattice point s using a trapdoor

basis.

Verify(m, s):

– Hash m to a target t.

– Check s ∈ Λ and ‖s− t‖ small.

2

Hash-and-sign

Falcon uses the hash-and-sign design.

t

s

Sign(m):

– Hash m to a target t.

– Sample a nearby lattice point s using a trapdoor

basis.

Verify(m, s):

– Hash m to a target t.

– Check s ∈ Λ and ‖s− t‖ small.

2

Falcon

X Falcon has small keys and signatures.

× Gaussian sampling is complicated because it requires high-precision floats.

– Emulating floats is slow on constrained devices.

– Masking is difficult.

– Fundamental to the class of NTRU lattices.

– Sampling on Zn is easy.

– How can we hide Zn?

3

Falcon

X Falcon has small keys and signatures.

× Gaussian sampling is complicated because it requires high-precision floats.

– Emulating floats is slow on constrained devices.

– Masking is difficult.

– Fundamental to the class of NTRU lattices.

– Sampling on Zn is easy.

– How can we hide Zn?

3

Falcon

X Falcon has small keys and signatures.

× Gaussian sampling is complicated because it requires high-precision floats.

– Emulating floats is slow on constrained devices.

– Masking is difficult.

– Fundamental to the class of NTRU lattices.

– Sampling on Zn is easy.

– How can we hide Zn?

3

Falcon

X Falcon has small keys and signatures.

× Gaussian sampling is complicated because it requires high-precision floats.

– Emulating floats is slow on constrained devices.

– Masking is difficult.

– Fundamental to the class of NTRU lattices.

– Sampling on Zn is easy.

– How can we hide Zn?

3

Falcon

X Falcon has small keys and signatures.

× Gaussian sampling is complicated because it requires high-precision floats.

– Emulating floats is slow on constrained devices.

– Masking is difficult.

– Fundamental to the class of NTRU lattices.

– Sampling on Zn is easy.

– How can we hide Zn?

3

Hiding Zn with a rotation

Hiding Zn with a rotation

Good basis (Secret key) Bad basis (Public key)

Λ Λ

(1, 0)

(0, 1)

0

u0

u1

0

4

Hiding Zn with a rotation

Good basis (Secret key) Bad basis (Public key)

Λ O · Λ

(1, 0)

(0, 1)

0

u0

u1

0

O ∈ On(R)

(Secret key)

4

Hiding Zn with the Lattice Isomorphism Problem (LIP)

Lattice Isomorphism Problem

Given L (B) ∼= L (B′) for B,B′ ∈ GLn(R), find O ∈ On(R) s.t.

L (B′) = O · L (B) .

– How can we avoid using the floating points in O and B′?

– Make the embedding implicit, but keep the geometry.

5

Hiding Zn with the Lattice Isomorphism Problem (LIP)

Lattice Isomorphism Problem (bases)

Given L (B) ∼= L (B′) for B,B′ ∈ GLn(R), find O ∈ On(R) and U ∈ GLn(Z) s.t.

B′ = O · B · U.

– How can we avoid using the floating points in O and B′?

– Make the embedding implicit, but keep the geometry.

5

Hiding Zn with the Lattice Isomorphism Problem (LIP)

Lattice Isomorphism Problem (bases)

Given L (B) ∼= L (B′) for B,B′ ∈ GLn(R), find O ∈ On(R) and U ∈ GLn(Z) s.t.

B′ = O · B · U.

– How can we avoid using the floating points in O and B′?

– Make the embedding implicit, but keep the geometry.

5

Hiding Zn with the Lattice Isomorphism Problem (LIP)

Lattice Isomorphism Problem (bases)

Given L (B) ∼= L (B′) for B,B′ ∈ GLn(R), find O ∈ On(R) and U ∈ GLn(Z) s.t.

B′ = O · B · U.

– How can we avoid using the floating points in O and B′?

– Make the embedding implicit, but keep the geometry.

5

Keeping the geometry & making the embedding implicit

– The Gram matrix is invariant under rotations:

(O · B)T · (O · B) = BT · OT · O︸ ︷︷ ︸
In

·B = BT · B = Q.

– Make the Gram matrix Q′ = B′T · B′ = UTQU public but keep U secret.

– Cholesky decomposition on Q′ gives the explicit embedding: basis B′.

– [DvW22]1 shows a generic way to go from a sampleable lattice to a signature scheme

that reduces to a variant of LIP.

– Hence we can make a signature scheme on Zn with sk = U and pk = UT · U.
– But how do we make this competitive?

1Léo Ducas, Wessel van Woerden: On the Lattice Isomorphism Problem, Quadratic Forms, Remarkable Lattices,

and Cryptography. In: EUROCRYPT 2022

6

Keeping the geometry & making the embedding implicit

– The Gram matrix is invariant under rotations:

(O · B)T · (O · B) = BT · OT · O︸ ︷︷ ︸
In

·B = BT · B = Q.

– Make the Gram matrix Q′ = B′T · B′ = UTQU public but keep U secret.

– Cholesky decomposition on Q′ gives the explicit embedding: basis B′.

– [DvW22]1 shows a generic way to go from a sampleable lattice to a signature scheme

that reduces to a variant of LIP.

– Hence we can make a signature scheme on Zn with sk = U and pk = UT · U.
– But how do we make this competitive?

1Léo Ducas, Wessel van Woerden: On the Lattice Isomorphism Problem, Quadratic Forms, Remarkable Lattices,

and Cryptography. In: EUROCRYPT 2022

6

Keeping the geometry & making the embedding implicit

– The Gram matrix is invariant under rotations:

(O · B)T · (O · B) = BT · OT · O︸ ︷︷ ︸
In

·B = BT · B = Q.

– Make the Gram matrix Q′ = B′T · B′ = UTQU public but keep U secret.

– Cholesky decomposition on Q′ gives the explicit embedding: basis B′.

– [DvW22]1 shows a generic way to go from a sampleable lattice to a signature scheme

that reduces to a variant of LIP.

– Hence we can make a signature scheme on Zn with sk = U and pk = UT · U.
– But how do we make this competitive?

1Léo Ducas, Wessel van Woerden: On the Lattice Isomorphism Problem, Quadratic Forms, Remarkable Lattices,

and Cryptography. In: EUROCRYPT 2022

6

Keeping the geometry & making the embedding implicit

– The Gram matrix is invariant under rotations:

(O · B)T · (O · B) = BT · OT · O︸ ︷︷ ︸
In

·B = BT · B = Q.

– Make the Gram matrix Q′ = B′T · B′ = UTQU public but keep U secret.

– Cholesky decomposition on Q′ gives the explicit embedding: basis B′.

– [DvW22]1 shows a generic way to go from a sampleable lattice to a signature scheme

that reduces to a variant of LIP.

– Hence we can make a signature scheme on Zn with sk = U and pk = UT · U.
– But how do we make this competitive?

1Léo Ducas, Wessel van Woerden: On the Lattice Isomorphism Problem, Quadratic Forms, Remarkable Lattices,

and Cryptography. In: EUROCRYPT 2022

6

Keeping the geometry & making the embedding implicit

– The Gram matrix is invariant under rotations:

(O · B)T · (O · B) = BT · OT · O︸ ︷︷ ︸
In

·B = BT · B = Q.

– Make the Gram matrix Q′ = B′T · B′ = UTQU public but keep U secret.

– Cholesky decomposition on Q′ gives the explicit embedding: basis B′.

– [DvW22]1 shows a generic way to go from a sampleable lattice to a signature scheme

that reduces to a variant of LIP.

– Hence we can make a signature scheme on Zn with sk = U and pk = UT · U.
– But how do we make this competitive?

1Léo Ducas, Wessel van Woerden: On the Lattice Isomorphism Problem, Quadratic Forms, Remarkable Lattices,

and Cryptography. In: EUROCRYPT 2022

6

Keeping the geometry & making the embedding implicit

– The Gram matrix is invariant under rotations:

(O · B)T · (O · B) = BT · OT · O︸ ︷︷ ︸
In

·B = BT · B = Q.

– Make the Gram matrix Q′ = B′T · B′ = UTQU public but keep U secret.

– Cholesky decomposition on Q′ gives the explicit embedding: basis B′.

– [DvW22]1 shows a generic way to go from a sampleable lattice to a signature scheme

that reduces to a variant of LIP.

– Hence we can make a signature scheme on Zn with sk = U and pk = UT · U.
– But how do we make this competitive?

1Léo Ducas, Wessel van Woerden: On the Lattice Isomorphism Problem, Quadratic Forms, Remarkable Lattices,

and Cryptography. In: EUROCRYPT 2022

6

Making the [DvW22] signature

scheme of Zn competitive

How do we make this competitive?

1. We add extra structure.

2. We compress keys and signatures.

3. We hash to targets in 1
2
Zn so we can use precomputed distribution tables for

sampling from Z and Z+ 1
2
.

7

How do we make this competitive?

1. We add extra structure.

2. We compress keys and signatures.

3. We hash to targets in 1
2
Zn so we can use precomputed distribution tables for

sampling from Z and Z+ 1
2
.

7

How do we make this competitive?

1. We add extra structure.

2. We compress keys and signatures.

3. We hash to targets in 1
2
Zn so we can use precomputed distribution tables for

sampling from Z and Z+ 1
2
.

7

Adding extra structure

Adding extra structure

– Replace Z2n by R⊕ R, where R = Z[ζ2n] = Z[X]/(Xn + 1) ∼= Zn for n a power of 2.

– The unimodular transformation is secret:

sk = U =
[
u0 u1

]
=

f F

g G

 ,

with f ,g ∈ R sampled from a (narrow) discrete Gaussian.

– Then, F,G are computed s.t. fG− gF = 1 (NTRU equation).

– This is basically Falcon’s KeyGen with q = 1.

– The geometry is public:

pk = Q = U∗ · U =

[
u∗
0u0 u∗

0u1

u∗
1u0 u∗

1u1

]
.

8

Adding extra structure

– Replace Z2n by R⊕ R, where R = Z[ζ2n] = Z[X]/(Xn + 1) ∼= Zn for n a power of 2.

– The unimodular transformation is secret:

sk = U =
[
u0 u1

]
=

f F

g G

 ,

with f ,g ∈ R sampled from a (narrow) discrete Gaussian.

– Then, F,G are computed s.t. fG− gF = 1 (NTRU equation).

– This is basically Falcon’s KeyGen with q = 1.

– The geometry is public:

pk = Q = U∗ · U =

[
u∗
0u0 u∗

0u1

u∗
1u0 u∗

1u1

]
.

8

Adding extra structure

– Replace Z2n by R⊕ R, where R = Z[ζ2n] = Z[X]/(Xn + 1) ∼= Zn for n a power of 2.

– The unimodular transformation is secret:

sk = U =
[
u0 u1

]
=

f F

g G

 ,

with f ,g ∈ R sampled from a (narrow) discrete Gaussian.

– Then, F,G are computed s.t. fG− gF = 1 (NTRU equation).

– This is basically Falcon’s KeyGen with q = 1.

– The geometry is public:

pk = Q = U∗ · U =

[
u∗
0u0 u∗

0u1

u∗
1u0 u∗

1u1

]
.

8

Adding extra structure

– Replace Z2n by R⊕ R, where R = Z[ζ2n] = Z[X]/(Xn + 1) ∼= Zn for n a power of 2.

– The unimodular transformation is secret:

sk = U =
[
u0 u1

]
=

f F

g G

 ,

with f ,g ∈ R sampled from a (narrow) discrete Gaussian.

– Then, F,G are computed s.t. fG− gF = 1 (NTRU equation).

– This is basically Falcon’s KeyGen with q = 1.

– The geometry is public:

pk = Q = U∗ · U =

[
u∗
0u0 u∗

0u1

u∗
1u0 u∗

1u1

]
.

8

Adding extra structure

– Replace Z2n by R⊕ R, where R = Z[ζ2n] = Z[X]/(Xn + 1) ∼= Zn for n a power of 2.

– The unimodular transformation is secret:

sk = U =
[
u0 u1

]
=

f F

g G

 ,

with f ,g ∈ R sampled from a (narrow) discrete Gaussian.

– Then, F,G are computed s.t. fG− gF = 1 (NTRU equation).

– This is basically Falcon’s KeyGen with q = 1.

– The geometry is public:

pk = Q = U∗ · U =

[
u∗
0u0 u∗

0u1

u∗
1u0 u∗

1u1

]
.

8

Compression

Compressing keys and signatures

– Encode the secret key like Falcon, dropping G = (1+ gF)/f .

– From the public key Q =

[
Q00 Q01

Q10 Q11

]
=

[
u∗
0u0 u∗

0u1

u∗
1u0 u∗

1u1

]
only store Q00 and Q01 as we

can recover:

Q10 = Q∗
01 and Q11 =

1+ Q10Q01

Q00

.

– We can drop s0 from a signature s = (s0, s1), and recover s0 (almost always) during

verification with a ring generalization of Babai’s round-off algorithm.

9

Compressing keys and signatures

– Encode the secret key like Falcon, dropping G = (1+ gF)/f .

– From the public key Q =

[
Q00 Q01

Q10 Q11

]
=

[
u∗
0u0 u∗

0u1

u∗
1u0 u∗

1u1

]
only store Q00 and Q01 as we

can recover:

Q10 = Q∗
01 and Q11 =

1+ Q10Q01

Q00

.

– We can drop s0 from a signature s = (s0, s1), and recover s0 (almost always) during

verification with a ring generalization of Babai’s round-off algorithm.

9

Compressing keys and signatures

– Encode the secret key like Falcon, dropping G = (1+ gF)/f .

– From the public key Q =

[
Q00 Q01

Q10 Q11

]
=

[
u∗
0u0 u∗

0u1

u∗
1u0 u∗

1u1

]
only store Q00 and Q01 as we

can recover:

Q10 = Q∗
01 and Q11 =

1+ Q10Q01

Q00

.

– We can drop s0 from a signature s = (s0, s1), and recover s0 (almost always) during

verification with a ring generalization of Babai’s round-off algorithm.

9

Dropping s0

Sign algorithm Sign(U,m):

1. Hash to h = H(m) ∈ {0, 1}2n ‘⊆’ R2.

2. Sample x ∈ R2 close to 1
2
U · h.

3. Return s = U−1 · x.

– Note: Us is close to 1
2
Uh, so s0u0 is close to 1

2
Uh− s1u1.

=⇒ Use Babai’s round-off (or nearest plane) algorithm:

s′0 =

⌈
h0

2
+

Q01

Q00

(
h1

2
− s1

)⌋
.

– Reject key pairs for which Q00 is “too small” =⇒ recovery works “always” (≥ 1− 2−100).

10

Dropping s0

Sign algorithm Sign(U,m):

1. Hash to h = H(m) ∈ {0, 1}2n ‘⊆’ R2.

2. Sample x ∈ R2 close to 1
2
U · h.

3. Return s = U−1 · x.

– Note: Us is close to 1
2
Uh, so s0u0 is close to 1

2
Uh− s1u1.

=⇒ Use Babai’s round-off (or nearest plane) algorithm:

s′0 =

⌈
h0

2
+

Q01

Q00

(
h1

2
− s1

)⌋
.

– Reject key pairs for which Q00 is “too small” =⇒ recovery works “always” (≥ 1− 2−100).

10

Dropping s0

Sign algorithm Sign(U,m):

1. Hash to h = H(m) ∈ {0, 1}2n ‘⊆’ R2.

2. Sample x ∈ R2 close to 1
2
U · h.

3. Return s = U−1 · x.

– Note: Us is close to 1
2
Uh, so s0u0 is close to 1

2
Uh− s1u1.

=⇒ Use Babai’s round-off (or nearest plane) algorithm:

s′0 =

⌈
h0

2
+

Q01

Q00

(
h1

2
− s1

)⌋
.

– Reject key pairs for which Q00 is “too small” =⇒ recovery works “always” (≥ 1− 2−100).

10

Dropping s0

Sign algorithm Sign(U,m):

1. Hash to h = H(m) ∈ {0, 1}2n ‘⊆’ R2.

2. Sample x ∈ R2 close to 1
2
U · h.

3. Return s = U−1 · x.

– Note: Us is close to 1
2
Uh, so s0u0 is close to 1

2
Uh− s1u1.

=⇒ Use Babai’s round-off (or nearest plane) algorithm:

s′0 =

⌈
h0

2
+

Q01

Q00

(
h1

2
− s1

)⌋
.

– Reject key pairs for which Q00 is “too small” =⇒ recovery works “always” (≥ 1− 2−100).

10

Dropping s0

Sign algorithm Sign(U,m):

1. Hash to h = H(m) ∈ {0, 1}2n ‘⊆’ R2.

2. Sample x ∈ R2 close to 1
2
U · h.

3. Return s = U−1 · x.

– Note: Us is close to 1
2
Uh, so s0u0 is close to 1

2
Uh− s1u1.

=⇒ Use Babai’s round-off (or nearest plane) algorithm:

s′0 =

⌈
h0

2
+

Q01

Q00

(
h1

2
− s1

)⌋
.

– Reject key pairs for which Q00 is “too small” =⇒ recovery works “always” (≥ 1− 2−100).

10

Performance of Hawk

Performance of Hawk

– Hawk has an isochronous implementation in C, using lots of code from Falcon.

Falcon-512 Hawk-512 Falcon-1024 Hawk-1024

KeyGen∗ 7.95ms 4.25ms ↓ /1.9 23.60ms 17.88ms ↓ /1.3

Sign∗ 193 µs 50 µs ↓ /3.9 382 µs 99 µs ↓ /3.9

Verify∗ 50 µs 19 µs ↓ /2.6 99 µs 46 µs ↓ /2.2

|sk| (bytes) 1281 1153 ↓ /1.1 2305 2561 ↑ ×1.1

|pk| (bytes) 897 1006± 6 ↑ ×1.2 1793 2329± 11 ↑ ×1.29

|sig| (bytes) 652± 3 542± 4 ↓ /1.20 1261± 4 1195± 6 ↓ /1.06

Table 1: Performance on an i5-4590 @3.30GHz CPU. ∗: AVX2 implementation using floats.

11

Performance of Hawk

– Hawk has an isochronous implementation in C, using lots of code from Falcon.

– When floating points are unavailable, Falcon emulates these, but Hawk signs with

the NTT instead.

Falcon-512 Hawk-512 Falcon-1024 Hawk-1024

KeyGen∗ 7.95ms 4.25ms ↓ /1.9 23.60ms 17.88ms ↓ /1.3

KeyGen 19.32ms 13.14ms ↓ /1.5 54.65ms 41.39ms ↓ /1.3

Sign∗ 193 µs 50 µs ↓ /3.9 382 µs 99 µs ↓ /3.9

Sign 2449 µs 168 µs ↓ /15 5273 µs 343 µs ↓ /15

Verify∗ 50 µs 19 µs ↓ /2.6 99 µs 46 µs ↓ /2.2

Verify 53 µs 178 µs ↑ ×3.4 105 µs 392 µs ↑ ×3.7

|sk| (bytes) 1281 1153 ↓ /1.1 2305 2561 ↑ ×1.1

|pk| (bytes) 897 1006± 6 ↑ ×1.2 1793 2329± 11 ↑ ×1.29

|sig| (bytes) 652± 3 542± 4 ↓ /1.20 1261± 4 1195± 6 ↓ /1.06

Table 1: Performance on an i5-4590 @3.30GHz CPU. ∗: AVX2 implementation using floats.
11

Open questions

Open questions

– Can we use a better lattice (sampling closer to a target)?

– More cryptanalysis on (module-)LIP wanted!

12

Open questions

– Can we use a better lattice (sampling closer to a target)?

– More cryptanalysis on (module-)LIP wanted!

12

Conclusion

We hide a rotation of Zn.

X Sampling becomes far simpler and faster.

X Floating points are avoided.

X We get a fast and compact signature scheme.

Thank you! Questions?

ePrint: https://ia.cr/2022/1155
code: https://github.com/ludopulles/hawk-sign

13

https://ia.cr/2022/1155
https://github.com/ludopulles/hawk-sign

Conclusion

We hide a rotation of Zn.

X Sampling becomes far simpler and faster.

X Floating points are avoided.

X We get a fast and compact signature scheme.

Thank you! Questions?

ePrint: https://ia.cr/2022/1155
code: https://github.com/ludopulles/hawk-sign

13

https://ia.cr/2022/1155
https://github.com/ludopulles/hawk-sign

Full Key generation code

KeyGen
(
1λ
)

1 : f , g← DZn,σpk

2 : q00 = f
∗
f + g

∗
g

3 : if 2 | N (f)or 2 | N (g)or ‖(f , g)‖2 ≤ σ2
sec · 2nor 〈1, q−1

00 〉 ≥ νdec

4 : restart

5 : (F,G)T ← NTRUSolve1(f , g),or restart if it fails

6 : (F,G)T ← (F,G)T − ffNPR

(
f ∗F + g∗G

q00

, q00

)
· (f , g)T

7 : B =

(
f F

g G

)
.

8 : Q =

(
q00 q01

q10 q11

)
= B∗ · B.

9 : return (pk, sk) = (Q,B)
14

Sign & Verify

SignB (m)

1 : r ←$ {0, 1}saltlen

2 : h← H(m‖r)

3 : t← 1

2
Bh

4 : x← Dσsign,t

5 : if ‖x− t‖2 > 2n · σ2
ver :

6 : restart

7 : return (r,B−1 · x)

t

σsign σver

VerifyQ (m, (r, s))

h← H(m‖r)

return

t

s ∈ R⊕ R and

∥∥∥∥h2 − s

∥∥∥∥2

Q

≤ 2n · σ2
ver

|

! Beware:(r,h− s) would be a weak

forgery for m.

Fix: demand first nonzero coefficient of h
2
− s

to be positive.

15

	NIST PQC Signature finalists
	Hiding Zn with a rotation
	Making the [DvW22] signature scheme of Zn competitive
	Adding extra structure
	Compression
	Performance of Hawk
	Open questions

