\ CWL_

Hawk: Module-LIP makes lattice signatures fast, compact and simple

A signature scheme based on Module-LIP

Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden
7 October 2021

Centrum Wiskunde & Informatica, Amsterdam

NIST PQC Signature finalists

NIST PQC Signature finalists

G L L L L f
Dilithium

SPHINCS™ MB/

7.9 kB
//

'FALCON
666 B

57

NIST PQC Signature finalists

Iy f

Dilithium
2 4&

i
'FALCON
666 B

SPHINCS™
7.9 kB

57

NIST recommends Dilithium for general use.

Hash-and-sign

FALCON uses the hash-and-sign design.

Hash-and-sign

FALCON uses the hash-and-sign design.
Sign(m):
- Hash m to a target t.

- Sample a nearby lattice point s using a trapdoor
basis.

FALCON uses the hash-and-sign design.
Sign(m):
- Hash m to a target t.

- Sample a nearby lattice point s using a trapdoor
basis.

. ‘
N Verify(m, s):

- Hash m to a target t.
- Checks € Aand ||s — t|| small.

FALCON

FALCON has

FALCON

v FALCON has small keys and signatures.

x Gaussian sampling is complicated because it requires high-precision floats.

- Emulating floats is slow on constrained devices.
- Masking is difficult.

FALCON

v FALCON has small keys and signatures.

x Gaussian sampling is complicated because it requires high-precision floats.

- Emulating floats is slow on constrained devices.
- Masking is difficult.
- Fundamental to the class of NTRU lattices.

FALCON

v FALCON has small keys and signatures.

x Gaussian sampling is complicated because it requires high-precision floats.

- Emulating floats is slow on constrained devices.
- Masking is difficult.
- Fundamental to the class of NTRU lattices.

- Sampling on Z" is easy.

FALCON

v FALCON has small keys and signatures.

x Gaussian sampling is complicated because it requires high-precision floats.

- Emulating floats is slow on constrained devices.
- Masking is difficult.
- Fundamental to the class of NTRU lattices.

- Sampling on Z" is easy.

- How can we hide Z"?

Hiding Z" with a rotation

Hiding Z" with a rotation

Good basis {Seeretkey) Bad basis (Public key)
{] L] L) [) L J [} [} [)
{] L] L) [) {] [} [} [)
[J [[] [[] [] []
<on)L)
[] L J L] [} [} [)
0 (1,0)
[] [] L) [) L J [} [} [)) [)
{ L] L [) L] [} [} [) [) [)

Hiding Z" with a rotation

Good basis {Seeretkey) Bad basis (Public key)

° .(Oﬁ‘l) ° ° 0c On(R) X
. . . (Secret key) ¢ o
0 (1,0) ¢

Hiding Z" with the Lattice Isomorphism Problem (LIP)

Lattice Isomorphism Problem
Given £ (B) = L(B’) for B,B" € GL,(R), find O € O,(R) st.

L(B)=0-L(B).

Hiding Z" with the Lattice Isomorphism Problem (LIP)

Lattice Isomorphism Problem
Given £ (B) = L(B’) for B,B" € GLs(R), find O € O,(R) and st.

B=0-B-

Hiding Z" with the Lattice Isomorphism Problem (LIP)

Lattice Isomorphism Problem
Given £ (B) = L(B’) for B,B" € GLs(R), find O € O,(R) and st.

B=0-B-

- How can we avoid using the floating points in O and B'?

Hiding Z" with the Lattice Isomorphism Problem (LIP)

Lattice Isomorphism Problem
Given £ (B) = L(B’) for B,B" € GLs(R), find O € O,(R) and st.

B=0-B-

- How can we avoid using the floating points in O and B'?
- Make the embedding implicit, but keep the geometry.

Keeping the geometry & making the embedding implicit

- The Gram matrix is invariant under rotations:

(0-B)"-(0-B)=B"-0"-0-B=B"-B=AQ.
In

Keeping the geometry & making the embedding implicit

- The Gram matrix is invariant under rotations:

(0-B)"-(0-B)=B"-0"-0-B=B"-B=AQ.
In

- Make the Gram matrix Q' = BT - B’ = U'QU public but keep U secret.

Keeping the geometry & making the embedding implicit

- The Gram matrix is invariant under rotations:

(0-B)"-(0-B)=B"-0"-0-B=B"-B=AQ.
In

- Make the Gram matrix Q' = BT - B’ = U'QU public but keep U secret.
- Cholesky decomposition on Q' gives the explicit embedding: basis B’.

Keeping the geometry & making the embedding implicit

- The Gram matrix is invariant under rotations:

(0-B)"-(0-B)=B"-0"-0-B=B"-B=AQ.
In

Make the Gram matrix Q' = BT - B’ = UTQU public but keep U secret.

Cholesky decomposition on Q' gives the explicit embedding: basis B’.

- [DvW22]" shows a generic way to go from a sampleable lattice to a signature scheme
that reduces to a variant of LIP.

TLéo Ducas, Wessel van Woerden: On the Lattice Isomorphism Problem, Quadratic Forms, Remarkable Lattices,
and Cryptography. In: EUROCRYPT 2022

Keeping the geometry & making the embedding implicit

- The Gram matrix is invariant under rotations:

(0-B)"-(0-B)=B"-0"-0-B=B"-B=AQ.
In

Make the Gram matrix Q' = BT - B’ = UTQU public but keep U secret.

Cholesky decomposition on Q' gives the explicit embedding: basis B’.

- [DvW22]" shows a generic way to go from a sampleable lattice to a signature scheme
that reduces to a variant of LIP.

Hence we can make a signature scheme on Z" with sk = U and pk = U'- U.

TLéo Ducas, Wessel van Woerden: On the Lattice Isomorphism Problem, Quadratic Forms, Remarkable Lattices,
and Cryptography. In: EUROCRYPT 2022

Keeping the geometry & making the embedding implicit

- The Gram matrix is invariant under rotations:

(0-B)"-(0-B)=B"-0"-0-B=B"-B=AQ.
In

Make the Gram matrix Q' = BT - B’ = UTQU public but keep U secret.

Cholesky decomposition on Q' gives the explicit embedding: basis B’.

- [DvW22]" shows a generic way to go from a sampleable lattice to a signature scheme
that reduces to a variant of LIP.

Hence we can make a signature scheme on Z" with sk = U and pk = U'- U.

But how do we make this competitive?

TLéo Ducas, Wessel van Woerden: On the Lattice Isomorphism Problem, Quadratic Forms, Remarkable Lattices,
and Cryptography. In: EUROCRYPT 2022

Making the [DvW22] signature
scheme of Z" competitive

How do we make this competitive?

1. We add extra structure.

How do we make this competitive?

1. We add extra structure.
2. We compress keys and signatures.

How do we make this competitive?

1. We add extra structure.
2. We compress keys and signatures.

3. We hash to targets in 1Z" so we can use precomputed distribution tables for
sampling from Z and Z + 3.

Adding extra structure

Adding extra structure

- Replace Z*" by R @ R, where R = Z[(n] = Z[X]/(X" + 1) = Z" for n a power of 2.

Adding extra structure

- Replace Z*" by R @ R, where R = Z[(n] = Z[X]/(X" + 1) = Z" for n a power of 2.
- The unimodular transformation is secret:

s|<:U:[uo uq}: ! :;)
g

with f,g € R sampled from a (narrow) discrete Gaussian.

Adding extra structure

- Replace Z*" by R @ R, where R = Z[(n] = Z[X]/(X" + 1) = Z" for n a power of 2.
- The unimodular transformation is secret:
flF
s|<:U:[uo Uw}:)
g|aG
with f,g € R sampled from a (narrow) discrete Gaussian.
- Then, F,G are computed st. fG — gF =1 (NTRU equation).

Adding extra structure

Replace Z?" by R @ R, where R = Z[(n] = Z[X]/(X" + 1) = Z" for n a power of 2.
- The unimodular transformation is secret:

s|<:U:[uo uq}: ! :;)
g

with f,g € R sampled from a (narrow) discrete Gaussian.
Then, F,G are computed st. fG— gF =1 (NTRU equation).
This is basically FALCON's KeyGen with g = 1.

Adding extra structure

Replace Z?" by R @ R, where R = Z[(n] = Z[X]/(X" + 1) = Z" for n a power of 2.
- The unimodular transformation is secret:

s|<:U:[uo uq}: ! g)
g

with f,g € R sampled from a (narrow) discrete Gaussian.
Then, F,G are computed st. fG— gF =1 (NTRU equation).
This is basically FALCON's KeyGen with g = 1.

The geometry is public:

pk=Q=U* U= [“5”0 “3”1] .

ujylp Ujuy

Compression

Compressing keys and signatures

- Encode the secret key like FALCON, dropping G = (14 gF)/f.

Compressing keys and signatures

- Encode the secret key like FALCON, dropping G = (14 gF)/f.

Qoo 0011 _ lUSUO Ug Uy

only store Qgg and Qg as we
Qi Qn Uylp Uy

- From the public key Q = [

can recover:
T4 Q10Qo1

Qp=0Q; and Qu= Qo

Compressing keys and signatures

- Encode the secret key like FALCON, dropping G = (14 gF)/f.

Q Q ugup ugu
00 0T — |ToT0 FoT only store Qo and Qor as we

Qo Qp Uilp Uy

- From the public key Q = [

can recover:
T4 Q10Qo1

Qoo

- We can drop s from a signature s = (so, 1), and recover s, (almost always) during
verification with a ring generalization of Babai's round-off algorithm.

Qp=0Q; and Qu=

Sign algorithm Sign(U, m):

1. Hash to h = H(m) € {0,1}>" 'C' R
2. Sample x € R? close to JU - h.
3. Returns=U""-x.

Sign algorithm Sign(U, m):

1. Hash to h = H(m) € {0,1}>" 'C' R
2. Sample x € R? close to JU - h.
3. Returns=U""-x.

- Note: Us is close to JUh, so Soug is close to JUh — syus.

Sign algorithm Sign(U, m):

1. Hash to h = H(m) € {0,1}>" 'C' R
2. Sample x € R? close to JU - h.
3. Returns=U""-x.

- Note: Us is close to JUh, so Soug is close to JUh — syus.

— Use Babai’s round-off (or nearest plane) algorithm:

Sign algorithm Sign(U, m):

1. Hash to h = H(m) € {0,1}>" 'C' R
2. Sample x € R? close to JU - h.
3. Returns=U""-x.

- Note: Us is close to JUh, so Soug is close to JUh — syus.

— Use Babai’s round-off (or nearest plane) algorithm:

= [0 Qu (M _
SO_[2+Q00<2 S1>J'

Sign algorithm Sign(U, m):

1. Hash to h = H(m) € {0,1}>" 'C' R
2. Sample x € R? close to JU - h.
3. Returns=U""-x.

- Note: Us is close to JUh, so Soug is close to JUh — syus.

— Use Babai’s round-off (or nearest plane) algorithm:

= [0 Qu (M _
SO_[2+Q00<2 S1>J'

- Reject key pairs for which Qg is “too small” = recovery works “always” (> 1—2-10).

Performance of HAWK

Performance of HAWK

- HAwk has an isochronous implementation in C, using lots of code from FALCON.

FALCON-512 HAwWK-512 FALCON-1024 HAWK-1024
KeyGen* 7.95ms 4.25ms 1/1.9 23.60 ms 17.88 ms 1 /13
Sign* 193 s 50 Ys 1 /3.9 382 s 99 s 1 /3.9
Verify* 50 s 19 us 1/2.6 99 us 46 s /22
|sk| (bytes) 1281 1153 1 /1 2305 2561 X711
Ipk| (bytes) 897 1006 +6 1 x1.2 1793 2329+£11 1 x1.29
|sig| (bytes) 652 + 3 54244 | /1.20 1261+ 4 1M954+6 | /1.06

Table 1: Performance on an i5-4590 @3.30GHz CPU. *: AVX2 implementation using floats.

Performance of HAWK

- HAwk has an isochronous implementation in C, using lots of code from FALCON.
- When floating points are unavailable, FALCON emulates these, but HAwK signs with

the NTT instead.

FALCON-512 HAwk-512 FALCON-1024 HAwk-1024

KeyGen* 7.95ms 425ms | /1.9 23.60ms 17.88 ms 1/13
KeyGen 19.32ms 13.%4ms | /1.5 54.65ms 41.39 ms 1 /13
Sign* 193 us 50 us 1/39 382 s 99 us 1/39

Sign | 2449ys 168 pis 1 /15 5273 s 343 s 1 /15
Verify* 50 us 19 us 1/2.6 99 us 46 s 1/2.2
Verify 53 us 178 us T x3.4 105 us 392 us T x3.7

|sk| (bytes) 1281 1153 1 /11 2305 2561 X711
Ipk| (bytes) 897 1006 +6 1 x1.2 1793 2329 +£11 1 x1.29
|sig| (bytes) 652 + 3 54244 | /1.20 1261+ 4 1M195+6 | /1.06

Table 1: Performance on an i5-4590 @3.30GHz CPU. *: AVX2 implementation using floats.

Open questions

Open questions

- Can we use a better lattice (sampling closer to a target)?

Open questions

- Can we use a better lattice (sampling closer to a target)?

- More cryptanalysis on (module-)LIP wanted!

Conclusion

We hide a rotation of Z".

v' Sampling becomes far simpler and faster.
v Floating points are avoided.

v" We get a fast and compact signature scheme.

https://ia.cr/2022/1155
https://github.com/ludopulles/hawk-sign

Conclusion

We hide a rotation of Z".

v' Sampling becomes far simpler and faster.
v Floating points are avoided.

v" We get a fast and compact signature scheme.

Thank you! Questions?

ePrint: https://ia.cr/2022/1155
code: https://github.com/ludopulles/hawk-sign

https://ia.cr/2022/1155
https://github.com/ludopulles/hawk-sign

Full Key generation code

KeyGen(1*)

11 f,9 < Dz o,

2: qu=ff+9"g

30 if2[N(f)or2 | N(g)or||(f,g)lI* < oec - 2n0r (1,G50) > Vaee
4: restart

5: (F,G)' + NTRUSolve:(f, g), or restart if it fails

6: (F,G) « (F,G)" — ffNPR<fF;%G, C]oo) “(f.9)

7: B= (f F).
g G

s Q= Joo qon _ B .B
G dn

9: return (pk,sk) = (Q,B)

Sign & Verify

Signg (m)

13

28

s {071}saltlcn
h < H(ml|r)

1
~Bh
t<—2

X<+ D

Osignt

if X —]| > 2n - ol

restart

1

return (r,B™ - x)

Verifyq (m, (r,s))

h < H(ml|r)
2

return I[SEREBR and Hg—s <2n-a§e,ﬂ

Q

ABeware:(r, h —s) would be a weak
forgery for m.

Fix: demand first nonzero coefficient of% -5
to be positive.

	NIST PQC Signature finalists
	Hiding Zn with a rotation
	Making the [DvW22] signature scheme of Zn competitive
	Adding extra structure
	Compression
	Performance of Hawk
	Open questions

