
Nonmalleable Digital Lockers and Robust
Fuzzy Extractors in the Plain Model

Daniel Apon 1 Chloe Cachet 2 Benjamin Fuller 2

Peter Hall 3 Feng-Hao Liu 4

1MITRE 2UConn 3NYU 4FAU

December 9, 2022



Random Oracle Model

Random Oracles: all parties have access to truly random function:

H : {0, 1}∗ → {0, 1}w

The problem: It cannot exist in general [CGH04].
roadblock to realizing cryptographic primitives in plain model

Most Common — Use a heuristic hash function.
However, we want provable security.

Idea

If we isolate certain properties we need for applications, may be
able to get provable security by realizing these.

In this work, we isolate and realize oracle hashing and
nonmalleability.



Random Oracle Model

Random Oracles: all parties have access to truly random function:

H : {0, 1}∗ → {0, 1}w

The problem: It cannot exist in general [CGH04].
roadblock to realizing cryptographic primitives in plain model

Most Common — Use a heuristic hash function.
However, we want provable security.

Idea

If we isolate certain properties we need for applications, may be
able to get provable security by realizing these.

In this work, we isolate and realize oracle hashing and
nonmalleability.



Random Oracle Model

Random Oracles: all parties have access to truly random function:

H : {0, 1}∗ → {0, 1}w

The problem: It cannot exist in general [CGH04].
roadblock to realizing cryptographic primitives in plain model

Most Common — Use a heuristic hash function.
However, we want provable security.

Idea

If we isolate certain properties we need for applications, may be
able to get provable security by realizing these.

In this work, we isolate and realize oracle hashing and
nonmalleability.



Random Oracle Model

Random Oracles: all parties have access to truly random function:

H : {0, 1}∗ → {0, 1}w

The problem: It cannot exist in general [CGH04].
roadblock to realizing cryptographic primitives in plain model

Most Common — Use a heuristic hash function.
However, we want provable security.

Idea

If we isolate certain properties we need for applications, may be
able to get provable security by realizing these.

In this work, we isolate and realize oracle hashing and
nonmalleability.



Motivation — Oracle Hashing

Point Functions:

Ival(val
′) =

{
1 val′ = val

0 else

Hide everything about Ival except input/output behavior

Obfuscate : O(val) = Õ

On use: Õ(x) ≡ Ival(x)

VBB obfuscation: Ensure the following is negligible

|Pr[A(Õ) = P(val)|Õ ← O(Ival)]− Pr[S Ival(·)(1λ) = P(val)]|



Motivation — Oracle Hashing

Point Functions:

Ival(val
′) =

{
1 val′ = val

0 else

Hide everything about Ival except input/output behavior

Obfuscate : O(val) = Õ

On use: Õ(x) ≡ Ival(x)

VBB obfuscation: Ensure the following is negligible

|Pr[A(Õ) = P(val)|Õ ← O(Ival)]− Pr[S Ival(·)(1λ) = P(val)]|



Nonmalleability and Composition

Issue: May be easy to take O(val) and obliviously tamper to
some ”related” point val′ = f (val). “Preventing this” is called
nonmalleability.

Additionally, want obfuscation for multibit output:

Ival(val
′) =

{
1 val′ = val

0 else
=⇒ Ival,key(val

′) =

{
key val′ = val

⊥ else

Maybe nonmalleability over both inputs here

Called a nonmalleable point obfuscation with multibit output...or a
digital locker



Nonmalleability and Composition

Issue: May be easy to take O(val) and obliviously tamper to
some ”related” point val′ = f (val). “Preventing this” is called
nonmalleability.

Note

”Preventing” mauling to ”related” points makes a lot of sense with
trusted setup or ROs, but tricky in plain model. More on this later.

Additionally, want obfuscation for multibit output:

Ival(val
′) =

{
1 val′ = val

0 else
=⇒ Ival,key(val

′) =

{
key val′ = val

⊥ else

Maybe nonmalleability over both inputs here

Called a nonmalleable point obfuscation with multibit output...or a
digital locker



Nonmalleability and Composition

Issue: May be easy to take O(val) and obliviously tamper to
some ”related” point val′ = f (val). “Preventing this” is called
nonmalleability.

Additionally, want obfuscation for multibit output:

Ival(val
′) =

{
1 val′ = val

0 else
=⇒ Ival,key(val

′) =

{
key val′ = val

⊥ else

Maybe nonmalleability over both inputs here

Called a nonmalleable point obfuscation with multibit output...or a
digital locker



Nonmalleability and Composition

Issue: May be easy to take O(val) and obliviously tamper to
some ”related” point val′ = f (val). “Preventing this” is called
nonmalleability.

Additionally, want obfuscation for multibit output:

Ival(val
′) =

{
1 val′ = val

0 else
=⇒ Ival,key(val

′) =

{
key val′ = val

⊥ else

Maybe nonmalleability over both inputs here

Called a nonmalleable point obfuscation with multibit output...or a
digital locker



Motivation — (Robust) Fuzzy Extractors

Fuzzy Extractors: retrieve stable random strings from lower
entropy and noisy inputs.



Motivation — (Robust) Fuzzy Extractors

Fuzzy Extractors: retrieve stable random strings from lower
entropy and noisy inputs.



Motivation — (Robust) Fuzzy Extractors

Robustness [Boy04, BDK+05]: Should be hard for adversary with
existing pub to output pub′ which reproduces to different r ′ ̸= r



Motivation — (Robust) Fuzzy Extractors

Robustness [Boy04, BDK+05]: Should be hard for adversary with
existing pub to output pub′ which reproduces to different r ′ ̸= r



Motivation — (Robust) Fuzzy Extractors

Robust Fuzzy Extractors over low-entropy inputs are known in
ROM and Common Reference String (CRS) model. Meanwhile
inputs with entropy less than half their length have been a
long-standing barrier in the plain model.

Scheme Model Security SS errors H∞ < 1/2?

[Boy04],[Boy07] RO IT t ✓
[DKK+12] Plain IT t X
[CDF+08] CRS IT t X
[WL18] CRS Comp. 2t ✓
[FT21] CRS∗ Comp. 2t ✓



Motivation — Fuzzy Extractors

Robust Fuzzy Extractors over low-entropy inputs are known in
ROM and Common Reference String (CRS) model. Meanwhile
inputs with entropy less than half their length have been a
long-standing barrier in the plain model.

Scheme Model Security SS errors H∞ < 1/2?

[Boy04],[Boy07] RO IT t ✓
[DKK+12] Plain IT t X
[CDF+08] CRS IT t X
[WL18] CRS Comp. 2t ✓
[FT21] CRS∗ Comp. 2t ✓
This work Plain Comp. 2t ✓
This work Plain Comp. 2t ✓



The Plan



Nonmalleable
Digital Lockers



Background — Plain Model NM Point Obfuscation

Komargodski and Yogev [KY18]:

Nonmalleability defined as adversary outputting tampering
function from F



Background — Plain Model NM Point Obfuscation

Komargodski and Yogev [KY18]:

Nonmalleability defined as adversary outputting tampering
function from F



Background — Plain Model NM Point Obfuscation

Komargodski and Yogev [KY18]:

Nonmalleability defined as adversary outputting tampering
function from F



From PO to DL

To get to multibit output, most common method is
Real-or-Random composition of point obfuscations.

For each bit of the output key, append O(val) if the bit is 1
and O(r) for some random value r if the bit is 0.

DL functions by reconstructing key bit-by-bit.

HOWEVER, this requires...

Point obfuscations composability

Some way to protect key.

Previous work [FF20] required a CRS to achieve key
nonmalleability.

GOAL: Remove CRS to bring NMDLs into plain model!



From PO to DL

To get to multibit output, most common method is
Real-or-Random composition of point obfuscations.

For each bit of the output key, append O(val) if the bit is 1
and O(r) for some random value r if the bit is 0.

DL functions by reconstructing key bit-by-bit.

HOWEVER, this requires...

Point obfuscations composability

Some way to protect key.

Previous work [FF20] required a CRS to achieve key
nonmalleability.

GOAL: Remove CRS to bring NMDLs into plain model!



Nonmalleable Point Obfuscations with Associated Data

Definition

Let ρ ∈ N,X be a family of distributions, and F be a family of
functions. Then, a (F ,X , ρ)-Nonmalleable Point Obfuscation
with Associated Data is defined as

lockPoint(x ; ad) := (ad ; unlockPoint(x ; ad)),

where x ← X , ad ∈ {0, 1}ρ, and unlockPoint satisfies
completeness, VBB security, and nonmalleability.



Nonmalleable Point Obfuscations with Associated Data

Definition

A (F ,X , ρ)-Nonmalleable Point Obfuscation with Associated
Data is defined as lockPoint(x ; ad) := (ad ; unlockPoint(x ; ad)),. . .



Nonmalleable Point Obfuscations with Associated Data

Definition

. . . satisfying completeness, . . .



Nonmalleable Point Obfuscations with Associated Data

Definition

. . .VBB security, . . .



Nonmalleable Point Obfuscations with Associated Data

Definition

. . . and nonmalleability.



Nonmalleable Point Obfuscations with Associated Data

Definition

. . . and nonmalleability.



Nonmalleable Point Obfuscations with Associated Data

Definition

. . . and nonmalleability.

Note

The adversary succeeds if they tamper the ad or underlying point
function (or both).



Nonmalleable Point Obfuscations with Associated Data

Definition

. . . and nonmalleability.

Note

The adversary succeeds if they tamper the ad or underlying point
function (or both).



Assumptions

Bartusek, Ma, and Zhandry [BMZ19] studied fixed generator
assumptions (toward point obfuscation!) in the GGM, showed
following holds there:

Assumption

For x ← X well-spread and random r the following is negl(λ) for
all PPT A:

|Pr[A({ki , gkix+x i}i∈[2,τ ]) = 1]− Pr[A({ki , gki r+r i}i∈[2,τ ]) = 1]|.

=⇒

Assumption

For x ← X well-spread, the following is negl(λ) for all PPT A:

Pr[g x ← A({ki , gkix+x i}i∈[2,τ ])].



Constructing NMPOad

1. Sample random values

c1, c2, c3, c4, c5
$← Zp(λ)

2. Sample ad ← {0, 1}ρ and form

p1,ad ,c1(val) = c1val +

ρ∑
i=1

adival
i+1 +

ρ+6∑
i=ρ+2

vali ,

3. Define

lockPoint(val, ad ; c1, c2, c3, c4, c5)
def
=


c1, [p1,ad ,c1(val)]g
c2, [p2,c2(val)]g
c3, [p3,c3(val)]g
c4, [p4,c4(val)]g
c5, [p5,c5(val)]g





Constructing NMPOad

1. Sample random values

c1, c2, c3, c4, c5
$← Zp(λ)

2. Sample ad ← {0, 1}ρ and form

p1,ad ,c1(val) = c1val +

ρ∑
i=1

adival
i+1 +

ρ+6∑
i=ρ+2

vali ,

3. Define

lockPoint(val, ad ; c1, c2, c3, c4, c5)
def
=


c1, [p1,ad ,c1(val)]g
c2, [p2,c2(val)]g
c3, [p3,c3(val)]g
c4, [p4,c4(val)]g
c5, [p5,c5(val)]g





Constructing NMPOad

1. Sample random values

c1, c2, c3, c4, c5
$← Zp(λ)

2. Sample ad ← {0, 1}ρ and form

p1,ad ,c1(val) = c1val +

ρ∑
i=1

adival
i+1 +

ρ+6∑
i=ρ+2

vali ,

p2,c2(val) = c2val + valρ+7,

p3,c3(val) = c3val + valρ+8,

p4,c4(val) = c4val + valρ+9,

p5,c5(val) = c5val + valρ+10.

3. Define

lockPoint(val, ad ; c1, c2, c3, c4, c5)
def
=


c1, [p1,ad ,c1(val)]g
c2, [p2,c2(val)]g
c3, [p3,c3(val)]g
c4, [p4,c4(val)]g
c5, [p5,c5(val)]g





Constructing NMPOad

1. Sample random values

c1, c2, c3, c4, c5
$← Zp(λ)

2. Sample ad ← {0, 1}ρ and form

p1,ad ,c1(val) = c1val +

ρ∑
i=1

adival
i+1 +

ρ+6∑
i=ρ+2

vali ,

3. Define

lockPoint(val, ad ; c1, c2, c3, c4, c5)
def
=


c1, [p1,ad ,c1(val)]g
c2, [p2,c2(val)]g
c3, [p3,c3(val)]g
c4, [p4,c4(val)]g
c5, [p5,c5(val)]g





Nonmalleability Proof Roadmap

Note

Reminder: Require nonmalleability for adversaries outputting f
and either (1) mauling x or (2) mauling ad and letting f = id .

Proof route:

Lemma (Lemma 4.3)

Given any degree-ρ polynomial P, no adversary can maul

OP(x) = (c1, [c1x + xP(x) +

ρ+6∑
i=ρ+2

x i ]g )

to any OP′(f (x)) for any degree-ρ polynomial P ′ and f ∈ F (with
non-negligible probability).



Nonmalleability Proof Roadmap

Note

Reminder: Require nonmalleability for adversaries outputting f
and either (1) mauling x or (2) mauling ad and letting f = id .

Proof route:

Lemma (Lemma 4.5)

Given that x is not tampered, then for any ad ∈ {0, 1}ρ, no
adversary can maul

Oad(x) = (c1, [c1x +

ρ∑
i=1

adix
i+1 +

ρ+6∑
i=ρ+2

x i ]g )

to Oad ′(x) for any ad ′ ̸= ad (with non-negligible probability).



Nonmalleability Proof Roadmap

Note

Reminder: Require nonmalleability for adversaries outputting f
and either (1) mauling x or (2) mauling ad and letting f = id .

Proof route:

Lemma 4.3 ensures that any non-identity shifts of x are hard
to reach

Namely, any O(f (x)) is outside the span of elements in O(x).
Lemma 4.5 ensures any maulings of ad when f = id are hard
to reach.



Lemma 4.5

We have f = id and ad ′ ̸= ad . So, adversary is given

Oad(x) = (c1, [c1x +

ρ∑
i=1

adix
i+1 +

ρ+6∑
i=ρ+2

x i ]g )

and must construct

Oad ′(x) = (c ′1, [c
′
1x +

ρ∑
i=1

ad ′
i x

i+1 +

ρ+6∑
i=ρ+2

x i ]g )

=⇒ So, ad ′ differs from ad one at least one bit ad ′
i ̸= adi .

If ad ′
i = 0 and adi = 1, then a sort of inverse is true — adversary

extracted ki from the other terms to remove it from input c1.

=⇒ In either case, their success probability is small.



Lemma 4.5

We have f = id and ad ′ ̸= ad . So, adversary is given

Oad(x) = (c1, [c1x +

ρ∑
i=1

adix
i+1 +

ρ+6∑
i=ρ+2

x i ]g )

and must construct

Oad ′(x) = (c ′1, [c
′
1x +

ρ∑
i=1

ad ′
i x

i+1 +

ρ+6∑
i=ρ+2

x i ]g )

=⇒ So, ad ′ differs from ad one at least one bit ad ′
i ̸= adi .

If ad ′
i = 0 and adi = 1, then a sort of inverse is true — adversary

extracted ki from the other terms to remove it from input c1.

=⇒ In either case, their success probability is small.



Lemma 4.5

We have f = id and ad ′ ̸= ad . So, adversary is given

Oad(x) = (c1, [c1x +

ρ∑
i=1

adix
i+1 +

ρ+6∑
i=ρ+2

x i ]g )

and must construct

Oad ′(x) = (c ′1, [c
′
1x +

ρ∑
i=1

ad ′
i x

i+1 +

ρ+6∑
i=ρ+2

x i ]g )

=⇒ So, ad ′ differs from ad one at least one bit ad ′
i ̸= adi .

If ad ′
i = 1 and adi = 0, then adversary’s linear term (c ′1) must

coincide with term from assumption

ki , g
kix+x i .

However, never given any input related to ki

If ad ′
i = 0 and adi = 1, then a sort of inverse is true — adversary

extracted ki from the other terms to remove it from input c1.

=⇒ In either case, their success probability is small.



Lemma 4.5

We have f = id and ad ′ ̸= ad . So, adversary is given

Oad(x) = (c1, [c1x +

ρ∑
i=1

adix
i+1 +

ρ+6∑
i=ρ+2

x i ]g )

and must construct

Oad ′(x) = (c ′1, [c
′
1x +

ρ∑
i=1

ad ′
i x

i+1 +

ρ+6∑
i=ρ+2

x i ]g )

=⇒ So, ad ′ differs from ad one at least one bit ad ′
i ̸= adi .

If ad ′
i = 0 and adi = 1, then a sort of inverse is true — adversary

extracted ki from the other terms to remove it from input c1.

=⇒ In either case, their success probability is small.



Lemma 4.5

We have f = id and ad ′ ̸= ad . So, adversary is given

Oad(x) = (c1, [c1x +

ρ∑
i=1

adix
i+1 +

ρ+6∑
i=ρ+2

x i ]g )

and must construct

Oad ′(x) = (c ′1, [c
′
1x +

ρ∑
i=1

ad ′
i x

i+1 +

ρ+6∑
i=ρ+2

x i ]g )

=⇒ So, ad ′ differs from ad one at least one bit ad ′
i ̸= adi .

If ad ′
i = 0 and adi = 1, then a sort of inverse is true — adversary

extracted ki from the other terms to remove it from input c1.

=⇒ In either case, their success probability is small.



Constructing Nonmalleable Digital Lockers



Constructing Nonmalleable Digital Lockers



Constructing Nonmalleable Digital Lockers



Robust Fuzzy Extractors
in the Plain Model



What is a Fuzzy Extractor?



Robust Fuzzy Extractors

In particular...

(key , pub)← Gen(w).

key ′ ← Rep(pub,w ′)

We need...

key ′ = key ⇐⇒ d(w ,w ′) is small.

No adversary can distinguish key given only pub.

No adversary can maul pub to reproduce a new key ′ on some
presampled w̃ .

A Secure Sketch instead may be thought as recovering w from
pub and close w ′:

(key , pub)← GenSS(w).

w ′′ ← RepSS(pub,w
′)



Robust Fuzzy Extractors

In particular...

(key , pub)← Gen(w).

key ′ ← Rep(pub,w ′)

We need...

key ′ = key ⇐⇒ d(w ,w ′) is small.

No adversary can distinguish key given only pub.

No adversary can maul pub to reproduce a new key ′ on some
presampled w̃ .

A Secure Sketch instead may be thought as recovering w from
pub and close w ′:

(key , pub)← GenSS(w).

w ′′ ← RepSS(pub,w
′)



Robust Fuzzy Extractors

In particular...

(key , pub)← Gen(w).

key ′ ← Rep(pub,w ′)

We need...

key ′ = key ⇐⇒ d(w ,w ′) is small.

No adversary can distinguish key given only pub.

No adversary can maul pub to reproduce a new key ′ on some
presampled w̃ .

A Secure Sketch instead may be thought as recovering w from
pub and close w ′:

(key , pub)← GenSS(w).

w ′′ ← RepSS(pub,w
′)



Syndromes and ECCs

Definition

A matrix Syn : Fn
q → Fn−k

q with two properties:

1 ∀x where |x | ≤ t, Syn(x) is unique and can be inverted.

2 ∀s, s ′ where |s|, |s ′|, |s ′ − s| ≤ t,

Invert(Syn(s ′ − s)) = Invert(Syn(s ′)− Syn(s))

= Invert(Syn(s ′))− Invert(Syn(s))

= s ′ − s

Definition (Syndrome Secure Sketch)

Define SS(w) = Syn(w) and

Rec(w ′, s) = w ′ − Invert(Syn(w ′)− s)

= w ′ − Invert(Syn(w ′ − w)) = w .

Then, (SS,Rec) is a Syndrome Secure Sketch.



Syndrome Secure Sketches

Definition (Syndrome Secure Sketch)

Define SS(w) = Syn(w) and

Rec(w ′, s) = w ′ − Invert(Syn(w ′)− s)

= w ′ − Invert(Syn(w ′ − w)) = w .

Then, (SS,Rec) is a Syndrome Secure Sketch.

Essential idea: We can find the small shift in w ′ as a unique
syndrome!

In particular, can extract the difference in secure sketches by
the difference in the Invert of their difference!

Yields robustness!



Syndrome Secure Sketches

Definition (Syndrome Secure Sketch)

Define SS(w) = Syn(w) and

Rec(w ′, s) = w ′ − Invert(Syn(w ′)− s)

= w ′ − Invert(Syn(w ′ − w)) = w .

Then, (SS,Rec) is a Syndrome Secure Sketch.

Essential idea: We can find the small shift in w ′ as a unique
syndrome!

In particular, can extract the difference in secure sketches by
the difference in the Invert of their difference!

Yields robustness!



Syndrome Secure Sketches

Definition (Syndrome Secure Sketch)

Define SS(w) = Syn(w) and

Rec(w ′, s) = w ′ − Invert(Syn(w ′)− s)

= w ′ − Invert(Syn(w ′ − w)) = w .

Then, (SS,Rec) is a Syndrome Secure Sketch.

Essential idea: We can find the small shift in w ′ as a unique
syndrome!

In particular, can extract the difference in secure sketches by
the difference in the Invert of their difference!

Yields robustness!



Syndrome Secure Sketches

Definition (Syndrome Secure Sketch)

Define SS(w) = Syn(w) and

Rec(w ′, s) = w ′ − Invert(Syn(w ′)− s)

= w ′ − Invert(Syn(w ′ − w)) = w .

Then, (SS,Rec) is a Syndrome Secure Sketch.

Essential idea: We can find the small shift in w ′ as a unique
syndrome!

In particular, can extract the difference in secure sketches by
the difference in the Invert of their difference!

Yields robustness!



Conclusion



Conclusions and Future Directions

Our Results:

Defined a new primitive, nonmalleable point obfuscations
with associated data

Constructed the above and the first nonmalleable digital
lockers in the plain model

Pulled robust fuzzy extractors with low input entropy into the
plain model

Future Directions:

Plain model nonmalleable obfuscation of other evasive
functions such as wildcards, conjunctions, hyperplanes

Achieving more broad notions of composability/composability
of digital lockers

Constructing reusable plain model fuzzy extractors, other
desirable properties

Other applications of nonmalleable point obfuscation with
associated data



Conclusions and Future Directions

Our Results:

Defined a new primitive, nonmalleable point obfuscations
with associated data

Constructed the above and the first nonmalleable digital
lockers in the plain model

Pulled robust fuzzy extractors with low input entropy into the
plain model

Future Directions:

Plain model nonmalleable obfuscation of other evasive
functions such as wildcards, conjunctions, hyperplanes

Achieving more broad notions of composability/composability
of digital lockers

Constructing reusable plain model fuzzy extractors, other
desirable properties

Other applications of nonmalleable point obfuscation with
associated data



Thank you!
Any Questions?


