Compact and Tightly Selective-Opening Secure Public-key Encryption Schemes

Asiacrypt 2022

Jiaxin Pan and Runzhi Zeng

December 7, 2022

Sender Selective Opening (SO) Security:

Even if the adversary can open some of the challenge ciphertexts, the unopened challenge ciphertexts remain secure.

Motivations:

Sender corruptions, randomness leakage...

- Dates back to [DNRS99]
- Definitions for SO security [DNRS99, BHY09, HLOV11, BHK12...]

- Two flavors of SO(-CCA) security notions.
 - Indistinguishability-based SO (IND-SO) Security [BHY09, BHK12]
 - Simulation-based SO (SIM-SO) Security [DNRS99, BHY09]

- Two flavors of SO(-CCA) security notions.
 - Indistinguishability-based SO (IND-SO) Security [BHY09, BHK12]
 - Simulation-based SO (SIM-SO) Security [DNRS99, BHY09]
- SIM-SO implies (weak) IND-SO [BHK12]

SIM-SO-CCA Security

- Real game and Ideal game
 - Real game models real world scenario
 - $\blacktriangleright~{\cal S}$ learns trivial information in the ideal game

SIM-SO-CCA Security

SIM-SO-CCA security: $\forall A$, there exists a simulator S (both are PPT) such that...

S simulates the "behavior" of A (e.g., they choose the same messages distribution, open the same ciphertexts, produce the same output...)

SIM-SO-CCA is strictly stronger than IND-CCA [BDWY11]

- SIM-SO-CCA is strictly stronger than IND-CCA [BDWY11]
- ► Non-trivial to achieve...

- SIM-SO-CCA is strictly stronger than IND-CCA [BDWY11]
- Non-trivial to achieve...
 - Hybrid argument + IND-CCA does not work

- SIM-SO-CCA is strictly stronger than IND-CCA [BDWY11]
- Non-trivial to achieve...
 - Hybrid argument + IND-CCA does not work

- SIM-SO-CCA is strictly stronger than IND-CCA [BDWY11]
- Non-trivial to achieve...
 - Hybrid argument + IND-CCA does not work

Cannot open $c_1...$

- SIM-SO-CCA is strictly stronger than IND-CCA [BDWY11]
- Non-trivial to achieve...
 - Hybrid argument + IND-CCA does not work
- "Guess" technique?
 - may work [HJKS15], but non-tight...

- ► Security reduction: $\epsilon_A \leq L \cdot \epsilon_P$
 - $\circ~\epsilon_{\mathcal{A}}$: Advantage of breaking SO security
 - $\circ \epsilon_P$: Advantage of breaking some hard problem P
 - L: Security loss
- Tight security: L = O(1).
- ▶ Non-tight: L = O(n), L = O(# RO queries),...

- ► Security reduction: $\epsilon_A \leq L \cdot \epsilon_P$
 - $\circ~\epsilon_{\mathcal{A}}$: Advantage of breaking SO security
 - $\circ~\epsilon_{P}$: Advantage of breaking some hard problem P
 - L: Security loss
- ▶ Tight security: L = O(1).
- ▶ Non-tight: L = O(n), L = O(# RO queries),...
- Practical relevance:
 - Parameters selection...

Can we have SIM-SO-CCA scheme with tight security?

Can we have SIM-SO-CCA scheme with tight security?

Yes, but with long ciphertext or long public key...

Table: Some group-based SIM-SO PKEs with tight security

Scheme	$ public _{\mathbb{G}}$	$ ciphertext _{\mathbb{G}}$
[HJR16]	$O(\ell^2)$	O (1)
[LLHG18]	O(1)	$O(\ell)$
[JL21]	$\mathit{O}(\ell^2)$	$O(\ell / \log \lambda)$

- * λ : security parameter
- * ℓ : Length of message
- * $|\cdot|_{\mathbb{G}}$: The number of group element

Can we have SIM-SO-CCA scheme with tight security?

Yes, but with long ciphertext or long public key... (Not compact)

Table: Some group-based SIM-SO PKEs with tight security

Scheme	$ public _{\mathbb{G}}$	$ ciphertext _{\mathbb{G}}$
[HJR16]	$O(\ell^2)$	O (1)
[LLHG18]	O(1)	$O(\ell)$
[JL21]	$\mathit{O}(\ell^2)$	$O(\ell / \log \lambda)$

- * λ : security parameter
- * ℓ : Length of message
- * $|\cdot|_{\mathbb{G}}$: The number of group element

Can we have a SIM-SO-CCA scheme achieves

- ► Tight security
- Compact public key
- Compact ciphertext

at the same time?

Can we have a SIM-SO-CCA scheme achieves

- ► Tight security
- Compact public key
- Compact ciphertext

at the same time? Even in the random oracle model (ROM)?

Compact and tightly SIM-SO-CCA secure PKE in the ROM:

- Three direct constructions
 - Based on strong Diffie-Hellman (stDH)
 - Based on computational Diffie-Hellman (CDH), by using TDH technique [CKS08]
 - Based on decisional Diffie-Hellman (DDH)
- Generic construction
 - Fujisaki-Okamoto's tranformation [FO13]
 - Based on lossy encryption [BHY09]

Compact and tightly SIM-SO-CCA secure PKE in the ROM:

- Three direct constructions
 - Based on strong Diffie-Hellman (stDH)
 - Based on computational Diffie-Hellman (CDH), by using TDH technique [CKS08]
 - Based on decisional Diffie-Hellman (DDH)
- Generic construction
 - Fujisaki-Okamoto's tranformation [FO13]
 - Based on lossy encryption [BHY09]

The DHIES scheme in [HJKS15]

▶
$$pk = g^x \in \mathbb{G}$$
, $sk = x \in \mathbb{Z}_p$

The DHIES scheme in [HJKS15]

▶
$$pk = g^x \in \mathbb{G}$$
, $sk = x \in \mathbb{Z}_p$

Encrypt a plaintext m:

1.
$$r \leftarrow \mathbb{Z}_p$$

2. $R := g^r, Z = pk^r$
3. $(K, k) = H(R, Z)$ (where H is a hash function)

The DHIES scheme in [HJKS15]

▶
$$pk = g^x \in \mathbb{G}$$
, $sk = x \in \mathbb{Z}_p$

Encrypt a plaintext m:

1.
$$r \leftarrow \mathbb{Z}_p$$

2. $R := g^r, Z = pk^r$
3. $(K, k) = H(R, Z)$ (where *H* is a hash function
4. $d = K \oplus m$
5. $t = MAC_k(R, d)$
6. Output (R, d, t)

The DHIES scheme in [HJKS15]

► The ciphertext has this form:

 $(R = g^r, d = K \oplus m, t = MAC_k(R, d))$, where $(K, k) = H(R, pk^r)$

▶ Randomness: $r \leftarrow \mathbb{Z}_p$

The DHIES scheme in [HJKS15]

► The ciphertext has this form:

 $(R = g^r, d = K \oplus m, t = MAC_k(R, d))$, where $(K, k) = H(R, pk^r)$

▶ Randomness: $r \leftarrow \mathbb{Z}_p$

Proof Sketch (SIM-SO-CCA security).

▶ Use *n*-stDH: Given $(X, \{R_i\}_{i \in [n]})$ and DDH_X oracle, find CDH (X, R_i) .

The DHIES scheme in [HJKS15]

► The ciphertext has this form:

 $(R = g^r, d = K \oplus m, t = MAC_k(R, d))$, where $(K, k) = H(R, pk^r)$

- ▶ Randomness: $r \leftarrow \mathbb{Z}_p$
- Proof Sketch (SIM-SO-CCA security).
 - ▶ Use *n*-stDH: Given $(X, \{R_i\}_{i \in [n]})$ and DDH_X oracle, find CDH (X, R_i) .
 - *n* challenge ciphertexts: $(g^{r_1}, d_1, t_1), ..., (g^{r_n}, d_n, t_n)$.

The DHIES scheme in [HJKS15]

► The ciphertext has this form:

 $(R = g^r, d = K \oplus m, t = MAC_k(R, d))$, where $(K, k) = H(R, pk^r)$

- ▶ Randomness: $r \leftarrow \mathbb{Z}_p$
- Proof Sketch (SIM-SO-CCA security).
 - ▶ Use *n*-stDH: Given $(X, \{R_i\}_{i \in [n]})$ and DDH_X oracle, find CDH (X, R_i) .
 - *n* challenge ciphertexts: $(\mathbf{R}_1, d_1, t_1), ..., (\mathbf{R}_n, d_n, t_n)$.

The DHIES scheme in [HJKS15]

► The ciphertext has this form:

 $(R = g^r, d = K \oplus m, t = MAC_k(R, d))$, where $(K, k) = H(R, pk^r)$

▶ Randomness: $r \leftarrow \mathbb{Z}_p$

Proof Sketch (SIM-SO-CCA security).

- ▶ Use *n*-stDH: Given $(X, \{R_i\}_{i \in [n]})$ and DDH_X oracle, find CDH (X, R_i) .
- *n* challenge ciphertexts: $(\mathbf{R}_1, d_1, t_1), ..., (\mathbf{R}_n, d_n, t_n)$.
- Cannot open (R_i, d_i, t_i) , since r_i 's are unknown

The DHIES scheme in [HJKS15]

► The ciphertext has this form:

 $(R = g^r, d = K \oplus m, t = MAC_k(R, d))$, where $(K, k) = H(R, pk^r)$

▶ Randomness: $r \leftarrow \mathbb{Z}_p$

Proof Sketch (SIM-SO-CCA security).

- ▶ Use *n*-stDH: Given $(X, \{R_i\}_{i \in [n]})$ and DDH_X oracle, find CDH (X, R_i) .
- *n* challenge ciphertexts: $(\mathbf{R}_1, d_1, t_1), ..., (\mathbf{R}_n, d_n, t_n)$.
- Cannot open (R_i, d_i, t_i) , since r_i 's are unknown
- Non-tight reduction:
 - Use "Guess" technique, O(n).
 - RO does not help for tightness...

Our approach: "Dual" Naor-Yung technique

CiphertextRandomnessDHIES: $(R = g^r, d = m \oplus K, t = MAC_k(R))$ $r \leftarrow \mathbb{Z}_p$

Our approach: "Dual" Naor-Yung technique

Ciphertext Randomness

DHIES:
$$(R = g^r, d = m \oplus K, t = MAC_k(R, d))$$
 $r \leftarrow \mathbb{Z}_p$

Our:
$$(R_0 = g^{r_0}, R_1 = g^{r_1}, d = m \oplus K, t = MAC_k(R_0, R_1, d))$$

Our approach: "Dual" Naor-Yung technique

CiphertextRandomnessDHIES: $(R = g^r, d = m \oplus K, t = MAC_k(R, d))$ $r \leftarrow \mathbb{Z}_p$

Our:
$$(R_0 = g^{r_0}, R_1 = g^{r_1}, d = m \oplus K, t = MAC_k(R_0, R_1, d))$$

• (K, k) is derived from $CDH(pk, R_0)$ or $CDH(pk, R_1)$

Our approach: "Dual" Naor-Yung technique

CiphertextRandomnessDHIES: $(R = g^r, d = m \oplus K, t = MAC_k(R, d))$ $r \leftarrow \mathbb{Z}_p$

Our:
$$(R_0 = g^{r_0}, R_1 = g^{r_1}, d = m \oplus K, t = MAC_k(R_0, R_1, d))$$

►
$$(K, k) = H(b, R_0, R_1, pk^{r_b})$$
, where $b \leftarrow \{0, 1\}$

Our approach: "Dual" Naor-Yung technique

CiphertextRandomnessDHIES: $(R = g^r, d = m \oplus K, t = MAC_k(R, d))$ $r \leftarrow \mathbb{Z}_p$

Our:
$$(R_0 = g^{r_0}, R_1 = g^{r_1}, d = m \oplus K, t = MAC_k(R_0, R_1, d))$$

▶
$$(K, k) = H(b, R_0, R_1, pk^{r_b})$$
, where $b \leftarrow \{0, 1\}$

Forget the dlog: Oblivious randomness

Our approach: "Dual" Naor-Yung technique

CiphertextRandomnessDHIES: $(R = g^r, d = m \oplus K, t = MAC_k(R, d))$ $r \leftarrow \mathbb{Z}_p$

Our:
$$(R_0 = g^{r_0}, R_1 = g^{r_1}, d = m \oplus K, t = MAC_k(R_0, R_1, d))$$

▶
$$(K, k) = H(b, R_0, R_1, pk^{r_b})$$
, where $b \leftarrow \{0, 1\}$

Forget the dlog: Oblivious randomness

Our approach: "Dual" Naor-Yung technique

CiphertextRandomnessDHIES: $(R = g^r, d = m \oplus K, t = MAC_k(R, d))$ $r \leftarrow \mathbb{Z}_p$

Our:
$$(R_0 = g^{r_0}, R_1 = g^{r_1}, d = m \oplus K, t = MAC_k(R_0, R_1, d))$$

▶
$$(K, k) = H(b, R_0, R_1, pk^{r_b})$$
, where $b \leftarrow \{0, 1\}$

Forget the dlog: Oblivious randomness

$$r_{1-b} \leftarrow \mathbb{Z}_p, R_{1-b} := g^{r_{1-b}}$$

• Or
$$R_{1-b} \leftarrow \mathbb{G}$$
 (if \mathbb{G} is sampleable...)

Our approach: "Dual" Naor-Yung technique

CiphertextRandomnessOriginal: $(R = g^r, d = m \oplus K, t = MAC_k(R, d))$ $r \leftarrow \mathbb{Z}_p$

Our:
$$(R_0, R_1, d = m \oplus K, t = MAC_k(R_0, R_1, d))$$
 $b \leftarrow \{0, 1\}, r_b \leftarrow \mathbb{Z}_p$
 $R_{1-b} \leftarrow \mathbb{G}$

▶
$$(K, k) = H(b, R_0, R_1, pk^{r_b})$$
, where $b \leftarrow \{0, 1\}$ and $R_b := g^{r_b}$

- Forget the dlog: Oblivious randomness
- Use oblivious randomness to respond OPEN queries...

Our approach: "Dual" Naor-Yung technique

CiphertextRandomnessOriginal: $(R = g^r, d = m \oplus K, t = MAC_k(R, d))$ $r \leftarrow \mathbb{Z}_p$

Our:
$$(R_0, R_1, d = m \oplus K, t = MAC_k(R_0, R_1, d))$$
 $b \leftarrow \{0, 1\}, r_b \leftarrow \mathbb{Z}_p$
 $R_{1-b} \leftarrow \mathbb{G}$

▶
$$(K, k) = H(b, R_0, R_1, pk^{r_b})$$
, where $b \leftarrow \{0, 1\}$ and $R_b := g^{r_b}$.

- Forget the dlog: Oblivious randomness
- ► Use oblivious randomness to respond OPEN queries...
 - E.g., if r_0 is unknown, return $(1, r_1, R_0)$.

Our approach: "Dual" Naor-Yung technique

 $(R_0, R_1, d, t = \mathsf{MAC}_k(R_0, R_1, d))$, where $b \leftarrow \{0, 1\}, (K, k) = H(b, R_0, R_1, pk^{r_b})$

Proof sketch

- ► Use *n*-stDH assumption...
- Embed challenge into R_0 or R_1 ...

Our approach: "Dual" Naor-Yung technique

 $(R_0, R_1, d, t = \mathsf{MAC}_k(R_0, R_1, d))$, where $b \leftarrow \{0, 1\}, (K, k) = H(b, R_0, R_1, pk^{r_b})$

Proof sketch

- ► Use *n*-stDH assumption...
- Embed challenge into R_0 or R_1 ...
- Can open any challenge ciphertext (R_0, R_1, d, t)
 - E.g., return $(b', r_{b'}, R_{1-b'})$ if $r_{1-b'}$ is unknown...

Summary of our tight reduction

- ▶ Based on DHIES in [HJKS15]
- "Dual Naor-Yung" technique
 - Two valid randomness
 - Use oblivious randomness to "forget" the dlog
- Can open any challenge ciphertext (tight reduction)
- Ignore some details: Reprogramming ROs...

Table: (Comparison	with	some	group-based	SO-CCA	PKE
----------	------------	------	------	-------------	--------	-----

Scheme	Ass.	Tight?	$ c _{\mathbb{G}}$	$ \mathbf{pk} _{\mathbb{G}}$	ROM/StdM?
DHIES [HJKS15]	stDH	×	O (1)	O (1)	ROM
FO [HJKS15]	CDH	×	O(1)	O(1)	ROM
KEM+XAC [LLHG18]	DDH	1	$O(\ell)$	O(1)	StdM
ABO-LTF [JL21]	DH	1	$O(\ell / \log \lambda)$	$O(\ell^2)$	StdM
stDH-based scheme	stDH	1	O (1)	O (1)	ROM
CDH-based scheme	CDH	\checkmark	O(1)	O(1)	ROM
DDH-based scheme	DDH	1	O(1)	O(1)	ROM
FO (based on [BHY09])	DDH	\checkmark	O(1)	O(1)	ROM

Can we have a SIM-SO-CCA scheme achieves

- ► Tight security
- Compact public key
- Compact ciphertext

at the same time?

Can we have a SIM-SO-CCA scheme achieves

- ► Tight security
- Compact public key
- Compact ciphertext

at the same time?

► YES, in the ROM.

Can we have a SIM-SO-CCA scheme achieves

- ► Tight security
- Compact public key
- Compact ciphertext

at the same time?

- ► YES, in the ROM.
- In the StdM? Still Unknown

Q & A

Thank you!

