Recovering the tight security proof of SPHINCS+

Kudinov Mikhail joint work with Andreas Hülsing

December 7, 2022

Outline

1. SPHINCS⁺

- 1.1 Building blocks: OTS
- 1.2 Building blocks: Merkle Tree
- 1.3 SPHINCS+ construction

2. Security flaw

- 2.1 Preliminaries
- 2.2 Intuition behind the flaw

3. Recovering the security

- 3.1 Dealing with multiple instances of WOTS
- 3.2 Final theorems

4. Analyzing Quantum Generic Security

- 5. Constructions of tweakable hash functions
- 6. Conclusion

NIST IR 8413-upd1

Table 4. Algorithms to be Standardized

Third Round Status Report

Public-Key Encryption/KEMs CRYSTALS-KYBER CRYSTALS-Dilithium FALCON SPHINCS⁺

Table 5. Candidates advancing to the Fourth Round

Public-Key Encryption/KEMs	Digital Signatures
BIKE	
Classic McEliece	
HQC	
SIKE	

- Hash-based post-quantum signature scheme;
- Only requires a secure hash function;
- Chosen for standardization by NIST.

SPHINCS⁺

Security flaw

- During third round of the NIST competition a flaw in the proof of security was found.
- The flaw did not lead to an attack:
- A non tight proof was applicable (~ 60 bits of security loss):

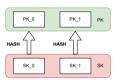
From: Sent:	pqc-forum@list.nist.gov on behalf of Mikhail Kudinov <mkudinov@qapp.tech> Thursday, July 23, 2020 11:10 AM</mkudinov@qapp.tech>	
To:	pqc-forum	
Subject:	[pqc-forum] ROUND 3 OFFICIAL COMMENT: SPHINCS+	

Dear all,

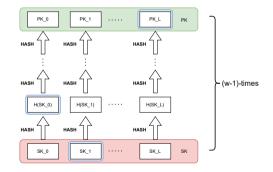
In this comment, we would like to point out a flaw of existing security proofs of the SPHINCS+ hash-based scheme Particularly, we would like to pay attention to security proofs of the underlying WOTS+ scheme with preimage resistance (PRE) requirement replaced by second preimage resistance (SPR) + "at least two preimages for every image" requirements [see eq. (14) in Round 2 submission] or decisional second preimage resistance (DSPR) + SPR requirements [see Bernstein et al. "The SPHINCS+ signature framework" 2019].

Building blocks: OTS

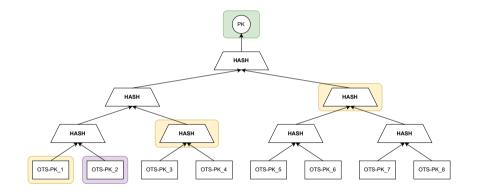
Lamport One-time signature 1-bit



Winternitz One-time signature n-bit

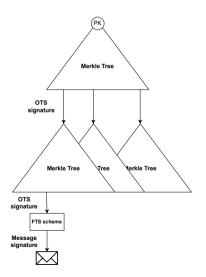


Building blocks: Merkle Tree



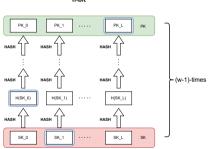
SPHINCS+ construction

- Multiple layers of Merkle trees;
- Last layer used for signing messages;
- The last layer uses Winternitz OTS (WOTS) to sign few-time signature scheme (FTS) public key, which then used to sign the message.
- The signature contains a FTS signature, WOTS signatures and authentication paths for each layer.



Security flaw

- During third round of the NIST competition a flaw in the proof of security was found.
- The flaw was in the security of WOTS;
- The flaw did not lead to an attack;
- A non tight proof was applicable (~60 bits of security loss);



Winternitz One-time signature n-bit

Preliminaries

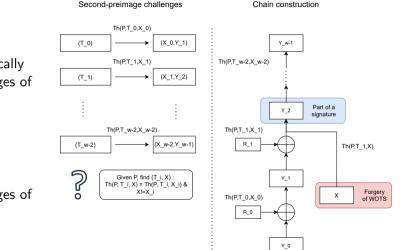
Definition 1 (Tweakable hash function). Let $n, m \in \mathbb{N}$, \mathcal{P} the public parameters space and \mathcal{T} the tweak space. A tweakable hash function is an efficient function

 $\mathbf{Th}: \mathcal{P} \times \mathcal{T} \times \{0,1\}^m \to \{0,1\}^n, \text{ MD} \leftarrow \mathbf{Th}(P,T,M)$

mapping an m-bit message M to an n-bit hash value MD using a function key called public parameter $P \in \mathcal{P}$ and a tweak $T \in \mathcal{T}$.

- Same public parameter for every Th call
- Different Tweak for every **Th** call
- Mitigation of multi-target attacks
- Multi-user security

Intuition behind the flaw

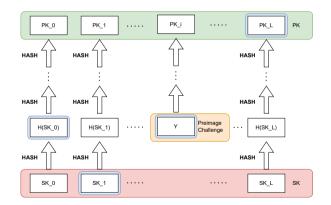


- Th(P, T, X) = y: X is information-theoretically hidden among all preimages of y;
- Th(P, T, X) = y, where X = Th(P, T', X'): X is not information-theoretically hidden among all preimages of y.

Recovering the security: Non tight proof

Non tight proof

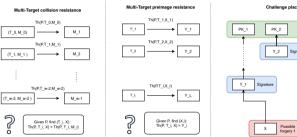
- Not knowing the message we have to guess a position for preimage placement.
- Probability of good placement: $\frac{1}{lw}$
- Having 2^h WOTS instances makes it ¹/_{2^h.J.w}

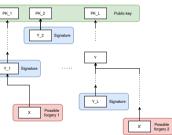


Recovering the security: new proof

2

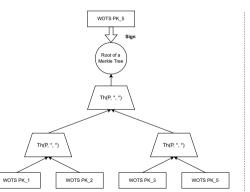
- Key observation: Only EU-naCMA security of WOTS is necessary, which means that the reduction knows the message when preparing the public key;
- We either break PRE or TCR:
- We need undetectability to deal with the change in the distribution



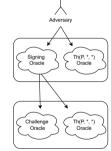


Dealing with multiple instances of WOTS

- Since we have to do all the challenge queries before obtaining the public parameter we use Th_λ oracle;
- The adversary is not allowed to query \mathbf{Th}_{λ} with tweaks corresponding to the WOTS instances.
- The signing oracle queries the challenge oracle and Th_λ, but can not query Th_λ with the tweaks used for the challenge queries



d-EU-naCMA model for WOTS



Final theorems

Theorem 2. Let $n, w \in \mathbb{N}$ and w = poly(n). Let $\mathbf{F} := \mathbf{Th}_1 : \mathcal{P} \times \mathcal{T} \times \{0, 1\}^n \to \{0, 1\}^n$ be a SM-TCR, SM-PRE, SM-UD THF as a member of a collection. Let $\mathbf{PRF} : S \times \mathcal{T} \to \{0, 1\}^n$ be a KHF. Then the following inequality holds:

```
\begin{split} \mathrm{InSec}^{\mathsf{d}-\mathsf{EU},\mathsf{naCMA}}(\mathsf{WOTS}\mathsf{-}\mathsf{TW}; t, d) < \\ \mathrm{InSec}^{^{\mathrm{PRF}}}(\mathbf{PRF}; \widetilde{t}, d \cdot l) + \mathrm{InSec}^{^{\mathrm{SM-TCR}}}(\mathbf{F} \in \mathbf{Th}; \widetilde{t}, d \cdot lw) + \\ \mathrm{InSec}^{^{\mathrm{SM-PRE}}}(\mathbf{F} \in \mathbf{Th}; \widetilde{t}, d \cdot l) + w \cdot \mathrm{InSec}^{^{\mathrm{SM-UD}}}(\mathbf{F} \in \mathbf{Th}; \widetilde{t}, d \cdot l) \end{split} (3)
```

with $\tilde{t} = t + d \cdot lw$, where time is given in number of **Th** and **PRF** evaluations.

Theorem 3. For parameters n, w, h, d, m, t, k as described in $[BHK^+19]$ and l be the number of chains in WOTS-TW instances the following bound can be obtained:

$$\begin{split} & \text{InSee}^{\text{EU}-\text{CMA}}(\text{SPHINCS}^+;\xi,q_s) \leq \\ & \text{InSee}^{\text{end}}(\text{PRF},\xi,q_1) + \text{InSee}^{\text{RF}}(\text{PRF}_{\text{mag}},\xi,q_s) + \\ & \text{InSee}^{\text{INSTR}}(\text{H}_{\text{mag}};\xi,q_s) + \frac{1}{w} \cdot \text{InSee}^{\text{adverge}}(\mathbf{F} \in \text{Th};\xi,q_2) + \\ & \text{InSee}^{\text{adverge}}(\mathbf{F} \in \text{Th};\xi,q_3 + q_7) + \text{InSee}^{\text{adverge}}(\mathbf{F} \in \text{Th};\xi,q_2) + \\ & \text{InSee}^{\text{adverge}}(\mathbf{H} \in \text{Th};\xi,q_3) + \text{InSee}^{\text{adverge}}(\mathbf{Th}_k \in \text{Th};\xi,q_3) + \\ & \text{InSee}^{\text{adverge}}(\mathbf{Th}_k \in \text{Th};\xi,q_6) + \\ & 3 \cdot \text{InSee}^{\text{adverge}}(\mathbf{F} \in \text{Th};\xi,q_8) + \text{InSee}^{\text{adverge}}(\mathbf{F} \in \text{Th};\xi,q_8), \end{split}$$

where $q_1 < 2^{h+1}(kt+l)$, $q_2 < 2^{h+1} \cdot l$, $q_3 < 2^{h+1} \cdot l \cdot w$, $q_4 < 2^{h+1}k \cdot 2t$, $q_5 < 2^h$, $q_6 < 2^{h+1}$, $q_7 < 2^{h+1}kt$, $q_8 < 2^h \cdot kt$ and q_s denotes the number of signing queries made by \mathcal{A} .

Analyzing Quantum Generic Security

Table 1: Success probability of generic attacks – In the "Success probability" column we give the bound for a quantum adversary \mathcal{A} that makes q quantum queries to the function and p classical queries to the challenge oracle. The security parameter n is the output length of **Th**. We use $X = \sum_{\gamma} \left(1 - \left(1 - \frac{1}{t}\right)^{\gamma}\right)^k {p \choose \gamma} \left(1 - \frac{1}{2^h}\right)^{p-\gamma} \frac{1}{2^{h\gamma}}$.

Property	Success probability	Status
SM-TCR	$\Theta((q+1)^2/2^n)$	proven (this work, [BHK ⁺ 19, HRS16])
SM-DSPR	$\Theta((q+1)^2/2^n)$	conjectured ([BHK ⁺ 19])
SM-PRE		based on conjecture ([BH19a, BHK ⁺ 19])
PRF	$\Theta(12q/\sqrt{2^n})$	proven ([XY19])
SM-UD	$\Theta(12q/\sqrt{2^n})$	proven (this work)
ITSR	$\Theta((q+1)^2 \cdot X)$	conjectured ([BHK ⁺ 19])

Constructions of tweakable hash functions

Construction 1 ([BHK⁺19]) Given two hash functions $H_1 : \{0,1\}^{2n} \times \{0,1\}^{\alpha} \to \{0,1\}^n$ with 2*n*-bit keys, and $H_2 : \{0,1\}^{2n} \to \{0,1\}^{\alpha}$ we construct **Th** with $\mathcal{P} = \mathcal{T} = \{0,1\}^n$, as

 $\mathbf{Th}(P,T,M) = H_1(P||T,M^{\oplus}), \text{ with } M^{\oplus} = M \oplus H_2(P||T)$

Construction 2 ([BHK⁺19]) Given a hash function $H : \{0,1\}^{2n+\alpha} \to \{0,1\}^n$, we construct **Th** with $\mathcal{P} = \mathcal{T} = \{0,1\}^n$, as $\mathbf{Th}(P,T,M) = H(P||T||M)$

Theorem 7. Let H_1 and H_2 be hash functions as in Construction 1 and **Th** the THF constructed by Construction 1. Then the success probability of any time- ξ (quantum) adversary \mathcal{A} against SM-PRE of **Th** with tweak advice is bounded by

 $\operatorname{Succ}_{\mathbf{Th},p}^{\text{SM-PRE}}(\mathcal{A}) \leq \operatorname{InSec}^{\operatorname{DM-PRE}}(H_1;\xi,p).$

Theorem 8. Let H_1 and H_2 be hash functions as in Construction 1 and **Th** the THF constructed by Construction 1. Then the following equality holds:

InSec^{SM-UD}(**Th**;
$$\xi, p$$
) \leq InSec^{DM-UD}($H_1; \xi, p$).
16/18

Conclusion

This work:

- We recovered the proof of security of $\ensuremath{\mathsf{SPHINCS}}+$
- We updated the quantum generic security of the used properties (SM-TCR, SM-UD)
- We analyzed the constructions of tweakable hash functions and the connection between the properties

Future work:

- Computer aided proof of security
- Analysis of the used properties regarding the hash functions constructions

The End Questions?