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SPHINCS+

• Hash-based post-quantum
signature scheme;

• Only requires a secure hash
function;

• Chosen for standardization by
NIST.

NIST IR 8413-upd1 Third Round Status Report

Table 4. Algorithms to be Standardized

Public-Key Encryption/KEMs
CRYSTALS–KYBER

Digital Signatures
CRYSTALS–Dilithium

FALCON

SPHINCS+

Table 5. Candidates advancing to the Fourth Round

Public-Key Encryption/KEMs
BIKE

Digital Signatures

Classic McEliece

HQC

SIKE

3. Preliminary Information

The following preliminary information is given in advance of the summary of candidates to
introduce some computational and security concepts (and history) that will be referenced
throughout the subsequent section. This section will also serve to reduce redundancy as
some of the candidates’ security analyses have properties in common. This section is not
intended to be an exhaustive security or literature review.

3.1 Computational Models

When selecting secure parameters for cryptosystems, the cost of the best-known attacks
must be understood and estimated. There are several variables involved in assessing the cost
of an actual attack, such as monetary cost of equipment and energy, number of operations
needed to complete the attack, size of required memory, and time to read from or write
to memory. Thus, the cost of an attack varies depending on the metric(s) selected for
evaluation. Appendix B describes several cost models used in the literature and discusses
assumptions and considerations for each.

3.2 Underlying Security Problems

This section presents some of the hard computational problems that are common to multi-
ple code-based, multivariate-based or lattice-based schemes examined in the course of the
NIST PQC Standardization Process. Other hard computational problems will be mentioned
as needed in the individual candidate summaries in Section 4.
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Security flaw

• During third round of the
NIST competition a flaw in the
proof of security was found.

• The flaw did not lead to an
attack;

• A non tight proof was
applicable (∼60 bits of security
loss);

   

      
     

     

  
  

                    
                  

                 
                
          

  
                     
              
                    

                  
                    

               
  

                         
                     

                     
                        

                     
                   

           
  

                      
                      

                     
                     

                
                  

                  
                  

                
  

                 
                
                    

           
  

   
      
       

  
              

                
        

 

--

From: pqc-forum@list.nist.gov on behalf of Mikhail Kudinov <mkudinov@qapp.tech> 
Sent: Thursday, July 23, 2020 11:10 AM 
To: pqc-forum 
Subject: [pqc-forum] ROUND 3 OFFICIAL COMMENT: SPHINCS+ 

Dear all, 

In this comment, we would like to point out a flaw of existing security proofs of the SPHINCS+ hash-based scheme. 
Particularly, we would like to pay attention to security proofs of the underlying WOTS+ scheme with preimage resistance 
(PRE) requirement replaced by second preimage resistance (SPR) + “at least two preimages for every image” 
requirements [see eq. (14) in Round 2 submission] or decisional second preimage resistance (DSPR) + SPR 
requirements [see Bernstein et al. “The SPHINCS+ signature framework” 2019]. 

Both of these approaches are based on the claim that in the case where the given image has several preimages under 
some cryptographic hash function, the original preimage is information-theoretically hidden among all preimages (see 
"Case 2" in the Proof of Theorem 2 in [Hülsing et al. "Mitigating Multi-Target Attacks in Hash-based Signatures" 2016] and 
"SM-DSPR success probability" in the proof of Claim 23 in [Bernstein et al. “The SPHINCS+ signature framework” 2019]). 
Though this claim is quite reasonable in the case of a single hash function query, the situation becomes much more 
complicated when one deals with a chain of hash functions like in the WOTS+ scheme. 

Let h_i with i=1,...,w-1 be a hash function used to obtain a value at i’th level of the WOTS+ scheme from the one at (i-1)’th 
level. That is pk_j = h_{w-1}(h_{w-2}( … h_1(sk_j) … )), where sk_j and pk_j are elements of secret and public key 
respectively and w is a Winternitz parameter (commonly w = 16). Here we assume that all bitmasks are included in h_i. 
Let IMG_i be an image set of h_i, and let PREIMG_i(y) be a set of all preimages for given y taken from IMG_i. The 
proposed security proofs are based either on assumption that for each y one has |PREIMG_i(y)| > 1, or that it is 
computationally hard to recognize whether |PREIMG_i(y)| = 1 or not. The latter is called a DSPR property [D.J. Bernstein, 
A. Hülsing "Decisional second-preimage resistance: When does SPR imply PRE?" 2019].

Consider the set WOTS_IMG_i = h_i(h_{i-1}( ... h_1({0,1}^n) ... )) that is an image set of the whole WOTS+ chain up to 
level i from a set of all possible secret keys {0,1}^n (n is a security parameter, typically equals to 256). One can 
reasonably expect that for a secure hash function built in the chain functions and i > 1, |WOTS_IMG_i| < |IMG_i| because 
of collisions at levels 1, … , i-1. Let WOTS_PREIMG_i(y) be a set of preimages of y under h_i belonging to 
WOTS_IMG_{i-1}. Having a Challenger’s signature, a WOTS+-breaking adversary is able to choose a position in the 
chain where |WOTS_PREIMG_i(y)| = 1, even though |PREIMG_i(y)| > 1 for some known element y in the WOTS+ 
structure. In the result, the adversary manages to forge a signature avoiding breaking SPR property (because the forgery 
consists of the same element used by the Challenger), and by choosing elements having |PREIMG_i(y)| > 1 or 
|PREIMG_i(y)| = 1 with a proper probability, avoiding breaking DSPR property. Thus the reduction proof fails. 

We note that the security proof of the original SPHINCS scheme [Bernstein et al. “SPHINCS: practical stateless hash-
based signature” 2015] which is based on PRE+SPR+undetectability (UD) assumptions does not have this flaw, though 
shows lower security level for the same scheme parameters. We also note that the updated detailed security proof of the 
WOTS+ scheme based on PRE+SPR+UD assumptions can be found in https://arxiv.org/abs/2002.07419. 

With kind regards, 
Mikhail Kudinov, Evgeniy Kiktenko, Aleksey Fedorov 
Russian Quantum Center (www.rqc.ru) and QApp (www.qapp.tech) 

You received this message because you are subscribed to the Google Groups "pqc-forum" group. 
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-forum+unsubscribe@list.nist.gov. 
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-
forum/2276541595516964%40mail.yandex.ru. 
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Building blocks: OTS
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Building blocks: Merkle Tree

OTS-PK_1 OTS-PK_2 OTS-PK_3 OTS-PK_4 OTS-PK_5 OTS-PK_6 OTS-PK_7 OTS-PK_8
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SPHINCS+ construction

• Multiple layers of Merkle trees;

• Last layer used for signing
messages;

• The last layer uses Winternitz OTS
(WOTS) to sign few-time signature
scheme (FTS) public key, which
then used to sign the message.

• The signature contains a FTS
signature, WOTS signatures and
authentication paths for each layer.

Merkle TreeMerkle Tree

Merkle Tree

Merkle Tree

OTS
signature

Message
signature

PK

OTS
signature

FTS scheme
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Security flaw

• During third round of the NIST
competition a flaw in the proof of
security was found.

• The flaw was in the security of
WOTS;

• The flaw did not lead to an attack;

• A non tight proof was applicable
(∼60 bits of security loss);
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Preliminaries

Recovering the tight security proof of SPHINCS+ 3

As a third contribution, we complete the picture for the hardness of breaking the properties of
(hash) function families via generic attacks (see Table 1 for an overview). We obtain a new result
for UD, and improve the result for TCR. Our analysis generally follows the framework of [HRS16],
which reduces the problem of distinguishing two distributions over boolean functions to the re-
spective security property. In [HRS16], a distribution over variable weight functions, introduced by
Zhandry [Zha12], is used where every input is mapped to 1 with a fixed probability. In this work,
we also use distributions over fixed-weight functions where the number of 1’s per function is fixed.
During this process, we find a useful self-reducibility result for the distinguishing problem with this
kind of functions. Moreover, we establish a new bound for PRE, overcoming a previous limitation of
the analysis in [HRS16] which only applied to sufficiently compressing functions. Our new approach
is a reduction from SPR and DSPR as previously implicitly done in [BH19a]. This gives a tight
unconditional bound for the single target case. For the multi-target case, we obtain a non-tight un-
conditional bound and a tight bound based on a previous conjecture made in [BHK+19] regarding
the complexity of breaking DSPR in the multi-target case.

Acknowledgments. We want to thank Sydney Antonov for pointing out wrong bounds at the
Table 1.

Organization.We introduce necessary definitions and notations as well as describe the EU-naCMA
security model in Section 2. Section 3 is devoted to the description of the WOTS-TW scheme. In
Section 5 we provide a security reduction for WOTS-TW in the single instance setting and in
Section 6 we lift the result to the multi-instance setting with possibly dependent messages. The
security proof for SPHINCS+ that uses WOTS-TW as a building block is then given in Section 7.
The summary of the state of the art for generic security bounds and analysis of quantum generic
security of UD and TCR properties is given in Section 8. In Section 9 we analyze the constructions
of a tweakable hash function from a keyed hash function.

2 Preliminaries

In this section we introduce the definitions of building blocks, and security notions for hash functions
that we use. We begin with the notion of a tweakable hash function, introduced in the construction of
SPHINCS+ [BHK+19], and its security. Beyond the presented notions, we make use of the standard
definition for PRFs which for reference can be found in Appendix A. For signatures we consider the
common existential unforgeability notion but under non-adaptive message attacks. In this setting
the adversary has to select a set of q messages that it will get signed before it receives the public
key. For one-time signatures we have q = 1. A detailed formal definition can be found in Section 4.

2.1 Tweakable hash functions.

In this section we recall the definition of tweakable hash functions and related security notions
from [BHK+19]. These properties will later be used to prove the security of our WOTS-TW scheme.

Function definition. A tweakable hash function takes public parameters P and context information
in form of a tweak T in addition to the message input. The public parameters might be thought of
as a function key or index. The tweak might be interpreted as a nonce.

Definition 1 (Tweakable hash function). Let n,m ∈ N, P the public parameters space and T
the tweak space. A tweakable hash function is an efficient function

Th : P × T × {0, 1}m → {0, 1}n, MD← Th(P, T,M)

mapping an m-bit messageM to an n-bit hash value MD using a function key called public parameter
P ∈ P and a tweak T ∈ T .

• Same public parameter for every Th call

• Different Tweak for every Th call

• Mitigation of multi-target attacks

• Multi-user security

9 / 18



Intuition behind the flaw

• Th(P,T ,X ) = y :
X is information-theoretically
hidden among all preimages of
y ;

• Th(P,T ,X ) = y , where
X = Th(P,T ′,X ′):
X is not
information-theoretically
hidden among all preimages of
y .

Y_0

Chain construction

Th(P,T_0,X_0)

Y_1

Y_2

Th(P,T_1,X_1)

Y_w-1

Th(P,T_w-2,X_w-2)

Part of a
signature

X

Th(P,T_1,X)

Forgery
of WOTS

R_0

R_1

Second-preimage challenges

(T_0) (X_0,Y_1)

Th(P,T_0,X_0)

(T_1) (X_1,Y_2)

Th(P,T_1,X_1)

(T_w-2) (X_w-2,Y_w-1)

Th(P,T_w-2,X_w-2)

Given P, find (T_i, X) :  
Th(P, T_i, X) = Th(P, T_i, X_i) &

X!=X_i 
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Recovering the security: Non tight proof

• Not knowing the message we
have to guess a position for
preimage placement.

• Probability of good placement:
1
lw

• Having 2h WOTS instances
makes it 1

2h·l ·w
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Recovering the security: new proof

• Key observation: Only
EU-naCMA security of
WOTS is necessary,
which means that the
reduction knows the
message when preparing
the public key;

• We either break PRE or
TCR;

• We need undetectability
to deal with the change
in the distribution.

T'_1

Multi-Target preimage resistance

Th(P,T_1,X_1)

Y_1

T_2

Th(P,T_2,X_2)

Y_2

T_L

Th(P,T_l,X_l)

Y_L

Given P, find (X,i): 
Th(P, T_i, X) = Y_i

Y_1

Y_2

Y_L

PK_1 PK_2 PK_L

X

Y

X'

Signature

Signature

Signature

Public key

Possible
forgery 1

Possible
forgery 2

Challenge placement

(T_0, M_0) M_1

Th(P,T_0,M_0)

(T_1, M_1 ) M_2

Th(P,T_1,M_1)

(T_w-2, M_w-2 ) M_w-1

Given P, find (T_i, X) :  
Th(P, T_i, X) = Th(P, T_i, M_i)

Th(P,T_w-2,M_w-2)

Multi-Target collision resistance
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Dealing with multiple instances of WOTS

• Since we have to do all the
challenge queries before
obtaining the public parameter
we use Thλ oracle;

• The adversary is not allowed to
query Thλ with tweaks
corresponding to the WOTS
instances.

• The signing oracle queries the
challenge oracle and Thλ, but
can not query Thλ with the
tweaks used for the challenge
queries

WOTS PK_1 WOTS PK_2 WOTS PK_3 WOTS PK_5

WOTS PK_5

Th(P, *, *) Th(P, *, *)

Th(P, *, *)

Root of a
Merkle Tree

Sign

Signing  
Oracle

Th(P, *, *) 
Oracle

Adversary

Challenge 
 Oracle

Th(P, *, *) 
Oracle

d-EU-naCMA model for WOTS
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Final theorems

16 A. Hülsing, M. Kudinov

Algorithm 3:MAPRE

Input : Security parameter n, access to SM-PRE challenger C and forger A.
Output: A pair (j,M) or fail.

1 begin Challenge placement
2 Run A to receive initial query for a signature on message M .
3 Encode M as B = b1, . . . , bl following the steps in the signature algorithm.
4 for 1 ≤ i ≤ l do
5 if bi > 0 then
6 Query C for preimage challenge yi with tweak T1,bi−1. // yi = Th(P, Ti,bi−1, ξi)
7 else
8 yi ←$ {0, 1}n.
9 Set σi = yi.

10 Get the seed P from C and set Seed = P .
11 Compute public key pk = (pk1, . . . pkl), as pki = cw−1−bi(yi, i, Seed).

12 begin Obtaining the result
13 Return σ and PK = (pk, P ) to A.
14 if A returns a valid forgery (M ′, σ′) then
15 Compute B′ = (b′1, . . . , b

′
l) encoding M

′

16 if ∃1 ≤ j ≤ l such that b′j < bj and c(b
′
j ,bj−b

′
j)(σ′j , j,Seed) = σj then

17 return SM-PRE solution (j, cb
′
j ,(bj−b

′
j−1)(σ′j , j,Seed))

18 else
19 return fail

20 else
21 return fail

Theorem 2. Let n, w ∈ N and w = poly(n). Let F := Th1 : P × T × {0, 1}n → {0, 1}n be a
SM-TCR, SM-PRE, SM-UD THF as a member of a collection. Let PRF : S × T → {0, 1}n be a
KHF. Then the following inequality holds:

InSecd-EU-naCMA(WOTS-TW; t, d) <

InSecprf(PRF; t̃, d · l) + InSecsm-tcr(F ∈ Th; t̃, d · lw)+
InSecsm-pre(F ∈ Th; t̃, d · l) + w · InSecsm-ud(F ∈ Th; t̃, d · l) (3)

with t̃ = t+ d · lw, where time is given in number of Th and PRF evaluations.

Proof sketch. Let us give a brief description how the proof for the multi-instance case is obtained.
We have the same game hopping as in Theorem 1.

GAME.1 is the original d-EU-naCMA game and GAME.2 is the same as GAME.1 but the
pseudorandom outputs from PRF are replaced by truly random values. We claim that

|SuccGAME.1(A)− SuccGAME.2(A)| ≤ InSecprf(PRF; t̃, d · l).

The reasoning here is the same as in Claim 1 in Theorem 1. Note that all inputs on which the oracle
in the PRF game is queried are unique due to the unique ADRSs for each instance. Hence, the
outputs are uniformly random values as desired.

GAME.3 is different from GAME.2 in that for each signing query we answer with a hash of a
random value rather than building it with a chaining function. In Claim 2 of Theorem 1 we reduced it

20 A. Hülsing, M. Kudinov

In this section, we prove the following Theorem about the standard EU-CMA-security (for a
definition see Appendix B) of SPHINCS+. Note that F,H, Thl, and Thk are members of a collection
Th of tweakable hash functions with different message lengths.

Theorem 3. For parameters n,w, h, d,m, t, k as described in [BHK+19] and l be the number of
chains in WOTS-TW instances the following bound can be obtained:

InSecEU−CMA(SPHINCS+; ξ, qs) ≤
InSecprf(PRF, ξ, q1) + InSecprf(PRFmsg, ξ, qs)+

InSecitsr(Hmsg, ξ, qs) + w · InSecsm-ud(F ∈ Th; ξ, q2)+

InSecsm-tcr(F ∈ Th; ξ, q3 + q7) + InSecsm-pre(F ∈ Th; ξ, q2)+

InSecsm-tcr(H ∈ Th; ξ, q4) + InSecsm-tcr(Thk ∈ Th; ξ, q5)+

InSecsm-tcr(Thl ∈ Th; ξ, q6)+

3 · InSecsm-tcr(F ∈ Th; ξ, q8) + InSecsm-dspr(F ∈ Th; ξ, q8) ,

where q1 < 2h+1(kt + l), q2 < 2h+1 · l, q3 < 2h+1 · l · w, q4 < 2h+1k · 2t, q5 < 2h, q6 < 2h+1,
q7 < 2h+1kt, q8 < 2h · kt and qs denotes the number of signing queries made by A.

Proof. We want to bound the success probability of an adversary A against the EU-CMA security
of SPHINCS+. Towards this end we use the following series of games. We start with GAME.0 which
is the EU-CMA experiment for SPHINCS+. Now consider a GAME.1 which is GAME.0 but the
experiment makes use of a SPHINCS+ version where all the outputs of PRF, i.e., the WOTS-TW
and FORS secret-key elements, get replaced by truly random values.

Next, consider a game GAME.2, which is the same as GAME.1 but in the signing oracle
PRFmsg(SK.prf, ·) is replaced by a truly random function.

Afterwards, we consider GAME.3, which differs from GAME.2 in that we are considering the
game lost if an adversary outputs a valid forgery (M,SIG) where the FORS signature part of SIG
contains only secret values which were contained in previous signatures with that FORS key pair
obtained by A via the signing oracle.

Now consider what are the possibilities of the adversary to win the game. The FORS signature
in a forgery must include the preimage of a FORS leaf node that was not previously revealed to it.
There are two separate cases for that leaf:

1. The FORS leaf is different to the leaf that we would generate for that place.
2. The FORS leaf is the same to the leaf that we would generate for that place;

Let’s consider GAME.4 which differs from GAME.3 in that we are considering that the game is
lost in the first “leaf case” scenario.

Now let’s analyze those games.

GAME.0 - GAME.3 The hops between GAME.0 and GAME.3 are fully presented in the SHINCS+
paper [BHK+19]. The bound for these games are

|SuccGAME.0
A − SuccGAME.1

A | ≤ InSecprf(PRF, ξ, q1), (4)

|SuccGAME.1
A − SuccGAME.2

A | ≤ InSecprf(PRFmsg, ξ, qs), (5)

|SuccGAME.2
A − SuccGAME.3

A | ≤ InSecitsr(Hmsg, ξ, qs), (6)

where q1 < 2h+1(kt+ l) and qs is the number of signing queries made by A.

14 / 18



Analyzing Quantum Generic Security
22 A. Hülsing, M. Kudinov

Table 1: Success probability of generic attacks – In the “Success probability” column we give the
bound for a quantum adversary A that makes q quantum queries to the function and p classical
queries to the challenge oracle. The security parameter n is the output length of Th. We use X =∑
γ

(
1−

(
1− 1

t

)γ)k (p
γ

) (
1− 1

2h

)p−γ 1
2hγ

.

Property Success probability Status

SM-TCR Θ((q + 1)2/2n) proven (this work, [BHK+19,HRS16])
SM-DSPR Θ((q + 1)2/2n) conjectured ( [BHK+19])
SM-PRE Θ((q + 1)2/2n) based on conjecture ( [BH19a,BHK+19])
PRF Θ(12q/

√
2n) proven ( [XY19])

SM-UD Θ(12q/
√
2n) proven (this work)

ITSR Θ((q + 1)2 ·X) conjectured ( [BHK+19])

8 Analyzing Quantum Generic Security

In this section we collect bounds on the complexity of generic attacks against the properties discussed
so far for THFs and KHFs. For definitions of the properties for KHFs see Appendix C. A hash function
Th is commonly considered a good function if there are no attacks known for any security property
that perform better against Th than a generic attack against a random function. First we discuss
the current situation which is summarized in Table 1. Attacks that match the security bound for
nonnegligible probability for the UD and PRF properties are shown in Appendix F. Then we give
a new proof for the SM-UD property. To do so we follow the approach of [HRS16] where different
instances of average-case distinguishing problems over boolean functions are reduced to breaking the
different hash function security properties. The advantage of this approach is that we know lower
bounds for these decision problems, even for quantum algorithms. This allows us to derive lower
bounds on the complexity of quantum attacks against our security properties. We also give a new
proof for SM-TCR property in Appendix E which improves a previous result from [BHK+19].

8.1 Estimated security

The success probability of generic attacks against SM-TCR and a reduction to an average-case search
problem was given in [BHK+19], but it had several limitations on the adversary. In Appendix E we
give a proof without extra limitations on the adversary. A generic attack using Grover search against
plain TCR is given in [HRS16], which is applicable against SM-TCR – as it runs a second preimage
search when all information is available – and has a success probability matching the proven bound.

With regard to SM-DSPR, two bounds are proven in [BH19a]. On the one hand, the bound
O((q + 1)2/2n) is proven for single-target DSPR of a KHF, which is tight. This proof perfectly
transfers to the SM-DSPR notion of a THF by specifying the tweak we analyze Th(P, T, ·) which
can be viewed as a KHF with a fixed key. For a T -target version a factor-T lose bound is obtained via
a standard plug’n’pray argument, placing the challenge instance at a random position, hoping that
that will be the one that gets distinguished by the adversary. In [BHK+19], the authors conjecture
that the actual multi-target bound should be the same as the single-target bound. A supporting
argument for this conjecture is that the best attack against multi-target DSPR for now is still a
second-preimage search which has the same complexity in both cases.

For PRE of a KHF h, a bound of SuccPRE
h,p (A) = Θ((q+1)2/2n) is given in [HRS16] that also holds

in a multi-function, multi-target setting. The bound is proven for h that are random and compressing
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Constructions of tweakable hash functions

Recovering the tight security proof of SPHINCS+ 25

Algorithm 4: Dist-1,0 to SM-UD
Input : f , SM-UD adversary A
Output: b′ ∈ {0, 1}n

1 Choose a random public parameter P ←$ P
2 Construct a random tweakable hash function H : P × T × {0, 1}n → {0, 1}n using random

function F : P × T × {0, 1}n → {0, 1}n and ey : T → {0, 1}n the following way:
3

H(p, t, x) :

{
if (p = P, f(t, x) = 1) : Return ey(t)
Return F (p, t, x)

4 Give oracle access to H to the adversary
5 For each query Ti respond with ey(Ti), i ∈ [1, p]
6 Give the public parameter P to adversary A2

7 return Output of A2

9 Constructions of tweakable hash functions

In the Section 8 we saw bounds for the security of random THFs for the different security properties.
In this section, we discuss how to construct THFs from typical hash functions. In this context we
recall two constructions from [BHK+19]. One construction uses a KHF H : K×{0, 1}α → {0, 1}n to
build a THF. The other starts from a plain, key-less hash function. Since the properties we require
go beyond those required in [BHK+19] we need to analyze those constructions again with respect to
the newly added properties. We focus on the following two constructions:

Construction 1 ( [BHK+19]) Given two hash functions H1 : {0, 1}2n × {0, 1}α → {0, 1}n with
2n-bit keys, and H2 : {0, 1}2n → {0, 1}α we construct Th with P = T = {0, 1}n, as

Th(P, T,M) = H1(P ||T,M⊕), with M⊕ =M ⊕H2(P ||T )

Construction 2 ( [BHK+19]) Given a hash function H : {0, 1}2n+α → {0, 1}n, we construct Th
with P = T = {0, 1}n, as

Th(P, T,M) = H(P ||T ||M)

Security of Construction 2 can only be shown in the (Q)ROM. Assuming that H behaves like
a random function, we can simply apply the bounds discussed in the last section. When analyzing
Construction 1, security can be based on the security of the used KHF in the QROM. In [BHK+19]
three constructions were analyzed, the third one missing here is a variant of Construction 1 that is
secure in the standard model at the price of huge public parameters. This third construction was
there to demonstrate that the only reason the QROM is needed in the analysis of Construction 1 is
to prove the parameter compression secure. Below, we determine the required properties of KHFs to
obtain the desired properties of the THF constructed via Construction 1.

9.1 Construction 1

First we recall the results from [BHK+19] that show under which conditions this construction is
SM-TCR and SM-DSPR. Afterwards we give bounds for SM-PRE and SM-UD. Below, we refer
to a property as “with tweak advice” if the adversary informs the oracle about all p keys or tweaks
it will use ahead of its queries.
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SM-TCR security. To prove SM-TCR we use the DM-SPR property of the KHF. This property
is similar to SM-TCR. It is a TCR notion for KHFs where the adversary specifies the keys for which
he will obtain the challenges. For a formal definition of the property see Appendix C. The following
result has been shown in [BHK+19]:

Theorem 5. Let H1 and H2 be hash functions as in Construction 1 and Th the THF constructed by
Construction 1. Then the success probability of any q-query time-ξ (quantum) adversary A against
SM-TCR of Th with tweak advice is bounded by

Succsm-tcr
Th,p (A) ≤ InSecdm-spr(H1; ξ, p),

when modeling H2 as quantum-accessible random oracle and not giving A1 access to this oracle.

This result requires tweak advice for technical reasons. But this is sufficient for SPHINCS+ as all
the tweaks that are needed to construct the challenge are known ahead. A bound for DM-SPR for
a random function H was given in [BHK+19]: Succdm-spr

H,p (A) ≤ Θ( (q+1)2

2n ).

SM-DSPR security. SM-DSPR gets related to distinct function, multi-target decisional second-
preimage resistance (DM-DSPR). This is a DSPR property for KHFs where the adversary can define
the keys used for the challenges. See Appendix C for more details.

Theorem 6 ( [BHK+19]). Let H1 and H2 be hash functions as in Construction 1 and Th the
THF constructed by Construction 1. Then the advantage of any q-query time-ξ (quantum) adversary
A against SM-DSPR of Th with tweak advice is bounded by

Advsm-dspr
Th,p (A) ≤ InSecdm-spr(H, ξ, p),

when modeling H2 as quantum-accessible random oracle and not giving A1 access to this oracle.

In [BHK+19] the bound for DM-DSPR of a random function is conjectured to be Succdm-spr
H,p (A) ≤

Θ( (q+1)2

2n ).

SM-PRE security. Since in the new proof of SPHINCS+ we also need the SM-PRE property
we have to analyze under which conditions Construction 1 will provide this property. To do so we
will need distinct function, multi-target preimage resistance (DM-PRE), a formal definition of the
property is given in Appendix C.

Theorem 7. Let H1 and H2 be hash functions as in Construction 1 and Th the THF constructed by
Construction 1. Then the success probability of any time-ξ (quantum) adversary A against SM-PRE
of Th with tweak advice is bounded by

Succsm-pre
Th,p (A) ≤ InSecdm-pre(H1; ξ, p) .

Proof. Assume we are given access to an adversary A against SM-PRE of Th with tweak advice.
We show how to construct an oracle machine MA that breaks DM-PRE of H1. This procedure is
presented in the Algorithm 5.

First we sample a random P ←$ {0, 1}n. For each tweak T that we receive from the adversary we
construct a key for H1: K = P ||T . Then we query the DM-PRE challenger with that key and obtain
y = H1(P ||T,M ′) for a random M ′. A expects y = H1(P ||T,M⊕) where M⊕ = M ⊕H2(P ||T ) for
a uniformly random M . One can see that H2(P ||T ) is independent of M and M =M⊕⊕H2(P ||T ).
Since M ′ = M⊕ in this case and M ′ is a uniformly random message, M is uniformly distributed.
One can conclude that answering A with y does not change A’s behavior as y follows the same
distribution as in the original game.
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Algorithm 5: Reducing DM-PRE to SM-PRE
Input : SM-PRE adversary A = (A1, A2), DM-PRE challenger C, Th, H1, H2

Output: M∗ ∈ {0, 1}α
1 Generate P ←$ {0, 1}n.
2 For each Ti obtained from A1 query C with P ||Ti.
3 For each query P ||Ti obtain yi from C
4 Return yi to A as an answer for query Ti
5 After all queries return P to A
6 Obtain the result (j,M ′) from A
7 return M∗ =M ′ ⊕H2(P ||Tj)

Since we consider SM-PRE with tweak advice we can collect all tweaks from A1, generate keys
K1, . . .Kp, query DM-PRE challenger with those keys, get the answer Y = {yi}pi=1 for that query
and return Y to A. In response, A produces an answer (j,M ′). If this is a preimage for Th, we
can obtain the preimage for H1 by calculating M∗ = M ′ ⊕ H2(P ||T ). So we obtain the bound
Succsm-pre

Th,p (A) ≤ InSecdm-pre(H1; ξ, p).

The bound for DM-PRE of H modeled as a random function can be obtained by showing that
Succdm-pre

Th,p (A) ≤ Succdm-spr
Th,p (B) + 3 · Succdm-spr

Th,p (C) for some algorithms B and C. A proof that this
holds can be found in Appendix D. If we believe the Conjecture in [BHK+19] regarding the tight
bound for DM-DSPR then we obtain Succdm-pre

Th,p (A) ≤ Θ( (q+1)2

2n ).

SM-UD security. Another property to finalize the analysis of Th constructions for SPHINCS+
is SM-UD. For this part we will utilize the distinct function, multi-target undetectability property
(DM-UD). For a formal definition see Appendix C.

Theorem 8. Let H1 and H2 be hash functions as in Construction 1 and Th the THF constructed
by Construction 1. Then the following equality holds:

InSecsm-ud(Th; ξ, p) ≤ InSecdm-ud(H1; ξ, p).

Proof. Let’s analyze the distribution of y ← H1(P ||T, x), where x←$ {0, 1}α and y′ ← Th(P, T, x′),
where x′ ←$ {0, 1}α (for now we fix P and T ).

We can show a bijection between the sets {y = H1(P ||T, x), x} and {y = Th(P, T, x′), x′}. The
bijection is x→ x⊕H2(P ||T ). Note that

Th(P, T, x⊕H2(P ||T )) = H1(P ||T, x⊕H2(P ||T )⊕H2(P ||T )) = H1(P ||T, x) .

If x is a uniformly distributed random variable than x ⊕ H2(P ||T ) is also a uniformly distributed
random variable. From this bijection we can conclude that for fixed P and T and randomly sampled
x we have the same distribution of outputs for Th and H1. Hence,

AdvTh(P,T,·),H1(P ||T,·)(A) = |Pr[A
ThP,T () = 1]− Pr[AH1P ||T () = 1]| = 0

The same argument applies if we have multiple pairs {P, Ti}pi=1

Assume we have the following distributions for some fixed set Q = {P, Ti}pi=1:

– X0 = {Th(P, Ti, xi)}pi=1, where xi ←$ {0, 1}α;
– X1 = {H1(P ||Ti, xi)}pi=1, where xi ←$ {0, 1}α;
– X2 = {yi}pi=1, where yi ←$ {0, 1}n.
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Conclusion

This work:

• We recovered the proof of security of SPHINCS+

• We updated the quantum generic security of the used properties (SM-TCR, SM-UD)

• We analyzed the constructions of tweakable hash functions and the connection
between the properties

Future work:

• Computer aided proof of security

• Analysis of the used properties regarding the hash functions constructions
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The End
Questions?
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