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Nonce N 
Associated data AD 
Plaintext M 
C ← AEAD.Enc(        , N, AD, M) M ← AEAD.Dec(        , N, AD, C)

N || AD || C

?

Assumption #1: The adversary 
has no way of knowing, or even 

guessing, the secret key Assumption #2: Decryption only 
ever gets a single secret key 

But this model does not always capture how 
AEAD is used in practice…

!
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Nonce N’ 
Associated data AD’ 
Ciphertext C’

M ← AEAD.Dec(       , N’, AD’, C’)

M* ← AEAD.Dec(       , N’, AD’, C’)

Breaking Assumption #1: Key Robustness



When Assumptions Fail To Model Practice
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Assumption #1: The adversary has no way of 
knowing, or even guessing, the secret key

• Facebook Messenger 
message franking protocol              
[GLR CRYPTO’17], [DGRW CRYPTO’18] 

• Partitioning oracle attacks     
[LGR Sec’21] 

• Envelope encryption, 
Subscribe with Google                     
[ADGKLS Sec’22]

Key robustness attacks in practice:
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Assumption #1: The adversary has no way of 
knowing, or even guessing, the secret key

Assumption #2: Decryption only ever 
gets a single secret key 

• Facebook Messenger 
message franking protocol              
[GLR CRYPTO’17], [DGRW CRYPTO’18] 

• Partitioning oracle attacks     
[LGR Sec’21] 

• Envelope encryption, 
Subscribe with Google                     
[ADGKLS Sec’22]

• Google Tink API
Key robustness attacks in practice: Cryptography libraries work with sets of keys:
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How does decryption know 
which key to use? 

https://github.com/google/tink/blob/master/docs/KEY-MANAGEMENT.md



Example: Google Tink

13https://developers.google.com/tink/wire-format

‣ Tink adds a 5-byte prefix to each ciphertext which acts as a key identifier 

‣ Tink will try to decrypt the key specified by the identifier first 

‣ If decryption fails, Tink will attempt trial decrypting with “raw” keys (keys 
without identifiers) until it finds a key that successfully decrypts
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Assumption #1: The adversary has no way of 
knowing, or even guessing, the secret key

Assumption #2: Decryption only ever 
gets a single secret key 

• Facebook Messenger 
message franking protocol              
[GLR CRYPTO’17], [DGRW CRYPTO’18] 

• Partitioning oracle attacks     
[LGR Sec’21] 

• Envelope encryption, 
Subscribe with Google                     
[ADGKLS Sec’22]

• Google Tink API
Key robustness attacks in practice: Cryptography libraries work with sets of keys:

• Multi-user Shadowsocks [LGR Sec’21] 

• Key management services [ADGKLS Sec’22]

Attacks on sets of keys:

It’s unclear what security properties these approaches achieve
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‣ Initiate the formal study of AEAD that supports key identification 
by extending nonce-based AEAD into this setting 

‣ Formalize a new cryptographic primitive called AEAD with key 
identification (AEAD-KI) 

‣ Introduce new security definitions for the AEAD-KI setting 
➡ Our definitions allow an adversary to specify malicious keys to better 

model possible attacks  

‣ Analyze security of existing key identification approaches and 
suggest new ones 
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K ← AEKI.Kg(kid)
Key generation takes as input a key label 
These can be public, application-defined strings (e.g. URIs)

The key is a key label - secret key tuple
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K ← AEKI.Kg(kid)

(Tk, C) ← AEKI.Enc(K, N, AD, M)

Key generation takes as input a key label 
These can be public, application-defined strings (e.g. URIs)

The key is a key label - secret key tuple

Encryption can now output a special key tag as part of the ciphertext to help with decryption
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K ← AEKI.Kg(kid)

(Tk, C) ← AEKI.Enc(K, N, AD, M)

(K, M) /  ← AEKI.Dec( , N, AD, Tk, C)⊥ "

Key generation takes as input a key label 
These can be public, application-defined strings (e.g. URIs)

The key is a key label - secret key tuple

Encryption can now output a special key tag as part of the ciphertext to help with decryption

Decryption takes in a vector of keys, which 
preserves information about the orderIf decryption succeeds, it returns the key that produced the 

resulting plaintext, in addition to the plaintext 
Otherwise, it returns the special error symbol ⊥
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Recall: An AEAD scheme is correct if for any , it holds that 

 

with probability 1 over the coins used in encryption.

(K, N, AD, M)
#$%(K, N, AD, &'%(K, N, AD, M)) = M
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Recall: An AEAD scheme is correct if for any , it holds that 

 

with probability 1 over the coins used in encryption.

(K, N, AD, M)
#$%(K, N, AD, &'%(K, N, AD, M)) = M

But what does a “correct” AEAD-KI scheme mean? 

First attempt: An AEAD-KI scheme is correct if for any  where , it holds that 

 

with probability 1 over the coins used in encryption. 

➡ Problem: There could be another key in  that can decrypt the ciphertext so this cannot be 
an information theoretic guarantee.
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"

‣ We expect an AEAD-KI scheme to function correctly 
if it returns the correct key but this requires a 
computational definition 

‣ We therefore provide a simpler, absolute correctness 
definition and rely on a key robustness definition to 
model this behavior
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(1) For any  it holds that  where 

 
  and the probability is over the coins used by encryption 

➡ Translates traditional AEAD correctness to syntax of AEAD-KI for decryption with a 
single key

(K, N, AD, M) Pr[ (K′ , M′ ) = (K, M) ] = 1
(K′ , M′ ) ← Dec([K], N, AD, Enc(K, N, AD, M))
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(1) For any  it holds that  where 

 
  and the probability is over the coins used by encryption 

➡ Translates traditional AEAD correctness to syntax of AEAD-KI for decryption with a 
single key

(K, N, AD, M) Pr[ (K′ , M′ ) = (K, M) ] = 1
(K′ , M′ ) ← Dec([K], N, AD, Enc(K, N, AD, M))

(2) For any  and  it must be that either or 
 

➡ Decryption should only output a key that was in the key vector

(", N, AD, Tk, C) (K, M) ← Dec(", N, AD, Tk, C) (K, M) = ⊥
K ∈ "

(3) For any  and any , let 

 

  If and , then  

➡ If decryption of  outputs key , any other key vector containing  
should not fail to decrypt 

", "′ (N, AD, Tk, C)
(K, M) ← Dec(", N, AD, Tk, C), (K′ , M′ ) ← Dec("′ , N, AD, Tk, C) .

(K, M) ≠ ⊥ K ∈ "′ (K′ , M′ ) ≠ ⊥
(N, AD, Tk, C) K K

(N, AD, Tk, C)
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Full robustness (KI-FROB)
"0 "1

N, AD, Tk, C

((kid0, K0), M0) ← AEKI.Dec( , N, AD, Tk, C)"0

((kid1, K1), M1) ← AEKI.Dec( , N, AD, Tk, C)"1

such that 

• Decryption is successful under both key vectors 

• K0  K1≠

The adversary wins if:
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Full robustness (KI-FROB)
"0 "1

N, AD, Tk, C

((kid0, K0), M0) ← AEKI.Dec( , N, AD, Tk, C)"0

((kid1, K1), M1) ← AEKI.Dec( , N, AD, Tk, C)"1

such that 

• Decryption is successful under both key vectors 

• K0  K1≠

The adversary wins if:

• Key robustness guarantees that only a single 
key can be used to decrypt a given ciphertext

• Functions partly as correctness in this setting: 
we expect that the key used to encrypt a 
plaintext should be the only one to correctly 
decrypt the resulting ciphertext

• If different orderings of the same key vector 
cause different keys to be output, these two 
key vectors would give a KI-FROB win



All-in-one confidentiality and integrity (KI-nAE)
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• We extend indistinguishability style security definitions for AEAD to AEAD-KI 

• Our KI-nAE definition captures confidentiality and integrity in this setting 

• We allow adversaries to query the decryption oracle with a key vector that 
includes honest or malicious keys, in any order, to better capture the setting 

• We also specify a key-anonymous version called KI-nAE-KA

We use a simulator-based definition to model this



All-in-one confidentiality and integrity (KI-nAE)

37

• Adversary goal: distinguish between real and simulated world 

• Adversary has access to oracles to generate honest keys, encrypt, 
and decrypt

KI-nAE1: Real world game 
models interactions with the real scheme

KI-nAE0: Ideal world game 
uses stateful simulator to generate 
oracle outputs
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Ideal game KI-nAE0
Encryption 

• Non-key anonymous leakage Lid: simulator receives both the game-
generated key identifier and the plaintext size 

• Key anonymous leakage Lanon: simulator receives only the plaintext size
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Decryption 
• First scans through honest keys in queried key vector 

➡ If the key and ciphertext were output from a prior call to the encryption 
oracle, then the associated plaintext is returned

Encryption 
• Non-key anonymous leakage Lid: simulator receives both the game-

generated key identifier and the plaintext size 
• Key anonymous leakage Lanon: simulator receives only the plaintext size

Ideal game KI-nAE0



40

Encryption 
• Non-key anonymous leakage Lid: simulator receives both the game-

generated key identifier and the plaintext size 
• Key anonymous leakage Lanon: simulator receives only the plaintext size

Decryption 
• First scans through honest keys in queried key vector 

➡ If the key and ciphertext were output from a prior call to the encryption 
oracle, then the associated plaintext is returned 

• Otherwise, if there are malicious keys in the key vector, the simulator is given 
the ciphertext and remaining malicious keys to decrypt 

• This allows our definition to imply a variant of INT-CTXT for this setting

Ideal game KI-nAE0



Approaches to AEAD-KI
We divide key identification into several categories and analyze their security

41

Approach Description

Key labels

Trial decryption

Static key hint

Static key 
commitment

Dynamic key hint

Dynamic key 
commitment
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• Approach: Assign each key a static label, then prepend the label to each ciphertext it produces 

• Parameterized by AEAD scheme 

• Examples of labels  
• Google Tink: 1-byte library version + 4-byte randomly generated string 

• AWS KMS: URL indicating where to fetch the key (URI)

Enc(K, N, AD, M) 
(kid, K*)  K 
C ← AEAD.Enc(K*, N, AD || kid, M) 
Return (kid, C)

←

Dec( , N, AD, Tk, C) 
For (kid, K) in : 

If kid = Tk: 
M ← AEAD.Dec(K, N, AD || kid, C) 
If M  : Return ((kid, K), M) 

Return 

"
"

≠ ⊥
⊥
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Enc(K, N, AD, M) 
(kid, K*)  K 
C ← AEAD.Enc(K*, N, AD || kid, M) 
Return (kid, C)

←

• Key labels are KI-FROB-secure iff AEAD is key robust 

• Note: Key labels might not be unique and cannot be used for key commitment 

• Key labels are KI-nAE-secure if AEAD is key robust and multi-user AE-secure 

• Note: Ciphertexts are prepended with static strings, so there is no key anonymity 

• Trial decryption, a scheme where key labels are empty, is a key anonymous alternative

Dec( , N, AD, Tk, C) 
For (kid, K) in : 

If kid = Tk: 
M ← AEAD.Dec(K, N, AD || kid, C) 
If M  : Return ((kid, K), M) 

Return 

"
"

≠ ⊥
⊥
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• Approach: Compute a static identifier from the key and use this with the key label as the key tag 
• Also known as a key check value in practice 
• Parameterized by key check value function Fkcv, encryption key derivation function KDF (where 

KDF  Fkcv), and an AEAD scheme≠

Enc(K, N, AD, M) 
(kid, K*)  K 
kcv ← Fkcv(K*) ; Ke ← KDF(K*) 
Tk ← kid || kcv 
C ← AEAD.Enc(Ke, N, AD || Tk, M) 
Return (Tk, C)

←

Dec( , N, AD, Tk, C) 
For (kid, K) in : 

kcv ← Fkcv(K) ; Ke ← KDF(K) 
If kid || kcv = Tk: 

M ← AEAD.Dec(Ke, N, AD || Tk, C) 
If M  : Return ((kid, K), M) 

Return 

"
"

≠ ⊥
⊥
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Static Key Hints Static Key Commitments

• Key check value computed using PRF 

• Can be short and efficiently computed 

• Cannot be used to commit to a key, so they 
need to be used with an key robust AEAD 
scheme to achieve KI-FROB 

• No key anonymity since it is static 

• Examples 

• GlobalPlatform: msb24(AESK(([1]8)16)) 

• Telegram: lsb64(SHA1(K)) 

• PKCS#11: msb24(AESK(0128))

• Key check value computed using collision-resistant 
PRF 

• Longer and less efficient to compute than key hints 

• Can be used to commit to a key, so they can be used 
with non-key robust AEAD schemes to achieve KI-
FROB 

• No key anonymity since it is static 

• Example 

• AWS Encryption SDK:  
SHA256(K || 0x436f6d6d69740102)



Dynamic Key Identifiers
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• Approach: Compute a dynamic identifier from the key and a nonce and use this as the key tag 
• This is the key anonymous counterpart to Static Key Identifiers 
• To preserve anonymity, key labels are empty 
• Parameterized by key check value function Fkcv, encryption key derivation function KDF, and an 

AEAD scheme

Enc(K, N, AD, M) 
( , K*)  K ; (N0, N1)  N 
kcv ← Fkcv(K*, N0) ; Ke ← KDF(K*) 
Tk ← kcv 
C ← AEAD.Enc(Ke, N1, AD || Tk, M) 
Return (Tk, C)

ε ← ←

Dec( , N, AD, Tk, C) 
(N0, N1)  N 
For ( , K) in : 

kcv ← Fkcv(K, N0) ; Ke ← KDF(K) 
If kcv = Tk: 

M ← AEAD.Dec(Ke, N1, AD || Tk, C) 
If M  : Return (( , K), M) 

Return 

"
←

ε "

≠ ⊥ ε
⊥



Dynamic Key Hints vs. Dynamic Key Commitments
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Dynamic Key Hints Dynamic Key Commitments

• Computed using PRF 

• Can be short and efficiently computed 

• Cannot be used to commit to a key, so they 
need to be used with a key robust AEAD 
scheme to achieve KI-FROB 

• Key anonymity!

• Computed using collision-resistant PRF 

• Longer and less efficient to compute than key hints 

• Can be used to commit to a key, so they can be used 
with non-key robust AEAD schemes to achieve KI-
FROB 

• Key anonymity!



Approaches to AEAD-KI
We divide key identification into several categories and analyze their security
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Approach Description AEAD 
FROB?

Key 
anonymous?

Key labels
Key generation labels each key, sent as part of ciphertext; brute-
force decrypt w/ all keys matching key label in ciphertext

Trial decryption Special case of key labels where all labels are empty 

Static key hint Ciphertext includes deterministic non-CR hash of key

Static key 
commitment

Ciphertext includes deterministic CR hash of key

Dynamic key hint Ciphertext includes PRF of key & nonce

Dynamic key 
commitment

Ciphertext includes CR PRF of key & nonce

FROB = full key robustness



Conclusion
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‣ The current model for AEAD does not always capture how 
AEAD is used in practice 

‣ Introduce Authenticated Encryption with Key Identification, 
which allows key identification during the decryption step 

‣ Introduce new security definitions for the AEAD-KI setting 

‣ Analyze security of existing key identification approaches and 
suggest new ones 
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