
Authenticated Encryption with
Key Identification

Julia Len1 Paul Grubbs2 Thomas Ristenpart1

1 Cornell Tech
2 University of Michigan

Asiacrypt 2022 1

Authenticated Encryption

2

Nonce N
Associated data AD
Plaintext M
C ← AEAD.Enc(, N, AD, M)

Authenticated Encryption

3

Nonce N
Associated data AD
Plaintext M
C ← AEAD.Enc(, N, AD, M) M ← AEAD.Dec(, N, AD, C)

N || AD || C

?

Authenticated Encryption

4

Nonce N
Associated data AD
Plaintext M
C ← AEAD.Enc(, N, AD, M) M ← AEAD.Dec(, N, AD, C)

N || AD || C

?

Assumption #1: The adversary
has no way of knowing, or even

guessing, the secret key

Authenticated Encryption

5

Nonce N
Associated data AD
Plaintext M
C ← AEAD.Enc(, N, AD, M) M ← AEAD.Dec(, N, AD, C)

N || AD || C

?

Assumption #1: The adversary
has no way of knowing, or even

guessing, the secret key Assumption #2: Decryption only
ever gets a single secret key

Authenticated Encryption

6

Nonce N
Associated data AD
Plaintext M
C ← AEAD.Enc(, N, AD, M) M ← AEAD.Dec(, N, AD, C)

N || AD || C

?

Assumption #1: The adversary
has no way of knowing, or even

guessing, the secret key Assumption #2: Decryption only
ever gets a single secret key

But this model does not always capture how
AEAD is used in practice…

!

7

Nonce N’
Associated data AD’
Ciphertext C’

M ← AEAD.Dec(, N’, AD’, C’)

M* ← AEAD.Dec(, N’, AD’, C’)

Breaking Assumption #1: Key Robustness

When Assumptions Fail To Model Practice

8

Assumption #1: The adversary has no way of
knowing, or even guessing, the secret key

• Facebook Messenger
message franking protocol
[GLR CRYPTO’17], [DGRW CRYPTO’18]

• Partitioning oracle attacks
[LGR Sec’21]

• Envelope encryption,
Subscribe with Google
[ADGKLS Sec’22]

Key robustness attacks in practice:

When Assumptions Fail To Model Practice

9

Assumption #1: The adversary has no way of
knowing, or even guessing, the secret key

Assumption #2: Decryption only ever
gets a single secret key

• Facebook Messenger
message franking protocol
[GLR CRYPTO’17], [DGRW CRYPTO’18]

• Partitioning oracle attacks
[LGR Sec’21]

• Envelope encryption,
Subscribe with Google
[ADGKLS Sec’22]

• Google Tink API
Key robustness attacks in practice: Cryptography libraries work with sets of keys:

Example: Google Tink

10https://github.com/google/tink/blob/master/docs/KEY-MANAGEMENT.md

Example: Google Tink

11https://github.com/google/tink/blob/master/docs/KEY-MANAGEMENT.md

Example: Google Tink

12

How does decryption know
which key to use?

https://github.com/google/tink/blob/master/docs/KEY-MANAGEMENT.md

Example: Google Tink

13https://developers.google.com/tink/wire-format

‣ Tink adds a 5-byte prefix to each ciphertext which acts as a key identifier

‣ Tink will try to decrypt the key specified by the identifier first

‣ If decryption fails, Tink will attempt trial decrypting with “raw” keys (keys
without identifiers) until it finds a key that successfully decrypts

When Assumptions Fail To Model Practice

14

Assumption #1: The adversary has no way of
knowing, or even guessing, the secret key

Assumption #2: Decryption only ever
gets a single secret key

• Facebook Messenger
message franking protocol
[GLR CRYPTO’17], [DGRW CRYPTO’18]

• Partitioning oracle attacks
[LGR Sec’21]

• Envelope encryption,
Subscribe with Google
[ADGKLS Sec’22]

• Google Tink API
Key robustness attacks in practice: Cryptography libraries work with sets of keys:

• Multi-user Shadowsocks [LGR Sec’21]

• Key management services [ADGKLS Sec’22]

Attacks on sets of keys:

When Assumptions Fail To Model Practice

15

Assumption #1: The adversary has no way of
knowing, or even guessing, the secret key

Assumption #2: Decryption only ever
gets a single secret key

• Facebook Messenger
message franking protocol
[GLR CRYPTO’17], [DGRW CRYPTO’18]

• Partitioning oracle attacks
[LGR Sec’21]

• Envelope encryption,
Subscribe with Google
[ADGKLS Sec’22]

• Google Tink API
Key robustness attacks in practice: Cryptography libraries work with sets of keys:

• Multi-user Shadowsocks [LGR Sec’21]

• Key management services [ADGKLS Sec’22]

Attacks on sets of keys:

It’s unclear what security properties these approaches achieve

Our Contributions

16

‣ Initiate the formal study of AEAD that supports key identification
by extending nonce-based AEAD into this setting

‣ Formalize a new cryptographic primitive called AEAD with key
identification (AEAD-KI)

‣ Introduce new security definitions for the AEAD-KI setting
➡ Our definitions allow an adversary to specify malicious keys to better

model possible attacks

‣ Analyze security of existing key identification approaches and
suggest new ones

Our Contributions

17

‣ Initiate the formal study of AEAD that supports key identification
by extending nonce-based AEAD into this setting

‣ Formalize a new cryptographic primitive called AEAD with key
identification (AEAD-KI)

‣ Introduce new security definitions for the AEAD-KI setting
➡ Our definitions allow an adversary to specify malicious keys to better

model possible attacks

‣ Analyze security of existing key identification approaches and
suggest new ones

Our Contributions

18

‣ Initiate the formal study of AEAD that supports key identification
by extending nonce-based AEAD into this setting

‣ Formalize a new cryptographic primitive called AEAD with key
identification (AEAD-KI)

‣ Introduce new security definitions for the AEAD-KI setting
➡ Our definitions allow an adversary to specify malicious keys to better

model possible attacks

‣ Analyze security of existing key identification approaches and
suggest new ones

Our Contributions

19

‣ Initiate the formal study of AEAD that supports key identification
by extending nonce-based AEAD into this setting

‣ Formalize a new cryptographic primitive called AEAD with key
identification (AEAD-KI)

‣ Introduce new security definitions for the AEAD-KI setting
➡ Our definitions allow an adversary to specify malicious keys to better

model possible attacks

‣ Analyze security of existing key identification approaches and
suggest new ones

AEAD with Key Identification

20

AEAD with Key Identification

21

K ← AEKI.Kg(kid)
Key generation takes as input a key label
These can be public, application-defined strings (e.g. URIs)

The key is a key label - secret key tuple

AEAD with Key Identification

22

K ← AEKI.Kg(kid)

(Tk, C) ← AEKI.Enc(K, N, AD, M)

Key generation takes as input a key label
These can be public, application-defined strings (e.g. URIs)

The key is a key label - secret key tuple

Encryption can now output a special key tag as part of the ciphertext to help with decryption

AEAD with Key Identification

23

K ← AEKI.Kg(kid)

(Tk, C) ← AEKI.Enc(K, N, AD, M)

(K, M) / ← AEKI.Dec(, N, AD, Tk, C)⊥ "

Key generation takes as input a key label
These can be public, application-defined strings (e.g. URIs)

The key is a key label - secret key tuple

Encryption can now output a special key tag as part of the ciphertext to help with decryption

Decryption takes in a vector of keys, which
preserves information about the orderIf decryption succeeds, it returns the key that produced the

resulting plaintext, in addition to the plaintext
Otherwise, it returns the special error symbol ⊥

AEAD-KI Correctness

24

Recall: An AEAD scheme is correct if for any , it holds that

with probability 1 over the coins used in encryption.

(K, N, AD, M)
#$%(K, N, AD, &'%(K, N, AD, M)) = M

AEAD-KI Correctness

25

Recall: An AEAD scheme is correct if for any , it holds that

with probability 1 over the coins used in encryption.

(K, N, AD, M)
#$%(K, N, AD, &'%(K, N, AD, M)) = M

But what does a “correct” AEAD-KI scheme mean?

AEAD-KI Correctness

26

Recall: An AEAD scheme is correct if for any , it holds that

with probability 1 over the coins used in encryption.

(K, N, AD, M)
#$%(K, N, AD, &'%(K, N, AD, M)) = M

But what does a “correct” AEAD-KI scheme mean?

First attempt: An AEAD-KI scheme is correct if for any where , it holds that

with probability 1 over the coins used in encryption.

➡ Problem: There could be another key in that can decrypt the ciphertext so this cannot be
an information theoretic guarantee.

K, ", N, AD, M K ∈ "
#$%(", N, AD, &'%(K, N, AD, M)) = (K, M)

"

AEAD-KI Correctness

27

Recall: An AEAD scheme is correct if for any , it holds that

with probability 1 over the coins used in encryption.

(K, N, AD, M)
#$%(K, N, AD, &'%(K, N, AD, M)) = M

But what does a “correct” AEAD-KI scheme mean?

First attempt: An AEAD-KI scheme is correct if for any where , it holds that

with probability 1 over the coins used in encryption.

➡ Problem: There could be another key in that can decrypt the ciphertext so this cannot be
an information theoretic guarantee.

K, ", N, AD, M K ∈ "
#$%(", N, AD, &'%(K, N, AD, M)) = (K, M)

"

‣ We expect an AEAD-KI scheme to function correctly
if it returns the correct key but this requires a
computational definition

‣ We therefore provide a simpler, absolute correctness
definition and rely on a key robustness definition to
model this behavior

AEAD-KI Correctness
An AEAD-KI scheme is correct if the following hold:

28

AEAD-KI Correctness
An AEAD-KI scheme is correct if the following hold:

29

(1) For any it holds that where

 and the probability is over the coins used by encryption

➡ Translates traditional AEAD correctness to syntax of AEAD-KI for decryption with a
single key

(K, N, AD, M) Pr[(K′ , M′) = (K, M)] = 1
(K′ , M′) ← Dec([K], N, AD, Enc(K, N, AD, M))

AEAD-KI Correctness
An AEAD-KI scheme is correct if the following hold:

30

(1) For any it holds that where

 and the probability is over the coins used by encryption

➡ Translates traditional AEAD correctness to syntax of AEAD-KI for decryption with a
single key

(K, N, AD, M) Pr[(K′ , M′) = (K, M)] = 1
(K′ , M′) ← Dec([K], N, AD, Enc(K, N, AD, M))

(2) For any and it must be that either or

➡ Decryption should only output a key that was in the key vector

(", N, AD, Tk, C) (K, M) ← Dec(", N, AD, Tk, C) (K, M) = ⊥
K ∈ "

AEAD-KI Correctness
An AEAD-KI scheme is correct if the following hold:

31

(1) For any it holds that where

 and the probability is over the coins used by encryption

➡ Translates traditional AEAD correctness to syntax of AEAD-KI for decryption with a
single key

(K, N, AD, M) Pr[(K′ , M′) = (K, M)] = 1
(K′ , M′) ← Dec([K], N, AD, Enc(K, N, AD, M))

(2) For any and it must be that either or

➡ Decryption should only output a key that was in the key vector

(", N, AD, Tk, C) (K, M) ← Dec(", N, AD, Tk, C) (K, M) = ⊥
K ∈ "

(3) For any and any , let

 If and , then

➡ If decryption of outputs key , any other key vector containing
should not fail to decrypt

", "′ (N, AD, Tk, C)
(K, M) ← Dec(", N, AD, Tk, C), (K′ , M′) ← Dec("′ , N, AD, Tk, C) .

(K, M) ≠ ⊥ K ∈ "′ (K′ , M′) ≠ ⊥
(N, AD, Tk, C) K K

(N, AD, Tk, C)

Key Robustness in the AEAD-KI Setting

32

Full robustness (KI-FROB)
"0 "1

N, AD, Tk, C

((kid0, K0), M0) ← AEKI.Dec(, N, AD, Tk, C)"0

((kid1, K1), M1) ← AEKI.Dec(, N, AD, Tk, C)"1

such that

• Decryption is successful under both key vectors

• K0 K1≠

The adversary wins if:

Key Robustness in the AEAD-KI Setting

33

Full robustness (KI-FROB)
"0 "1

N, AD, Tk, C

((kid0, K0), M0) ← AEKI.Dec(, N, AD, Tk, C)"0

((kid1, K1), M1) ← AEKI.Dec(, N, AD, Tk, C)"1

such that

• Decryption is successful under both key vectors

• K0 K1≠

The adversary wins if:

• Key robustness guarantees that only a single
key can be used to decrypt a given ciphertext

Key Robustness in the AEAD-KI Setting

34

Full robustness (KI-FROB)
"0 "1

N, AD, Tk, C

((kid0, K0), M0) ← AEKI.Dec(, N, AD, Tk, C)"0

((kid1, K1), M1) ← AEKI.Dec(, N, AD, Tk, C)"1

such that

• Decryption is successful under both key vectors

• K0 K1≠

The adversary wins if:

• Key robustness guarantees that only a single
key can be used to decrypt a given ciphertext

• Functions partly as correctness in this setting:
we expect that the key used to encrypt a
plaintext should be the only one to correctly
decrypt the resulting ciphertext

Key Robustness in the AEAD-KI Setting

35

Full robustness (KI-FROB)
"0 "1

N, AD, Tk, C

((kid0, K0), M0) ← AEKI.Dec(, N, AD, Tk, C)"0

((kid1, K1), M1) ← AEKI.Dec(, N, AD, Tk, C)"1

such that

• Decryption is successful under both key vectors

• K0 K1≠

The adversary wins if:

• Key robustness guarantees that only a single
key can be used to decrypt a given ciphertext

• Functions partly as correctness in this setting:
we expect that the key used to encrypt a
plaintext should be the only one to correctly
decrypt the resulting ciphertext

• If different orderings of the same key vector
cause different keys to be output, these two
key vectors would give a KI-FROB win

All-in-one confidentiality and integrity (KI-nAE)

36

• We extend indistinguishability style security definitions for AEAD to AEAD-KI

• Our KI-nAE definition captures confidentiality and integrity in this setting

• We allow adversaries to query the decryption oracle with a key vector that
includes honest or malicious keys, in any order, to better capture the setting

• We also specify a key-anonymous version called KI-nAE-KA

We use a simulator-based definition to model this

All-in-one confidentiality and integrity (KI-nAE)

37

• Adversary goal: distinguish between real and simulated world

• Adversary has access to oracles to generate honest keys, encrypt,
and decrypt

KI-nAE1: Real world game
models interactions with the real scheme

KI-nAE0: Ideal world game
uses stateful simulator to generate
oracle outputs

38

Ideal game KI-nAE0
Encryption

• Non-key anonymous leakage Lid: simulator receives both the game-
generated key identifier and the plaintext size

• Key anonymous leakage Lanon: simulator receives only the plaintext size

39

Decryption
• First scans through honest keys in queried key vector

➡ If the key and ciphertext were output from a prior call to the encryption
oracle, then the associated plaintext is returned

Encryption
• Non-key anonymous leakage Lid: simulator receives both the game-

generated key identifier and the plaintext size
• Key anonymous leakage Lanon: simulator receives only the plaintext size

Ideal game KI-nAE0

40

Encryption
• Non-key anonymous leakage Lid: simulator receives both the game-

generated key identifier and the plaintext size
• Key anonymous leakage Lanon: simulator receives only the plaintext size

Decryption
• First scans through honest keys in queried key vector

➡ If the key and ciphertext were output from a prior call to the encryption
oracle, then the associated plaintext is returned

• Otherwise, if there are malicious keys in the key vector, the simulator is given
the ciphertext and remaining malicious keys to decrypt

• This allows our definition to imply a variant of INT-CTXT for this setting

Ideal game KI-nAE0

Approaches to AEAD-KI
We divide key identification into several categories and analyze their security

41

Approach Description

Key labels

Trial decryption

Static key hint

Static key
commitment

Dynamic key hint

Dynamic key
commitment

Key Labels

42

• Approach: Assign each key a static label, then prepend the label to each ciphertext it produces

• Parameterized by AEAD scheme

• Examples of labels
• Google Tink: 1-byte library version + 4-byte randomly generated string

• AWS KMS: URL indicating where to fetch the key (URI)

Enc(K, N, AD, M)
(kid, K*) K
C ← AEAD.Enc(K*, N, AD || kid, M)
Return (kid, C)

←

Dec(, N, AD, Tk, C)
For (kid, K) in :

If kid = Tk:
M ← AEAD.Dec(K, N, AD || kid, C)
If M : Return ((kid, K), M)

Return

"
"

≠ ⊥
⊥

Key Labels: Analyzing security

43

Enc(K, N, AD, M)
(kid, K*) K
C ← AEAD.Enc(K*, N, AD || kid, M)
Return (kid, C)

←

• Key labels are KI-FROB-secure iff AEAD is key robust

• Note: Key labels might not be unique and cannot be used for key commitment

• Key labels are KI-nAE-secure if AEAD is key robust and multi-user AE-secure

• Note: Ciphertexts are prepended with static strings, so there is no key anonymity

• Trial decryption, a scheme where key labels are empty, is a key anonymous alternative

Dec(, N, AD, Tk, C)
For (kid, K) in :

If kid = Tk:
M ← AEAD.Dec(K, N, AD || kid, C)
If M : Return ((kid, K), M)

Return

"
"

≠ ⊥
⊥

Static Key Identifiers

44

• Approach: Compute a static identifier from the key and use this with the key label as the key tag
• Also known as a key check value in practice
• Parameterized by key check value function Fkcv, encryption key derivation function KDF (where

KDF Fkcv), and an AEAD scheme≠

Enc(K, N, AD, M)
(kid, K*) K
kcv ← Fkcv(K*) ; Ke ← KDF(K*)
Tk ← kid || kcv
C ← AEAD.Enc(Ke, N, AD || Tk, M)
Return (Tk, C)

←

Dec(, N, AD, Tk, C)
For (kid, K) in :

kcv ← Fkcv(K) ; Ke ← KDF(K)
If kid || kcv = Tk:

M ← AEAD.Dec(Ke, N, AD || Tk, C)
If M : Return ((kid, K), M)

Return

"
"

≠ ⊥
⊥

Static Key Hints vs. Static Key Commitments

45

Static Key Hints Static Key Commitments

• Key check value computed using PRF

• Can be short and efficiently computed

• Cannot be used to commit to a key, so they
need to be used with an key robust AEAD
scheme to achieve KI-FROB

• No key anonymity since it is static

• Examples

• GlobalPlatform: msb24(AESK(([1]8)16))

• Telegram: lsb64(SHA1(K))

• PKCS#11: msb24(AESK(0128))

• Key check value computed using collision-resistant
PRF

• Longer and less efficient to compute than key hints

• Can be used to commit to a key, so they can be used
with non-key robust AEAD schemes to achieve KI-
FROB

• No key anonymity since it is static

• Example

• AWS Encryption SDK:
SHA256(K || 0x436f6d6d69740102)

Dynamic Key Identifiers

46

• Approach: Compute a dynamic identifier from the key and a nonce and use this as the key tag
• This is the key anonymous counterpart to Static Key Identifiers
• To preserve anonymity, key labels are empty
• Parameterized by key check value function Fkcv, encryption key derivation function KDF, and an

AEAD scheme

Enc(K, N, AD, M)
(, K*) K ; (N0, N1) N
kcv ← Fkcv(K*, N0) ; Ke ← KDF(K*)
Tk ← kcv
C ← AEAD.Enc(Ke, N1, AD || Tk, M)
Return (Tk, C)

ε ← ←

Dec(, N, AD, Tk, C)
(N0, N1) N
For (, K) in :

kcv ← Fkcv(K, N0) ; Ke ← KDF(K)
If kcv = Tk:

M ← AEAD.Dec(Ke, N1, AD || Tk, C)
If M : Return ((, K), M)

Return

"
←

ε "

≠ ⊥ ε
⊥

Dynamic Key Hints vs. Dynamic Key Commitments

47

Dynamic Key Hints Dynamic Key Commitments

• Computed using PRF

• Can be short and efficiently computed

• Cannot be used to commit to a key, so they
need to be used with a key robust AEAD
scheme to achieve KI-FROB

• Key anonymity!

• Computed using collision-resistant PRF

• Longer and less efficient to compute than key hints

• Can be used to commit to a key, so they can be used
with non-key robust AEAD schemes to achieve KI-
FROB

• Key anonymity!

Approaches to AEAD-KI
We divide key identification into several categories and analyze their security

48

Approach Description AEAD
FROB?

Key
anonymous?

Key labels
Key generation labels each key, sent as part of ciphertext; brute-
force decrypt w/ all keys matching key label in ciphertext

Trial decryption Special case of key labels where all labels are empty

Static key hint Ciphertext includes deterministic non-CR hash of key

Static key
commitment

Ciphertext includes deterministic CR hash of key

Dynamic key hint Ciphertext includes PRF of key & nonce

Dynamic key
commitment

Ciphertext includes CR PRF of key & nonce

FROB = full key robustness

Conclusion

49

‣ The current model for AEAD does not always capture how
AEAD is used in practice

‣ Introduce Authenticated Encryption with Key Identification,
which allows key identification during the decryption step

‣ Introduce new security definitions for the AEAD-KI setting

‣ Analyze security of existing key identification approaches and
suggest new ones

jlen@cs.cornell.edu
Full version: eprint 2022/1680

mailto:jlen@cs.cornell.edu

References

50

[ADGKLS Sec’22] Ange Albertini, Thai Duong, Shay Gueron, Stefan Kölbl, Atul Luykx, Sophie Schmieg. How to abuse and fix
 authenticated encryption without key commitment. USENIX Security, 2022.

[DGRW CRYPTO’18] Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, Joanne Woodage. Fast message franking: From invisible
 salamanders to encryptment. CRYPTO, 2018.

[FOR FSE’17] Pooya Farshim, Claudio Orlandi, Răzvan Roşie. Security of symmetric primitives under incorrect usage of keys. FSE, 2017.

[GLR CRYPTO’17] Paul Grubbs, Jiahui Lu, Thomas Ristenpart. Message franking via committing authenticated encryption. CRYPTO, 2017.

[LGR Sec’21] Julia Len, Paul Grubbs, Thomas Ristenpart. Partitioning Oracle Attacks. USENIX Security, 2021.

