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But this model does not always capture how

AEAD is used in practice...




Breaking Assumption #1: Key Robustness
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When Assumptions Fail To Model Practice

Assumption #1: The adversary has no way of

knowing, or even guessing, the secret key

Key robustness attacks in practice:

e Facebook Messenger

message franking protocol
[GLR CRYPTO'17], IDGRW CRYPTO'18]

e Partitioning oracle attacks
[LGR Sec'21]

* Envelope encryption,

Subscribe with Google
[ADGKLS Sec'22]
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Example: Google Tink

Key Management with Tink

In addition to cryptographic operations Tink provides support for key management features like key versioning, key rotation, and storing
keysets or encrypting with master keys in remote key management systems (KMS). To get a quick overview of Tink design, incl. key
management features, you can also take a look at slides from a talk about Tink presented at Real World Crypto 2019.

Tinkey is a command-line tool that allows managing Tink's key material. Tink also provides a rich key management API (e.g., see
KeysetManager).

Key, Keyset, and KeysetHandle

Tink performs cryptographic tasks via so-called primitives, each of which is defined via a corresponding interface that specifies the
functionality of the primitive.

A particular implementation of a primitive is identified by a cryptographic key structure that contains all key material and parameters
needed to provide the functionality of the primitive. The key structure is a protocol buffer, whose globally unique name (a.k.a. type url) is
referred to as key type, and is used as an identifier of the corresponding implementation of a primitive. Any particular implementation
comes in a form of a KeyManager which “understands” the key type: the manager can instantiate the primitive corresponding to a given
key, or can generate new keys of the supported key type.

To take advantage of key rotation and other key management features, a Tink user works usually not with single keys, but with keysets,
which are just sets of keys with some additional parameters and metadata. In particular, this extra information in the keyset determines
which key is primary (i.e. will be used to create new cryptographic data like ciphertexts, or signatures), which keys are enabled (i.e. can be
used to process existing cryptographic data, like decrypt ciphertext or verify signatures), and which keys should not be used any more. For
more details about the structure of keys, keysets and related protocol buffers see tink.proto.

The keys in a keyset can belong to different implementations/key types, but must all implement the same primitive. Any given keyset (and
any given key) can be used for one primitive only. Moreover, to protect from accidental leakage or corruption, an Tink user doesn’t work
directly with keysets, but rather with KeysetHandle objects, which form a wrapper around the keysets. Creation of KeysetHandle objects
can be restricted to specific factories (whose visibility can be governed by a white list), to enable control over actual storage of the keys and
keysets, and so avoid accidental leakage of secret key material.

https://github.com/google/tink/blob/master/docs/KEY-MANAGEMENT.md 10
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How does decryption know

which key to use?

The keys in a keyset can belong to different implementations/key types, but must all implement the same primitive. Any given keyset (and
any given key) can be used for one primitive only. Moreover, to protect from accidental leakage or corruption, an Tink user doesn’t work
directly with keysets, but rather with KeysetHandle objects, which form a wrapper around the keysets. Creation of KeysetHandle objects
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Example: Google Tink

> Tink adds a 5-byte prefix to each ciphertext which acts as a key identifier
> Tink will try to decrypt the key specified by the identifier first

> |t decryption fails, Tink will attempt trial decrypting with “raw” keys (keys
without identitiers) until it finds a key that successfully decrypts

https://developers.google.com/tink/wire-tormat 13



When Assumptions Fail To Model Practice

Assumption #1: The adversary has no way of | Assumption #2: Decryption only ever

knowing, or even guessing, the secret key gets a single secret key
Key robustness attacks in practice: Cryptography libraries work with sets of keys:
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[GLR CRYPTO'17], IDGRW CRYPTO'18]

Attacks on sets of keys:

 Partitioning oracle attacks e Multi-user Shadowsocks [LGR Sec'21]
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.  Key management services [ADGKLS Sec'22]
* Envelope encryption,

Subscribe with Google
[ADGKLS Sec'22]
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Attacks on sets of keys:
* Partitioning oracle attacks e Multi-user Shadowsocks [LGR Sec’21]

[LGR Sec'21]

.  Key management services [ADGKLS Sec'22]
* Envelope encryption,

Subscribe with Google
[ADGKLS Sec'22]

t's unclear what security properties these approaches achieve

15



Our Contributions

> |nitiate the formal study of AEAD that supports key identification
by extending nonce-based AEAD into this setting

> Formalize a new cryptographic primitive called AEAD with key
identification (AEAD-KI)

> Introduce new security definitions for the AEAD-KI setting

= Qur definitions allow an adversary to specity malicious keys to better
model possible attacks

> Analyze security of existing key identification approaches and
suggest new ones

16
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AEAD with Key Identification

20



AEAD with Key Identification

Key generation takes as input a key label
These can be public, application-detfined strings (e.g. URIs)

SETTTRRR » The key is a key label - secret key tuple
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AEAD with Key Identification

Key generation takes as input a key label
These can be public, application-detfined strings (e.g. URIs)

SETTTRRR » The key is a key label - secret key tuple

(Tk, C) « AEKLENc(K, N, AD, M)

SERRRREE » Encryption can now output a special key tag as part of the ciphertext to help with decryption

(K, M)/ L « AEKI.Dec(K, N, AD, Ty, C)

.................................. » Decryption takes in a vector of keys, which

If decryption succeeds, it returns the key that produced the =~ Preserves information about the order

resulting plaintext, in addition to the plaintext

Otherwise, it returns the special error symbol L

23



AEAD-KI Correctness

Recall: An AEAD scheme is correct it for any (K, N,AD, M), it holds that
Dec(K,N,AD, Enc(K, N, AD,M)) =M

with probability 1 over the coins used in encryption.
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AEAD-KI Correctness

Recall: An AEAD scheme is correct it for any (K, N,AD, M), it holds that
Dec(K,N,AD,Enc(K, N, AD,M)) =M

with probability 1 over the coins used in encryption.

But what does a “correct” AEAD-KI scheme mean?

First attempt: An AEAD-KI scheme is correct if for any K, K, N,AD, M where K € K, it holds that
Dec(KK, N,AD, Enc(K,N,AD,M)) = (K, M)
with probability 1 over the coins used in encryption.

= Problem: There could be another key in K that can decrypt the ciphertext so this cannot be
an information theoretic guarantee.
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AEAD-KI Correctness

Recall: An AEAD scheme is correct it for any (K, N,AD, M), it holds that

> We expec:t an AEAD- KI scheme to func’uon correct\y
with prObabl\

it it returns the correct key but this requires a

computational definition

» \We therefore provide a simpler, absolute correctness |

First attemp] ) it holds that

definition and rely on a key robustness definition to

model this behawor
with probab|ILT,—.--Q,—W@—WW—w —ee——

= Problem: There could be another key in K that can decrypt the ciphertext so this cannot be

an information theoretic guarantee.
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AEAD-KI Correctness

An AEAD-KI scheme is correct if the following hold:
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AEAD-KI Correctness

An AEAD-KI scheme is correct if the following hold:

(1) For any (K, N,AD, M) it holds that Pr[ (K',M") = (K, M) ] = 1 where
(K',M") « Dec(|K],N,AD, Enc(K,N,AD,M))

and the probability is over the coins used by encryption

= T[ranslates traditional A
single key

—A

D correctness to syntax ot AEA

D-KI for decryption with a

29




AEAD-KI Correctness

An AEAD-KI scheme is correct if the following hold:
(1) Forany (K, N,AD, M) it holds that Pr[ (K',M’) = (K,M) | = 1 where

(K',M'") <« Dec(|[K],N,AD, Enc(K,N,AD, M))
and the probability is over the coins used by encryption

(2) For any (K, N,AD, T, C) and (K, M) « Dec(lK,N,AD, T, C) it must be that either (K,M) = 1 or
K e

= Decryption should only output a key that was in the key vector
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AEAD-KI Correctness

An AEAD-KI scheme is correct if the following hold:
(1) Forany (K, N,AD, M) it holds that Pr[ (K',M') = (K,M) | = 1 where
(K',M'") <« Dec(|K],N,AD, Enc(K,N,AD, M))

and the probability is over the coins used by encryption

(2) For any (K, N,AD, T, C) and (K, M) « Dec(IK,N,AD, T, C) it must be that either (K,M) = 1 or
Kek

(3) For any I§, K" and any (N,AD, T}, C), let
(K,M) « Dec(IK,N,AD, T,,C),(K',M’') < Dec(K',N,AD, T, C).
t(K,M) # 1 and K € K/, then (K',M") # 1

= |f decryption of (N,AD, T, C) outputs key K, any other key vector containing K

should not fail to decrypt (N,AD, T,, C)
5




Key Robustness in the AEAD-KI Setting

Full robustness (KI-FROB)
Ko K,

- N, AD, Ty, C

The adversary wins if:
((kido, Ko), Mg) « AEKI.Dec(l€,, N, AD, Ty, C)
((kid, Kq), M1) « AEKI.Dec(l<;, N, AD, Ty, C)
such that

* Decryption is successful under both key vectors

o Ko # Kj
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Key Robustness in the AEAD-KI Setting
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All-in-one confidentiality and integrity (KI-nAE)

* We extend indistinguishability style security definitions for AEAD to AEAD-K]
* Our KI-nAE deftinition captures confidentiality and integrity in this setting

* We allow adversaries to query the decryption oracle with a key vector that
includes honest or malicious keys, in any order, to better capture the setting

Geeeenn, » We use a simulator-based definition to model this

* We also specity a key-anonymous version called Kl-nAE-KA

36



All-in-one confidentiality and integrity (KI-nAE)
* Adversary goal: distinguish between real and simulated world
* Adversary has access to oracles to generate honest keys, encrypt,

and decrypt

KI-nAE1: Real world game KI-nAEO: Ideal world game

models interactions with the real scheme | uses stateful simulator to generate
oracle outputs

37



ldeal game KI-nAEQ

Encryption

* Non-key anonymous leakage Li9: simulator receives both the game-

generated key identitier and the plaintext size

» Key anonymous leakage Lanon: simulator receives only the plaintext size
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Encryption

* Non-key anonymous leakage Li9: simulator receives both the game-

generated key identitier and the plaintext size
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Decryption

* First scans through honest keys in queried key vector

= |t the key and ciphertext were output from a prior call to the encryption
oracle, then the associated plaintext is returnea
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ldeal game KI-nAEQ

Encryption

* Non-key anonymous leakage Li9: simulator receives both the game-

generated key identitier and the plaintext size

» Key anonymous leakage Lanon: simulator receives only the plaintext size

Decryption
* First scans through honest keys in queried key vector

= |f the key and ciphertext were output from a prior call to the encryption
oracle, then the associated plaintext is returned

» Otherwise, if there are malicious keys in the key vector, the simulator is given
the ciphertext and remaining malicious keys to decrypt

* This allows our definition to imply a variant of INT-CTXT for this setting

40



Approaches to AEAD-KI

We divide key identification into several categories and analyze their security

Approach Description

Key labels

Trial decryption

Static key hint

Static key
commitment

Dynamic key hint

Dynamic key
commitment

41



Key Labels

» Approach: Assign each key a static label, then prepend the label to each ciphertext it produces

* Parameterized by AEAD scheme

* Examples of labels
* Google Tink: 1-byte library version + 4-byte randomly generated string

 AWS KMS: URL indicating where to fetch the key (URI)

Dec(l, N, AD, Ty, C)
Enc(K, N, AD, M) For (kid, K) in K:
(kid, K*) « K If kid = T

C « AEAD.Enc(K*, N, AD Il kid, M) M « AEAD.Dec(K, N, AD Il kid, C)
Return (kid, C) t M #£ L: Return ((kid, K), M)
Return L

42



Key Labels: Analyzing security

Dec(K, N, AD, Ty, C)

Enc(K, N, AD, M)

(kid, K*) « K

C « AEAD.Enc(K*, N, A
Return (kid, C)

» Key labels are KI-FROB-secure iff AEA

D || kid, M)

For (kid, K) in K:

If kid = Ty
M < AEA
tM=£ L:
Return L

D is key robust

D.

Dec(K, N, A

D || kid, C)

Return ((kid, K), M)

* Note: Key labels might not be unique and cannot be used for key commitment

e Key labels are KI-nAE-secure it AEA

D is key robust and multi-user AE-secure

* Note: Ciphertexts are prepended with static strings, so there is no key anonymity

* Trial decryption, a scheme where key labels are empty, is a key anonymous alternative

43



Static Key Identifiers

» Approach: Compute a static identitier from the key and use this with the key label as the key tag

* Also known as a key check value in practice
» Parameterized by key check value function Fi., encryption key derivation function KDF (where
KDF # Fyo), and an AEAD scheme

Dec(K, N, AD, Ty, C)

For (kid, K) in K:

eV + Fra(K) ; Ko = KDF(K)
t kid Il kev = Ty

Enc(K, N, AD, M)
(kid, K*) « K
kev « Fioo(K*) ; Ko « KDF(K*)

.+ kid Il kev M — AEAD.Dec(K., N, AD Il T, C)

C « AEAD.Enc(Ke, N, AD Il Ty, M)
Return (Ty, C)

M #£ 1: Return ((kid, K), M)

Return

44



Static Key Hints vs. Static Key Commitments

Static Key Hints

* Key check value computed using PRF
* Can be short and efficiently computed

e Cannot be used to commit to a key, so t
need to be used with an key robust AEA
scheme to achieve KI-FROB

* No key anonymity since it is static

* Examples
e GlobalPlattform: msbaa(AESK(([1]5)16))
* Telegram: Isbg4(SHA1(K))
o PKCS#11: mshbas(AESK(0128))

ney

Static Key Commitments

* Key check value computed using collision-resistant
°RF

* Longer and less efficient to compute than key hints

e Can be used to commit to a key, so they can be used
with non-key robust AEAD schemes to achieve KiI-

FROB
* No key anonymity since it is static
* Example

* AWS Encryption SDK:
SHA256(K Il 0x436f6d6d69740102)
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Dynamic Key Identifiers

» Approach: Compute a dynamic identifier from the key and a nonce and use this as the key tag
* This is the key anonymous counterpart to Static Key Identifiers

* To preserve anonymity, key labels are empty

» Parameterized by key check value function Fi.,, encryption key derivation function KDF, and an
AEAD scheme

Dec(lK, N, AD, T, C)

(No, N1) < N

For (g, K) in [K:

<cv + Fra(K, No) ; Ko « KDF(K)

Enc(K, N, AD, M)
(e, K*) < K; (No, N1) < N
kev  Fral(K*, No) ; Ko+ KDF(K*)

fkev = Ty
M « AEAD.Dec(K¢, Nq, AD Il Ty, C)
tM #£ L: Return ((g, K), M)

Return L

K € kcv
C « AEAD.Enc(Ks, Nq, AD Il Ty, M)
Return (Ty, C)
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Dynamic Key Hints vs. Dynamic Key Commitments

Dynamic Key Hints

* Computed using PRF
* Can be short and efficiently computed

* Cannot be used to commit to a key, so they
need to be used with a key robust AEAD
scheme to achieve KI-FROB

e Key anonymity!

Dynamic Key Commitments

» Computed using collision-resistant PRF
* Longer and less efficient to compute than key hints

» Can be used to commit to a key, so they can be used
with non-key robust AEAD schemes to achieve KiI-

FROB

e Key anonymity!
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FROB = full key robustness

Approaches to AEAD-KI

We divide key identification into several categories and analyze their security

AEAD Key

Descrinti
Approach escription FROB? anonymous?

Key generation labels each key, sent as part of ciphertext; brute-

Key label
=y 1abe force decrypt w/ all keys matching key label in ciphertext

Trial decryption  Special case of key labels where all labels are empty

Static key hint ~ Ciphertext includes deterministic non-CR hash of key

Static key

. Ciphertext includes deterministic CR hash of key
commitment

Dynamic key hint  Ciphertext includes PRF ot key & nonce

D ic k
ynamic Key Ciphertext includes CR PRF of key & nonce
commitment

48



jlen@cs.cornell.edu

COHCIUSIOn Full version: eprint 2022/1680

> The current model for AEAD does not always capture how
AEAD is used in practice

> Introduce Authenticated Encryption with Key Identification,
which allows key identitication during the decryption step

» Introduce new security definitions for the AEAD-KI setting

> Analyze security of existing key identification approaches and
suggest new ones
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