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‣ Input messages must be delivered within  time.

‣ Assumed to prove security of blockchains 
[GKL15,PS17,DGKR18,PS18,CM19,DMM+20].
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1. Weighted Fanout Flooding (WFF):

‣ Secure assuming any constant fraction  of 
resources being honest.

γ

‣ Diameter:  for  parties.O(log(n)) n

‣ Message complexity: .O(n ⋅ γ−1 ⋅ (log(n) + κ))
2. Extensive simulations of WFF.

‣  Confirms practicality protocol.
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Each party  
has a publicly 
known weight 

.

pi

wi > 0

Assumption: , s.t. 

#       #     + #    ).

∃γ ∈ (0,1]
≥ γ ⋅ (

Implied by the standard PoS assumption.
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‣ Selection of neighbors requires  coinflips.n

‣ Unknown number of neighbors is not very practical.
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Theorem (informal). 
For  and  WFF(k) is a -Flood protocol.k = O((log(n) + κ) ⋅ γ−1) Δ = O(log(n) ⋅ δ) Δ

‣ Message complexity: .O(k ⋅ n)

‣ Neighbors of a party : .p O(k ⋅ ⌈αp ⋅ n⌉)

 = security parameter.
 = fraction of honest weight.
 = delay on underlying channels.

κ
γ
δ
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Exp = Exponentially distributed weights.
Rand = Random corruptions.
Heavy = Corrupt heavy nodes first. 
Light = Corrupt light nodes first.  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‣ Many more details and additional results: https://eprint.iacr.org/2022/608.
‣ Necessity of increasing neighborhood for heavy parties.

‣ Necessity of  neighborhood for fan out flooding.log(n)
‣ Delivery to parties with zero weight.
‣ Additional simulations.

‣ Contact: sethomsen@cs.au.dk.
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