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» Input messages must be delivered within A time.

» Assumed to prove security of blockchains
[GKL15,PS17,DGKR18,PS18,CM19,DMM+20].
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Abstract

In recent years, permisionless blockchains have received a lot of attention both from
industry and academia, where substantial effort has been spent to develop consensus protocols
that are secure under the assumption that less than half (or a third) of a given resource (e.g.,
stake or computing power) is controlled by corrupted parties. The security proofs of these
consensus protocols usually assume the availability of a network functionality guaranteeing
that a block sent by an honest party is received by all honest parties within some bounded
time. To obtain an overall protocol that is secure under the same corruption assumption,
it is therefore necessary to combine the consensus protocol with a network protocol that
achieves this property under that assumption. In practice, however, the underlying network
is typically implemented by flooding protocols that are not proven to be secure in the setting
where a fraction of the considered total weight can be corrupted. This has led to many
so-called eclipse attacks on existing protocols and tailor-made fixes against specific attacks.

To close this apparent gap, we present the first practical flooding protocol that provably
delivers sent messages to all honest parties after a logarithmic number of steps. We prove
security in the setting where all parties are publicly assigned a positive weight and the
adversary can corrupt parties accumulating up to a constant fraction of the total weight.
This can directly be used in the proof-of-stake setting, but is not limited to it. To prove
the security of our protocol, we combine known results about the diameter of Erdés-Rényi
graphs with reductions between different types of random graphs. We further show that the
efficiency of our protocol is asymptotically optimal.

The practicality of our protocol is supported by extensive simulations for different
numbers of parties, weight distributions, and corruption strategies. The simulations confirm
our theoretical results and show that messages are delivered quickly regardless of the weight
distribution, whereas protocols that are oblivious of the parties’ weights completely fail if the
weights are unevenly distributed. Furthermore, the average message complexity per party of
our protocol is within a small constant factor of such a protocol.

*Work in part done while the author was at Carnegie Mellon University. Supported in part by the NSF award
1916939, DARPA SIEVE program, a gift from Ripple, a DoE NETL award, a JP Morgan Faculty Fellowship, a
PNC center for financial services innovation award, and a Cylab seed funding award.

*Work was in part done while the author was at Purdue University.
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» Selection of neighbors requires n coinflips.

> Unknown number of neighbors is not very practical.

-

E(p) £ [a, - n]
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MAIN RESULT

Theorem (informal).
Fork = 0((10g(n) + K) }/‘1) and A = O(log(n) - 6) WFF(k) is a A-Flood protocol.

K = security parameter.
y = fraction of honest weight.
0 = delay on underlying channels.

- Message complexity: O(k - n).

. Neighbors of a party p: O(k |a, - n] )
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Heavy = Corrupt heavy nodes first.
Light = Corrupt light nodes first.

P RACTI CA L I T Y O F W F F Exp = Exponentially distributed weights.
Rand = Random corruptions.

—4— Exp, Rand
—+— Exp, Heavy
—o— Exp, Light
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