
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY DECEMBER 2022 PHD STUDENT

SØREN ELLER THOMSEN

PRACTICAL PROVABLY SECURE
FLOODING FOR BLOCKCHAINS
Chen-Da Liu-Zhang, NTT Research
Christian Matt, Concordium
Ueli Maurer, ETH Zurich
Guilherme Rito, ETH Zurich
Søren Eller Thomsen, Aarhus University

BLOCKCHAINS

2

Blockchain

BLOCKCHAINS

2

Blockchain

BLOCKCHAINS

2

A

Blockchain

BLOCKCHAINS

2

A

B

Blockchain

BLOCKCHAINS

2

A

C

B

Blockchain

BLOCKCHAINS

A

C

B

Blockchain

3

BLOCKCHAINS

4

A

C

B😈

😈

😈

Blockchain

Blockchain

BLOCKCHAINS

5

A

C

B😈

😈

😈

≥

😇

Blockchain

BLOCKCHAINS

6

A

C

B😈

😈

😈

≥

😇

-FloodΔ

BLOCKCHAINS

7

Blockchain

A

C

B

-FloodΔ

≥😈

😈

😈

😇

FLOODING FOR BLOCKCHAINS

8

-FloodΔ

P1

P2

P3

Pn

⋮

‣ Input messages must be delivered within time.Δ

9

P1

P2

P3

Pn

⋮
-FloodΔ

FLOODING FOR BLOCKCHAINS

10

P1

P2

P3

Pn

⋮
-FloodΔ

FLOODING FOR BLOCKCHAINS

‣ Input messages must be delivered within time.Δ

11

FLOODING FOR BLOCKCHAINS

P1

P2

P3

Pn

⋮
-FloodΔ

‣ Input messages must be delivered within time.

‣ Assumed to prove security of blockchains
[GKL15,PS17,DGKR18,PS18,CM19,DMM+20].

Δ

12

P1

P2

P4

P6

P7

P3

P5

P8

FLOODING IN PRACTICE

13

P1

P2

P4

P6

P7

P3

P5

P8

FLOODING IN PRACTICE

14

P1

P2

P4

P6

P7

P3

P5

P8

FLOODING IN PRACTICE

15

P1

P2

P4

P6

P7

P3

P5

P8

FLOODING IN PRACTICE

16

P1

P2

P4

P6

P7

P3

P5

P8

FLOODING IN PRACTICE

17

P1

P2

P4

P6

P7

P3

P5

P8

FLOODING IN PRACTICE

😈 😈

😈
😈

😈

18

P1

P2

P4

P6

P7

P3

P5

P8

FLOODING IN PRACTICE

😈 😈

😈
😈

😈

BLOCKCHAINS

19

Blockchain

A

C

B

-FloodΔ

≥😈

😈

😈

😇

BLOCKCHAINS

20

Blockchain

A

C

B≥😈

😈

😈

😇

#😇 #👿 γ ⋅ ≥

BLOCKCHAINS

21

Blockchain

A

C

B≥😈

😈

😈

😇 Wanted!

#😇 #👿 γ ⋅ ≥

Q: Can efficient flooding be realized assuming a
constant fraction of honest weight?

22

OUR WORK

Q: Can efficient flooding be realized assuming a
constant fraction of honest weight?

23

A: YES!

OUR WORK

CONTRIBUTIONS

24

CONTRIBUTIONS

1. Weighted Fanout Flooding (WFF):

24

CONTRIBUTIONS

1. Weighted Fanout Flooding (WFF):

‣ Secure assuming any constant fraction of
resources being honest.

γ

24

CONTRIBUTIONS

1. Weighted Fanout Flooding (WFF):

‣ Secure assuming any constant fraction of
resources being honest.

γ

‣ Diameter: for parties.O(log(n)) n

24

CONTRIBUTIONS

1. Weighted Fanout Flooding (WFF):

‣ Secure assuming any constant fraction of
resources being honest.

γ

‣ Diameter: for parties.O(log(n)) n

‣ Message complexity: .O(n ⋅ γ−1 ⋅ (log(n) + κ))

24

CONTRIBUTIONS

1. Weighted Fanout Flooding (WFF):

‣ Secure assuming any constant fraction of
resources being honest.

γ

‣ Diameter: for parties.O(log(n)) n

‣ Message complexity: .O(n ⋅ γ−1 ⋅ (log(n) + κ))
2. Extensive simulations of WFF.

24

CONTRIBUTIONS

1. Weighted Fanout Flooding (WFF):

‣ Secure assuming any constant fraction of
resources being honest.

γ

‣ Diameter: for parties.O(log(n)) n

‣ Message complexity: .O(n ⋅ γ−1 ⋅ (log(n) + κ))
2. Extensive simulations of WFF.

‣ Confirms practicality protocol.

24

MODEL

25

MODEL

26

MODEL

27

Each party
has a publicly
known weight

.

pi

wi > 0

MODEL

28

😈

😈

😇

😇
Each party
has a publicly
known weight

.

pi

wi > 0

MODEL

29

😈

😈

😇

😇
Each party
has a publicly
known weight

.

pi

wi > 0

MODEL

30

😈

😈

😇

😇
Each party
has a publicly
known weight

.

pi

wi > 0

Assumption: , s.t.

+ #).

∃γ ∈ (0,1]
≥ γ ⋅ (

MODEL

30

😈

😈

😇

😇
Each party
has a publicly
known weight

.

pi

wi > 0

Assumption: , s.t.

+ #).

∃γ ∈ (0,1]
≥ γ ⋅ (

Implied by the standard PoS assumption.

WARMUP: A SIMPLE INEFFICIENT SOLUTION

31

WARMUP: A SIMPLE INEFFICIENT SOLUTION

31

‣ Use existing flooding protocol where parties behave proportionally to their weight.💡

WARMUP: A SIMPLE INEFFICIENT SOLUTION

31

‣ Use existing flooding protocol where parties behave proportionally to their weight.

‣ [MNT22]: “Forward to each party with a probability ” ensures logarithmic diameter.ρ

💡

💡

WARMUP: A SIMPLE INEFFICIENT SOLUTION

32

P2P1

ρ

‣ Use existing flooding protocol where parties behave proportionally to their weight.

‣ [MNT22]: “Forward to each party with a probability ” ensures logarithmic diameter.ρ

💡

💡

WARMUP: A SIMPLE INEFFICIENT SOLUTION

33

P2P1 w1 w2

‣ Use existing flooding protocol where parties behave proportionally to their weight.

‣ [MNT22]: “Forward to each party with a probability ” ensures logarithmic diameter.ρ

💡

💡

WARMUP: A SIMPLE INEFFICIENT SOLUTION

34

P2P1

‣ Use existing flooding protocol where parties behave proportionally to their weight.

‣ [MNT22]: “Forward to each party with a probability ” ensures logarithmic diameter.ρ

💡

💡

WARMUP: A SIMPLE INEFFICIENT SOLUTION

35

P2P1

‣ Use existing flooding protocol where parties behave proportionally to their weight.

‣ [MNT22]: “Forward to each party with a probability ” ensures logarithmic diameter.ρ

💡

💡

WARMUP: A SIMPLE INEFFICIENT SOLUTION

36

P2P1

1 − (1 − ρ)w1⋅w2

‣ Use existing flooding protocol where parties behave proportionally to their weight.

‣ [MNT22]: “Forward to each party with a probability ” ensures logarithmic diameter.ρ

💡

💡

WARMUP: A SIMPLE INEFFICIENT SOLUTION

37

P2P1

1 − (1 − ρ)w1⋅w2

Wanted: Scaling invariance!

DEVELOPING THE IDEA

38

‣ A function that determines how many nodes each party should emulate.E(p)💡

39

P2P1 w1 w2

DEVELOPING THE IDEA

‣ A function that determines how many nodes each party should emulate.E(p)💡

40

P2P1 E(p1) E(p2)

DEVELOPING THE IDEA

‣ A function that determines how many nodes each party should emulate.E(p)💡

41

P2P1

DEVELOPING THE IDEA

‣ A function that determines how many nodes each party should emulate.E(p)💡

42

P2P1

1 − (1 − ρ)E(p1)⋅E(p2)

DEVELOPING THE IDEA

‣ A function that determines how many nodes each party should emulate.E(p)💡

PROPERTIES OF A GOOD EMULATION FUNCTION

43

‣ Invariant to scaling of weights.

PROPERTIES OF A GOOD EMULATION FUNCTION

43

‣ Invariant to scaling of weights.

‣ Any party should emulate at least one node.

PROPERTIES OF A GOOD EMULATION FUNCTION

43

‣ Invariant to scaling of weights.

‣ Any party should emulate at least one node.

PROPERTIES OF A GOOD EMULATION FUNCTION

44

Message complexity of [MNT22] is
linear in and .n γ−1

‣ Invariant to scaling of weights.

‣ Any party should emulate at least one node.

‣ Number of emulated nodes should be low.

PROPERTIES OF A GOOD EMULATION FUNCTION

44

Message complexity of [MNT22] is
linear in and .n γ−1

‣ Invariant to scaling of weights.

‣ Any party should emulate at least one node.

‣ Number of emulated nodes should be low.

‣ Fraction of honestly emulated nodes should be high.

PROPERTIES OF A GOOD EMULATION FUNCTION

44

Message complexity of [MNT22] is
linear in and .n γ−1

CANDIDATES?

45

‣ Invariant to scaling of weight.

‣ Any party should emulate at least one node.

‣ Number of emulated nodes should be low.

‣ Fraction of honestly emulated nodes should be high.

CANDIDATES?

45

E(p) ≜ wp

‣ Invariant to scaling of weight.

‣ Any party should emulate at least one node.

‣ Number of emulated nodes should be low.

‣ Fraction of honestly emulated nodes should be high.

CANDIDATES?

46

E(p) ≜ wp

‣ Invariant to scaling of weight.

‣ Any party should emulate at least one node.

‣ Number of emulated nodes should be low.

‣ Fraction of honestly emulated nodes should be high.

CANDIDATES?

47

E(p) ≜ αp

‣ Invariant to scaling of weight.

‣ Any party should emulate at least one node.

‣ Number of emulated nodes should be low.

‣ Fraction of honestly emulated nodes should be high.

CANDIDATES?

47

E(p) ≜ αp

Fraction of weight owned by party .p

‣ Invariant to scaling of weight.

‣ Any party should emulate at least one node.

‣ Number of emulated nodes should be low.

‣ Fraction of honestly emulated nodes should be high.

CANDIDATES?

47

E(p) ≜ αp

Fraction of weight owned by party .p

‣ Invariant to scaling of weight.

‣ Any party should emulate at least one node.

‣ Number of emulated nodes should be low.

‣ Fraction of honestly emulated nodes should be high.

CANDIDATES?

47

E(p) ≜ αp

Fraction of weight owned by party .p

‣ Invariant to scaling of weight.

‣ Any party should emulate at least one node.

‣ Number of emulated nodes should be low.

‣ Fraction of honestly emulated nodes should be high.

CANDIDATES?

48

E(p) ≜ ⌈αp⌉
‣ Invariant to scaling of weight.

‣ Any party should emulate at least one node.

‣ Number of emulated nodes should be low.

‣ Fraction of honestly emulated nodes should be high.

CANDIDATES?

48

E(p) ≜ ⌈αp⌉
‣ Invariant to scaling of weight.

‣ Any party should emulate at least one node.

‣ Number of emulated nodes should be low.

‣ Fraction of honestly emulated nodes should be high.

CANDIDATES?

48

E(p) ≜ ⌈αp⌉
‣ Invariant to scaling of weight.

‣ Any party should emulate at least one node.

‣ Number of emulated nodes should be low.

‣ Fraction of honestly emulated nodes should be high.

CANDIDATES?

48

E(p) ≜ ⌈αp⌉
‣ Invariant to scaling of weight.

‣ Any party should emulate at least one node.

‣ Number of emulated nodes should be low.

‣ Fraction of honestly emulated nodes should be high.

CANDIDATES?

48

E(p) ≜ ⌈αp⌉
‣ Invariant to scaling of weight.

‣ Any party should emulate at least one node.

‣ Number of emulated nodes should be low.

‣ Fraction of honestly emulated nodes should be high.

CANDIDATES?

49

E(p) ≜ 1
‣ Invariant to scaling of weight.

‣ Any party should emulate at least one node.

‣ Number of emulated nodes should be low.

‣ Fraction of honestly emulated nodes should be high.

CANDIDATES?

50

E(p) ≜ ⌈αp ⋅ n⌉
‣ Invariant to scaling of weight.

‣ Any party should emulate at least one node.

‣ Number of emulated nodes should be low.

‣ Fraction of honestly emulated nodes should be high.

CANDIDATES?

50

E(p) ≜ ⌈αp ⋅ n⌉
‣ Invariant to scaling of weight.

‣ Any party should emulate at least one node.

‣ Number of emulated nodes should be low.

‣ Fraction of honestly emulated nodes should be high.

CANDIDATES?

50

E(p) ≜ ⌈αp ⋅ n⌉
‣ Invariant to scaling of weight.

‣ Any party should emulate at least one node.

‣ Number of emulated nodes should be low.

‣ Fraction of honestly emulated nodes should be high.

CANDIDATES?

50

E(p) ≜ ⌈αp ⋅ n⌉

(≤ 2 ⋅ n)

‣ Invariant to scaling of weight.

‣ Any party should emulate at least one node.

‣ Number of emulated nodes should be low.

‣ Fraction of honestly emulated nodes should be high.

CANDIDATES?

50

E(p) ≜ ⌈αp ⋅ n⌉

(≤ 2 ⋅ n)

(≥ 2−1 ⋅ γ)

‣ Invariant to scaling of weight.

‣ Any party should emulate at least one node.

‣ Number of emulated nodes should be low.

‣ Fraction of honestly emulated nodes should be high.

A FEW ISSUES REMAIN

51

E(p) ≜ ⌈αp ⋅ n⌉ P2P1

1 − (1 − ρ)E(w1)⋅E(w2)

A FEW ISSUES REMAIN

51

‣ Selection of neighbors requires coinflips.n

E(p) ≜ ⌈αp ⋅ n⌉ P2P1

1 − (1 − ρ)E(w1)⋅E(w2)

A FEW ISSUES REMAIN

51

‣ Selection of neighbors requires coinflips.n

‣ Unknown number of neighbors is not very practical.

E(p) ≜ ⌈αp ⋅ n⌉ P2P1

1 − (1 − ρ)E(w1)⋅E(w2)

52

WEIGHTED FANOUT FLOODING (WFF)

52

WEIGHTED FANOUT FLOODING (WFF)

1. E(p) ≜ ⌈αp ⋅ n⌉

52

WEIGHTED FANOUT FLOODING (WFF)

1. E(p) ≜ ⌈αp ⋅ n⌉

2. Party selects
neighbors.

p K = k ⋅ E(p)

52

WEIGHTED FANOUT FLOODING (WFF)

1. E(p) ≜ ⌈αp ⋅ n⌉

2. Party selects
neighbors.

p K = k ⋅ E(p)

Parameter of protocol.

52

WEIGHTED FANOUT FLOODING (WFF)

1. E(p) ≜ ⌈αp ⋅ n⌉

2. Party selects
neighbors.

p K = k ⋅ E(p)

3. Neighbors are selected by weighted
sampling without replacement where
each party is weighted by .q E(q)

Parameter of protocol.

52

WEIGHTED FANOUT FLOODING (WFF)

1. E(p) ≜ ⌈αp ⋅ n⌉

2. Party selects
neighbors.

p K = k ⋅ E(p)

3. Neighbors are selected by weighted
sampling without replacement where
each party is weighted by .q E(q)

Parameter of protocol.

P5P4P3P2

P1

53

WEIGHTED FANOUT FLOODING (WFF)

P5P4P3P2

P1 E(P1) = 2

E(P2) = 5 E(P3) = 3 E(P4) = 4 E(P5) = 1

1.

2. Party selects
neighbors.

3. Neighbors are selected by weighted
sampling without replacement where
each party is weighted by .

E(p) ≜ ⌈αp ⋅ n⌉

p K = k ⋅ E(p)

q E(q)

Parameter of protocol.

54

WEIGHTED FANOUT FLOODING (WFF)

P5P4P3P2

P1 E(P1) = 2

E(P2) = 5 E(P3) = 3 E(P4) = 4 E(P5) = 1

1.

2. Party selects
neighbors.

3. Neighbors are selected by weighted
sampling without replacement where
each party is weighted by .

E(p) ≜ ⌈αp ⋅ n⌉

p K = k ⋅ E(p)

q E(q)

Parameter of protocol.

55

WEIGHTED FANOUT FLOODING (WFF)

P5P4P3P2

P1 E(P1) = 2

E(P2) = 5 E(P3) = 3 E(P4) = 4 E(P5) = 1

1.

2. Party selects
neighbors.

3. Neighbors are selected by weighted
sampling without replacement where
each party is weighted by .

E(p) ≜ ⌈αp ⋅ n⌉

p K = k ⋅ E(p)

q E(q)

Parameter of protocol.

56

WEIGHTED FANOUT FLOODING (WFF)

P5P4P3P2

P1 E(P1) = 2

E(P2) = 5 E(P3) = 3 E(P4) = 4 E(P5) = 1

1.

2. Party selects
neighbors.

3. Neighbors are selected by weighted
sampling without replacement where
each party is weighted by .

E(p) ≜ ⌈αp ⋅ n⌉

p K = k ⋅ E(p)

q E(q)

Parameter of protocol.

57

WEIGHTED FANOUT FLOODING (WFF)

P5P4P3P2

P1 E(P1) = 2

E(P2) = 5 E(P3) = 3 E(P4) = 4 E(P5) = 1

1.

2. Party selects
neighbors.

3. Neighbors are selected by weighted
sampling without replacement where
each party is weighted by .

E(p) ≜ ⌈αp ⋅ n⌉

p K = k ⋅ E(p)

q E(q)

Parameter of protocol.

MAIN RESULT

58

MAIN RESULT

58

Theorem (informal).
For and WFF(k) is a -Flood protocol.k = O((log(n) + κ) ⋅ γ−1) Δ = O(log(n) ⋅ δ) Δ

 = security parameter.
 = fraction of honest weight.
 = delay on underlying channels.

κ
γ
δ

MAIN RESULT

58

Theorem (informal).
For and WFF(k) is a -Flood protocol.k = O((log(n) + κ) ⋅ γ−1) Δ = O(log(n) ⋅ δ) Δ

‣ Message complexity: .O(k ⋅ n)

 = security parameter.
 = fraction of honest weight.
 = delay on underlying channels.

κ
γ
δ

MAIN RESULT

58

Theorem (informal).
For and WFF(k) is a -Flood protocol.k = O((log(n) + κ) ⋅ γ−1) Δ = O(log(n) ⋅ δ) Δ

‣ Message complexity: .O(k ⋅ n)

‣ Neighbors of a party : .p O(k ⋅ ⌈αp ⋅ n⌉)

 = security parameter.
 = fraction of honest weight.
 = delay on underlying channels.

κ
γ
δ

PRACTICALITY OF WFF

59

PRACTICALITY OF WFF

59

Exp = Exponentially distributed weights.
Rand = Random corruptions.
Heavy = Corrupt heavy nodes first.
Light = Corrupt light nodes first.  

WFF VS WOF

60

WFF VS WOF

60

“Weight Oblivious Flooding”

WFF VS WOF

60

“Weight Oblivious Flooding”

CONCLUSION

61

SØREN ELLER THOMSEN
DECEMBER 2022 PHD. STUDENT

DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

CONCLUSION

‣ We present the first provably secure flooding protocol in the weighted setting and
demonstrate its practicality using probabilistic simulations.

61

SØREN ELLER THOMSEN
DECEMBER 2022 PHD. STUDENT

DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

https://eprint.iacr.org/2022/608
mailto:sethomsen@cs.au.dk

CONCLUSION

‣ We present the first provably secure flooding protocol in the weighted setting and
demonstrate its practicality using probabilistic simulations.

‣ Many more details and additional results: https://eprint.iacr.org/2022/608.

61

SØREN ELLER THOMSEN
DECEMBER 2022 PHD. STUDENT

DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

https://eprint.iacr.org/2022/608
mailto:sethomsen@cs.au.dk

CONCLUSION

‣ We present the first provably secure flooding protocol in the weighted setting and
demonstrate its practicality using probabilistic simulations.

‣ Many more details and additional results: https://eprint.iacr.org/2022/608.
‣ Necessity of increasing neighborhood for heavy parties.

61

SØREN ELLER THOMSEN
DECEMBER 2022 PHD. STUDENT

DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

https://eprint.iacr.org/2022/608
mailto:sethomsen@cs.au.dk

CONCLUSION

‣ We present the first provably secure flooding protocol in the weighted setting and
demonstrate its practicality using probabilistic simulations.

‣ Many more details and additional results: https://eprint.iacr.org/2022/608.
‣ Necessity of increasing neighborhood for heavy parties.

‣ Necessity of neighborhood for fan out flooding.log(n)

61

SØREN ELLER THOMSEN
DECEMBER 2022 PHD. STUDENT

DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

https://eprint.iacr.org/2022/608
mailto:sethomsen@cs.au.dk

CONCLUSION

‣ We present the first provably secure flooding protocol in the weighted setting and
demonstrate its practicality using probabilistic simulations.

‣ Many more details and additional results: https://eprint.iacr.org/2022/608.
‣ Necessity of increasing neighborhood for heavy parties.

‣ Necessity of neighborhood for fan out flooding.log(n)
‣ Delivery to parties with zero weight.

61

SØREN ELLER THOMSEN
DECEMBER 2022 PHD. STUDENT

DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

https://eprint.iacr.org/2022/608
mailto:sethomsen@cs.au.dk

CONCLUSION

‣ We present the first provably secure flooding protocol in the weighted setting and
demonstrate its practicality using probabilistic simulations.

‣ Many more details and additional results: https://eprint.iacr.org/2022/608.
‣ Necessity of increasing neighborhood for heavy parties.

‣ Necessity of neighborhood for fan out flooding.log(n)
‣ Delivery to parties with zero weight.
‣ Additional simulations.

61

SØREN ELLER THOMSEN
DECEMBER 2022 PHD. STUDENT

DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

https://eprint.iacr.org/2022/608
mailto:sethomsen@cs.au.dk

CONCLUSION

‣ We present the first provably secure flooding protocol in the weighted setting and
demonstrate its practicality using probabilistic simulations.

‣ Many more details and additional results: https://eprint.iacr.org/2022/608.
‣ Necessity of increasing neighborhood for heavy parties.

‣ Necessity of neighborhood for fan out flooding.log(n)
‣ Delivery to parties with zero weight.
‣ Additional simulations.

‣ Contact: sethomsen@cs.au.dk.

61

SØREN ELLER THOMSEN
DECEMBER 2022 PHD. STUDENT

DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

https://eprint.iacr.org/2022/608
mailto:sethomsen@cs.au.dk

REFERENCES
[GKL15]: Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis and
applications. In EUROCRYPT (2), volume 9057 of Lecture Notes in Computer Science, pages 281–310. Springer,
2015.

[PS17]: Rafael Pass and Elaine Shi. Fruitchains: A fair blockchain. In PODC, pages 315–324. ACM, 2017.

[DGKR18]: Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros praos: An
adaptively-secure, semi-synchronous proof-of-stake blockchain. In EUROCRYPT (2), volume 10821 of Lecture
Notes in Computer Science, pages 66–98. Springer, 2018.

[CM19]: Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed ledger. Theor. Comput. Sci.,
777:155–183, 2019.

[DMM+20]: Thomas Dinsdale-Young, Bernardo Magri, Christian Matt, Jesper Buus Nielsen, and Daniel Tschudi.
Afgjort: A partially synchronous finality layer for blockchains. In SCN, volume 12238 of Lecture Notes in Computer
Science, pages 24–44. Springer, 2020.

[MNT22]: Christian Matt, Jesper Buus Nielsen, and Søren Eller Thomsen. Formalizing delayed adaptive
corruptions and the security of flooding networks. In Advances in Cryptology – CRYPTO 2022. Springer, 2022.

62

SCALABILITY OF WFF

63

