Efficient Adaptively-Secure Byzantine Agreement for Long Messages

Kartik Nayak

with Amey Bhangale, Chen-Da Liu-Zhang, Julian Loss

n generals (≤ t Byzantine) need to agree on a battle plan

n generals (≤ t Byzantine) need to agree on a battle plan

n generals (≤ t Byzantine) need to agree on a battle plan

Retreat

n generals (≤ t Byzantine) need to agree on a battle plan

Requirements:

- Agreement: no two honest generals disagree
- Validity: if all generals start with same input, they commit that input
- Termination

Retreat

Some Key Properties For BA Protocols

Some Key Properties For BA Protocols

- 1. Communication complexity
- 2. Security under adaptive adversaries

Goal: Can we achieve a BA protocol with "low communication complexity" while being secure under an adaptive adversary?

Bound on Communication Complexity [DR'82]

Bound on Communication Complexity [DR'82]

Dolev-Reischuk bound: Any deterministic BA protocol needs honest parties to send $\Omega(t^2)$ messages

- Typically t = O(n), so $\Omega(n^2)$ messages

Can we achieve BA with o(n²) messages?

Yes, use randomization!

Idea: randomly elect a small committee of size k

Only the committee members send messages to all parties; thus, communication = O(poly(k).n)

Concern: an adaptive adversary can corrupt the committee

Solution: Player-replaceability, i.e., keep changing the committee after every round

Concern: an adaptive adversary can corrupt the committee

Solution: Player-replaceability, i.e., keep changing the committee after every round

Round r

Concern: an adaptive adversary can corrupt the committee

Solution: Player-replaceability, i.e., keep changing the committee after every round

Round r

Concern: an adaptive adversary can corrupt the committee

Solution: Player-replaceability, i.e., keep changing the committee after every round

Concern: an adaptive adversary can corrupt the committee

Solution: Player-replaceability, i.e., keep changing the committee after every round

Communication Complexity of BA

Communication Complexity of BA

Thus, we have a BA protocol with O(poly(k).n) messages. Are we done?

If we have an l-bit value, communication complexity is O(poly(k).nl) bits

What happens if l is large?

- e.g., $l = \Omega(n^2)$
- e.g., l = 10 MB sized block

Intuition: Break down the problem into two steps

- Agree on a k-bit accumulator value corresponding to one of the inputs, requires O(kn²) communication
- Share the l-bit input using erasure coding techniques

Intuition: Break down the problem into two steps

- Agree on a k-bit accumulator value corresponding to one of the inputs, requires O(kn²) communication
- Share the l-bit input using erasure coding techniques

 $m_i(l \text{ bits}) \bullet$

Intuition: Break down the problem into two steps

- Agree on a k-bit accumulator value corresponding to one of the inputs, requires O(kn²) communication
- Share the l-bit input using erasure coding techniques

Intuition: Break down the problem into two steps

- Agree on a k-bit accumulator value corresponding to one of the inputs, requires O(kn²) communication
- Share the l-bit input using erasure coding techniques

Intuition: Break down the problem into two steps

- Agree on a k-bit accumulator value corresponding to one of the inputs, requires O(kn²) communication
- Share the l-bit input using erasure coding techniques

Distribute phase: O(ln)

Intuition: Break down the problem into two steps

- Agree on a k-bit accumulator value corresponding to one of the inputs, requires O(kn²) communication
- Share the l-bit input using erasure coding techniques

Distribute phase: O(ln)

Reshare phase: $O(n^2.l/n) = O(ln)$

Intuition: Break down the problem into two steps

- Agree on a k-bit accumulator value corresponding to one of the inputs, requires O(kn²) communication
- Share the l-bit input using erasure coding techniques

Agreeing on accumulator: O(kn²)

Distribute phase: O(ln)

Reshare phase: $O(n^2.l/n) = O(ln)$

Intuition: Break down the problem into two steps

- Agree on a k-bit accumulator value corresponding to one of the inputs, requires O(kn²) communication
- Share the l-bit input using erasure coding techniques

Agreeing on accumulator: O(kn²)

Distribute phase: O(ln)

Reshare phase: $O(n^2.l/n) = O(ln)$

Total communication: O(ln+kn²) bits

State of the Art

State of the Art

Sub-quadratic communication complexity against an adaptive adversary: O(poly(k).nl) bits

- Not optimal when I is large

BA Extension protocol for long messages: O(ln + kn²) bits

- Not optimal when l < kn

Can we get the best of both worlds? i.e.,

Can we obtain a communication complexity of O(ln + poly(k).n) bits

Can we get the best of both worlds? i.e.,

Can we obtain a communication complexity of O(ln + poly(k).n) bits under an adaptive adversary?

Attempt 1: Using the [NRSVX'20] Approach

Attempt 1: Using the [NRSVX'20] Approach

Intuition: Break down the problem into two steps

- Agree on a k-bit accumulator value corresponding to one of the inputs, requires O(kn²) O(poly(k).n) bits of communication
- Share the l-bit input using erasure coding techniques

Attempt 1: Using the [NRSVX'20] Approach

Intuition: Break down the problem into two steps

- Agree on a k-bit accumulator value corresponding to one of the inputs, requires O(kn²) O(poly(k).n) bits of communication
- Share the l-bit input using erasure coding techniques

Attempt 1: Using the [NRSVX'20] Approach

Intuition: Break down the problem into two steps

- Agree on a k-bit accumulator value corresponding to one of the inputs, requires O(kn²) O(poly(k).n) bits of communication
- Share the l-bit input using erasure coding techniques

Concern: Even if each party shares 1-bit value in the reshare phase, communication is $\Omega(n^2)$ bits

Attempt 2: Use Multiple k-sized Committees

Attempt 2: Use Multiple k-sized Committees

Requirement: Split the message into k shares and each share of the message should be shared by some honest party

Approach: Use an O(k)-sized committee for resharing each share

Two drawbacks/challenges:

- (i) Communication complexity for resharing each share: $\Omega(nk.(l/k))$; for k shares, it is $\Omega(nkl)$
- (ii) Adaptivity: How do we distribute these shares with k different committees?

- Publicly split the parties into k buckets of size n/k
- Distribute: Share i is shared with parties in bucket i
- Reshare: Elect single O(k)-sized committee; bucket i parties reshare share i

- Publicly split the parties into k buckets of size n/k
- Distribute: Share i is shared with parties in bucket i
- Reshare: Elect single O(k)-sized committee; bucket i parties reshare share i n/k

$$B_{1} \quad \bullet \quad \bullet \quad \bullet \\ B_{2} \quad \bullet \quad \bullet \quad \bullet \\ B_{k} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

- Publicly split the parties into k buckets of size n/k
- Distribute: Share i is shared with parties in bucket i
- Reshare: Elect single O(k)-sized committee; bucket i parties reshare share i n/k

- Publicly split the parties into k buckets of size n/k
- Distribute: Share i is shared with parties in bucket i
- Reshare: Elect single O(k)-sized committee; bucket i parties reshare share i

- Publicly split the parties into k buckets of size n/k
- Distribute: Share i is shared with parties in bucket i
- Reshare: Elect single O(k)-sized committee; bucket i parties reshare share i n/k

- Honest party in committee
- Byzantine party in committee

Our Solution: Communication Complexity

- Honest party in committee
- Byzantine party in committee

Our Solution: Communication Complexity

- Distribute: O(k) parties sharing l/k-sized shares to n/k parties = O(ln/k) bits per share
- Reshare: O(k) parties sharing l/k-sized shares to n parties = O(ln) bits

- Honest party in committee
- Byzantine party in committee

Our Solution: Potential Concerns

- Honest party in committee
- Byzantine party in committee

Our Solution: Potential Concerns

- (i) Are enough shares reshared? Each bucket i has only O(1) parties who can reshare share i
- (ii) Adaptivity: The adversary can adaptively corrupt parties in different public buckets so that not enough shares are reshared

- Honest party in committee
- Byzantine party in committee

- (i) Are enough shares reshared? Each bucket i has only O(1) parties who can reshare share i
- (ii) Adaptivity: The adversary can adaptively corrupt parties in different public buckets so that not enough shares are reshared
- We cannot use Chernoff-type bounds

Solution: A balls-and-bins analysis using McDiarmid's inequality

Our Solution: Analysis using McDiarmid's Inequality

- (i) Are enough shares reshared? Each bucket i has only O(1) parties who can reshare share i
- (ii) Adaptivity: The adversary can adaptively corrupt parties in different public buckets so that not enough shares are reshared
- We cannot use Chernoff-type bounds

Solution: A balls-and-bins analysis using McDiarmid's inequality

Our Result

Our Result

Theorem: For any $\epsilon > 0$, assuming appropriate cryptographic assumptions, there exists an adaptively secure BA protocol achieving a communication complexity of O(nl + poly(k).n) for l-bit inputs for

- (i) $t < (1-\epsilon) n/2$ Byzantine parties under a synchronous network,
- (ii) $t < (1-\epsilon) n/3$ Byzantine parties under an asynchronous network

Thank you! kartik@cs.duke.edu

Our Result

Theorem: For any $\varepsilon > 0$, assuming appropriate cryptographic assumptions, there exists an adaptively secure BA protocol achieving a communication complexity of O(nl + poly(k).n) for l-bit inputs for

- (i) $t < (1-\epsilon) n/2$ Byzantine parties under a synchronous network,
- (ii) $t < (1 \varepsilon) n/3$ Byzantine parties under an asynchronous network

Thank you! kartik@cs.duke.edu