
Triply Adaptive
UC-NIZK

Ran Canetti Pratik Sarkar Xiao Wang
Boston University Boston University Northwestern University

eprint: 2020/1212

Chapter I:

Introduction

Non-interactive Zero Knowledge

Mast2015-18) Prover P(x, w) Verifier V(x)

Proof !

Setup: crs

Input: NP statement x

Output: 0/1

Input: NP statement x,
witness w

Output: Proof !

Correctness: If x ∈ # and w is a valid witness then V outputs 1

Soundness: If x ∉ #, then V outputs 0 with high probability

(Non-Adaptive) Zero Knowledge

(Non-Adaptive) Zero Knowledge Game

Mast2015-18) Simulator Sim(x) Corrupt Verifier V(x)

Simulated Proof !′

Setup: crs

Input: NP statement x

Zero Knowledge: ∃PPT algorithm Sim, such that the simulated proof is indistinguishable from real proof:
{crs, P(x, w)} ≈ {crs, Sim(x, td)}

Input: NP statement x
Samples (crs, td) =Setup.Gen(1!)
Output: Simulated Proof !′ = Sim(x)

(Non-Adaptive) Zero Knowledge Game

Mast2015-18) Simulator Sim(x) Corrupt Verifier V(x)

Simulated Proof !′

Setup: crs

Input: NP statement x

(Non-Adaptive) Zero Knowledge: ∃PPT algorithm Sim, such that the simulated proof is indistinguishable
from real proof:

{crs, P(x, w)} ≈ {crs, Sim(x)}

Input: NP statement x
Samples (crs, td) =Setup.Gen(1!)
Output: Simulated Proof !′ = Sim(x)

Non-interactive Zero Knowledge

Mast2015-18) Prover P(x, w) Verifier V(x)

Proof !

Setup: crs

Input: NP statement xInput: NP statement x,
witness w

Output: Proof !

Correctness

Soundness

(Non-Adaptive) Zero Knowledge

Triply Adaptive NIZK

Corrupt prover chooses statement
x after seeing crs

Soundness preserved

Adaptive Soundness Adaptive SecurityAdaptive Zero Knowledge

Corrupt verifier who chooses
statement x after seeing crs

Zero-Knowledge preserved

Security against adaptive
corruption of prover

Adaptive Soundness Game

Mast2015-18) Corrupt Prover Challenger

crs

Adaptive Soundness: If x ∉ #, then Challenger outputs 0

Samples crs
Outputs V(x, !)

Statement x, Proof !

Adaptive Soundness Game

Mast2015-18) Corrupt Prover Challenger

crs

Adaptive Soundness: If x ∉ #, then Challenger outputs 0 with high probability

Samples crs
Outputs V(x, !; crs)

Statement x, Proof !

Adaptive Soundness Game

Mast2015-18) Corrupt Prover Challenger

crs

Adaptive Soundness: If x ∉ #, then Challenger outputs 0 with high probability

Adaptive Soundness is stronger than soundness. [GroOsSah12] is sound but not adaptively sound

Samples crs
Outputs V(x, !; crs)

Statement x, Proof !

Triply Adaptive NIZK

Corrupt prover chooses statement
x after seeing crs

Soundness preserved

Adaptive Soundness Adaptive SecurityAdaptive Zero Knowledge

Corrupt verifier who chooses
statement x after seeing crs

Zero-Knowledge preserved

Security against adaptive
corruption of prover

Adaptive Zero Knowledge Game

Mast2015-18) Simulator Sim(x) Corrupt Verifier V(x)Setup: crs

Samples (x, w) ∈ # after
obtaining crs

Zero Knowledge: ∃PPT algorithm Sim, such that the simulated proof is indistinguishable from real proof:
P(x, w) ≈ Sim(x, td)

Statement x

Input: NP statement x
Sim samples (crs, td)
Output: Simulated Proof !′ = Sim(x, td)

Adaptive Zero Knowledge Game

Mast2015-18) Simulator Sim(x) Corrupt Verifier V(x)Setup: crs

Samples (x, w) ∈ # after
obtaining crs

Zero Knowledge: ∃PPT algorithm Sim, such that the simulated proof is indistinguishable from real proof:
P(x, w) ≈ Sim(x, td)

Statement x

Simulated Proof !′

Input: NP statement x
Sim samples (crs, td)
Output: Simulated Proof !′ = Sim(x)

Adaptive Zero Knowledge Game

Mast2015-18) Simulator Sim(x) Corrupt Verifier V(x)Setup: crs

Input: NP statement x
Sim samples (crs, td)
Output: Simulated Proof !′ = Sim(x)

Adaptive Zero Knowledge: ∃PPT algorithm Sim, such that the simulated proof is indistinguishable from
real proof:

{crs, P(x, w)} ≈ {crs, Sim(x)}

Statement x

Simulated Proof !′

Samples (x, w) ∈ # after
obtaining crs

Triply Adaptive NIZK

Corrupt prover chooses statement
x after seeing crs

Soundness preserved

Adaptive Soundness Adaptive SecurityAdaptive Zero Knowledge

Corrupt verifier who chooses
statement x after seeing crs

Zero-Knowledge preserved

Security against adaptive
corruption of prover

Security against Adaptive Corruptions

Mast2015-18) Simulator Sim(x) Corrupt Verifier V(x)Setup: crs

Zero Knowledge: ∃PPT algorithm Sim1, such that the simulated proof is indistinguishable from real proof:
{crs, P(x, w; r)} ≈ {crs, Sim1(x; r’)}

Security against Adaptive Corruption: ∃PPT algorithm Sim2, such that:
{crs, P(x, w; r), r} ≈ {crs, Sim1 (x; r’), Sim2(w, r’)}

Input: NP statement x
Sim samples (crs, td)
Output: Simulated Proof !′= Sim1(x; r’)

Internal State: Randomness Sim2(w, r’)

Samples (x, w) ∈ # after
obtaining crs

Statement x

Security against Adaptive Corruptions

Mast2015-18) Simulator Sim(x) Corrupt Verifier V(x)Setup: crs

Zero Knowledge: ∃PPT algorithm Sim1, such that the simulated proof is indistinguishable from real proof:
{crs, P(x, w; r)} ≈ {crs, Sim1(x; r’)}

Security against Adaptive Corruption: ∃PPT algorithm Sim2, such that:
{crs, P(x, w; r), r} ≈ {crs, Sim1 (x; r’), Sim2(w, r’)}

Input: NP statement x
Sim samples (crs, td)
Output: Simulated Proof !′= Sim1(x; r’)

Internal State: Randomness Sim2(w, r’)

Samples (x, w) ∈ # after
obtaining crs

Statement x

Simulated Proof !′

Security against Adaptive Corruptions

Mast2015-18) Corrupt Prover P(x) Corrupt Verifier V(x)Setup: crs

Zero Knowledge: ∃PPT algorithm Sim1, such that the simulated proof is indistinguishable from real proof:
{crs, P(x, w; r)} ≈ {crs, Sim1(x; r’)}

Security against Adaptive Corruption: ∃PPT algorithm Sim2, such that:
{crs, P(x, w; r), r} ≈ {crs, Sim1 (x; r’), Sim2(w, r’)}

Input: NP statement x
Sim samples (crs, td)
Output: Simulated Proof !′= Sim1(x; r’)

Internal State: Randomness Sim2(w, r’)

Samples (x, w) ∈ # after
obtaining crs

Statement x

Simulated Proof !′

Security against Adaptive Corruptions

Mast2015-18) Corrupt Prover P(x) Corrupt Verifier V(x)Setup: crs

Samples (x, w) ∈ # after
obtaining crs

Zero Knowledge: ∃PPT algorithm Sim1, such that the simulated proof is indistinguishable from real proof:
{crs, P(x, w; r)} ≈ {crs, Sim1(x; r’)}

Security against Adaptive Corruption: ∃PPT algorithm Sim2, such that:
{crs, P(x, w; r), r} ≈ {crs, Sim1 (x; r’), Sim2(w, r’)}

Input: NP statement x
Sim samples (crs, td)
Output: Simulated Proof !′= Sim1(x; r’)

Internal State: Randomness Sim2(w, r’)

Statement x

Simulated Proof !′

Triply Adaptive NIZK

Corrupt prover chooses statement
x after seeing crs

Soundness preserved

Adaptive Soundness Adaptive SecurityAdaptive Zero Knowledge

Corrupt verifier who chooses
statement x after seeing crs

Zero-Knowledge preserved

Security against adaptive
corruption of prover

Triply Adaptive NIZK

Corrupt prover chooses statement
x after seeing crs

Soundness preserved

Adaptive Soundness Adaptive SecurityAdaptive Zero Knowledge

Corrupt verifier who chooses
statement x after seeing crs

Zero-Knowledge preserved

Security against adaptive
corruption of prover

Realistic Security Guarantees: The Prover uses the same crs to prove adaptively chosen statements
Security against adaptive corruptions, useful for MPC protocols

UC-Security: Same trusted crs is reused for multiple sessions between different parties

Triply Adaptive NIZK

Corrupt prover chooses statement
x after seeing crs

Soundness preserved

Adaptive Soundness Adaptive SecurityAdaptive Zero Knowledge

Corrupt verifier who chooses
statement x after seeing crs

Zero-Knowledge preserved

Security against adaptive
corruption of prover

Realistic Security Guarantees: The Prover uses the same crs to prove adaptively chosen statements
Security against adaptive corruptions, useful for MPC protocols

UC-Security: Extendable to the provide UC security and reusable crs model across multiple sessions
between different parties

State-of-the-art and Our Main Result

Adaptive
Soundness

Adaptive Zero
Knowledge

Adaptive Security
(against adaptive

corruptions)
Assumptions

[GroOstSah06]* ✕ ✓ ✓ Pairings

[KatNisYamYam19,
KatNisYayYam20]* ✕ ✓ ✓ Pairings

[AbeFeh07] ✓ ✓ ✓ Knowledge Assumptions

CI-based Protocols
[CCH+19,PS19,BKM20] ✓ ✓ ✕ LWE/ DDH+LPN

Ours ✓ ✓ ✓ LWE/ DDH+LPN

Protocols

*Achieves Adaptive culpable soundness which is weaker than adaptive soundness

State-of-the-art and Our Main Result

Adaptive
Soundness

Adaptive Zero
Knowledge

Adaptive Security
(against adaptive

corruptions)
Assumptions

[GroOstSah06]* ✕ ✓ ✓ Pairings

[KatNisYamYam19,
KatNisYayYam20]* ✕ ✓ ✓ Pairings

[AbeFeh07] ✓ ✓ ✓ Knowledge Assumptions

CI-based Protocols
[CCH+19,PS19,BKM20] ✓ ✓ ✕ LWE/ DDH+LPN

Ours ✓ ✓ ✓ LWE/ DDH+LPN

Protocols

*Achieves Adaptive culpable soundness which is weaker than adaptive soundness

State-of-the-art and Our Main Result

Adaptive
Soundness

Adaptive Zero
Knowledge

Adaptive Security
(against adaptive

corruptions)
Assumptions

[GroOstSah06]* ✕ ✓ ✓ Pairings

[KatNisYamYam19,
KatNisYayYam20]* ✕ ✓ ✓ Pairings

[AbeFeh07] ✓ ✓ ✓ Knowledge Assumptions

CI-based Protocols
[CCH+19,PS19,BKM20] ✓ ✓ ✕ LWE/ DDH+LPN

Ours ✓ ✓ ✓ LWE/ DDH+LPN

Protocols

*Achieves Adaptive culpable soundness which is weaker than adaptive soundness

State-of-the-art and Our Main Result

Adaptive
Soundness

Adaptive Zero
Knowledge

Adaptive Security
(against adaptive

corruptions)
Assumptions

[GroOstSah06]* ✕ ✓ ✓ Pairings

[KatNisYamYam19,
KatNisYayYam20]* ✕ ✓ ✓ Pairings

[AbeFeh07] ✓ ✓ ✓ Knowledge Assumptions

CI-based Protocols
[CCH+19,PS19,BKM20] ✓ ✓ ✕ LWE/ DDH+LPN

Ours ✓ ✓ ✓ LWE/ DDH+LPN

Protocols

*Achieves Adaptive culpable soundness which is weaker than adaptive soundness

State-of-the-art and Our Main Result

Adaptive
Soundness

Adaptive Zero
Knowledge

Adaptive Security
(against adaptive

corruptions)
Assumptions

[GroOstSah06]* ✕ ✓ ✓ Pairings

[KatNisYamYam19,
KatNisYayYam20]* ✕ ✓ ✓ Pairings

[AbeFeh07] ✓ ✓ ✓ Knowledge Assumptions

CI-based Protocols
[CCH+19,PS19,BKM20] ✓ ✓ ✕ LWE/ DDH+LPN

Ours ✓ ✓ ✓ LWE/ DDH+LPN

Protocols

*Achieves Adaptive culpable soundness which is weaker than adaptive soundness

Challenges and Ideas

Correlation Intractability (CI) based
Protocols require the initial
interactive protocol to be
statistically sound

This contradicts adaptive security
as statistically sound protocols
cannot be equivocated upon
adaptive corruption

IdeasAdaptive Soundness

Previous adaptively secure
NIZKs [GOS12] (with non-
adaptive soundness) switch the
crs mode to perform
equivocation

Adaptive soundness prevents us
from switching the mode of crs

Perform Fiat-Shamir for
interactive arguments - Rely
on CI in the hybrids

Underlying argument is only
computationally binding and
hence equivocal

Perform the soundness
argument without switching
crs mode – enables adaptive
soundness

UC-Security: Obtain UC-security using standard tricks [GosOstSah12]

Correlation Intractability

Challenges and Ideas

Correlation Intractability (CI) based
Protocols require the initial
interactive protocol to be
statistically sound

This contradicts adaptive security
as statistically sound protocols
cannot be equivocated upon
adaptive corruption

IdeasAdaptive Soundness

Previous adaptively secure
NIZKs [GOS12] (with non-
adaptive soundness) switch the
crs mode to perform
equivocation

Adaptive soundness prevents us
from switching the mode of crs

Perform Fiat-Shamir for
interactive arguments - Rely
on CI in the hybrids

Underlying argument is only
computationally binding and
hence equivocal

Perform the soundness
argument without switching
crs mode – enables adaptive
soundness

UC-Security: Obtain UC-security using standard tricks [GosOstSah12]

Correlation Intractability

Challenges and Ideas

Correlation Intractability (CI) based
Protocols require the initial
interactive protocol to be
statistically sound

This contradicts adaptive security
as statistically sound protocols
cannot be equivocated upon
adaptive corruption

IdeasAdaptive Soundness

Previous adaptively secure
NIZKs [GOS12] (with non-
adaptive soundness) switch the
crs mode to perform
equivocation

Adaptive soundness prevents us
from switching the mode of crs

Perform Fiat-Shamir for
interactive arguments - Rely
on CI in the hybrids

Underlying argument is only
computationally binding and
hence equivocal

Perform the soundness
argument without switching
crs mode – enables adaptive
soundness

UC-Security: Obtain UC-security using standard tricks [GosOstSah12]

Correlation Intractability

Challenges and Ideas

Correlation Intractability (CI) based
Protocols require the initial
interactive protocol to be
statistically sound

This contradicts adaptive security
as statistically sound protocols
cannot be equivocated upon
adaptive corruption

IdeasAdaptive Soundness

Previous adaptively secure
NIZKs [GOS12] (with non-
adaptive soundness) switch the
crs mode to perform
equivocation

Adaptive soundness prevents us
from switching the mode of crs

Perform Fiat-Shamir for
interactive arguments - Rely
on CI in the hybrids

Underlying argument is only
computationally binding and
hence equivocal

Perform the soundness
argument without switching
crs mode – enables adaptive
soundness

UC-Security: Obtain UC-security using standard tricks [GosOstSah12]

Correlation Intractability

Challenges and Ideas

Correlation Intractability (CI) based
Protocols require the initial
interactive protocol to be
statistically sound

This contradicts adaptive security
as statistically sound protocols
cannot be equivocated upon
adaptive corruption

IdeasAdaptive Soundness

Previous adaptively secure
NIZKs [GOS12] (with non-
adaptive soundness) switch the
crs mode to perform
equivocation

Adaptive soundness prevents us
from switching the mode of crs

Perform Fiat-Shamir for
interactive arguments - Rely
on CI in the hybrids

Underlying argument is only
computationally binding and
hence equivocal

Perform the soundness
argument without switching
crs mode – enables adaptive
soundness

UC-Security: Obtain UC-security using standard tricks [GosOstSah12]

Correlation Intractability

Our Contributions

Parties access F NICOM locally for
Commitment generation and
verification

Functionality outputs commitment
string during Commit phase

Protocol Friendly

Non-interactive UC-Commitment
Functionality FNICOM

InstantiationsTriply Adaptive NIZK

Triply adaptive Sigma protocol
in F NICOM model

Compile the above Sigma
protocol to obtain Triply
adaptive NIZK

Apply Correlation Intractability
for NIZK arguments

Most Sigma protocols are
Triply adaptive in F NICOM
model

Implement F NICOM with
[CanFis01] commitment
scheme

UC-Security: Obtain UC-security using standard tricks [GosOstSah12]

Our Contributions

Parties access F NICOM locally for
Commitment generation and
verification

Functionality outputs commitment
string during Commit phase

Protocol Friendly

Non-interactive UC-Commitment
Functionality FNICOM

InstantiationsTriply Adaptive NIZK

Triply adaptive Sigma protocol
in F NICOM model

Compile the above Sigma
protocol to obtain Triply
adaptive NIZK

Apply Correlation Intractability
for NIZK arguments

Most Sigma protocols are
Triply adaptive in F NICOM
model

Implement F NICOM with
[CanFis01] commitment
scheme

UC-Security: Obtain UC-security using standard tricks [GosOstSah12]

Our Contributions

Parties access F NICOM locally for
Commitment generation and
verification

Functionality outputs commitment
string during Commit phase

Protocol Friendly

Non-interactive UC-Commitment
Functionality FNICOM

InstantiationsTriply Adaptive NIZK

Triply adaptive Sigma protocol
in F NICOM model

Compile the above Sigma
protocol to obtain Triply
adaptive NIZK

Apply Correlation Intractability
for NIZK arguments

Most Sigma protocols are
Triply adaptive in F NICOM
model

Implement F NICOM with
[CanFis01] commitment
scheme

UC-Security: Obtain UC-security using standard tricks [GosOstSah12]

Our Contributions

Parties access F NICOM locally for
Commitment generation and
verification

Functionality outputs commitment
string during Commit phase

Protocol Friendly

Non-interactive UC-Commitment
Functionality FNICOM

InstantiationsTriply Adaptive NIZK

Triply adaptive Sigma protocol
in F NICOM model

Compile the above Sigma
protocol to obtain Triply
adaptive NIZK

Apply Correlation Intractability
for NIZK arguments

Most Sigma protocols are
Triply adaptive in F NICOM
model

Implement F NICOM with
[CanFis01] commitment
scheme

UC-Security: Obtain UC-security using standard tricks [GosOstSah12]

Our Contributions

Parties access F NICOM locally for
Commitment generation and
verification

Functionality outputs commitment
string during Commit phase

Protocol Friendly

Non-interactive UC-Commitment
Functionality FNICOM

InstantiationsTriply Adaptive NIZK

Triply adaptive Sigma protocol
in F NICOM model

Compile the above Sigma
protocol to obtain Triply
adaptive NIZK

Apply Correlation Intractability
for NIZK arguments

Most Sigma protocols are
Triply adaptive in F NICOM
model

Implement F NICOM with
[CanFis01] commitment
scheme

UC-Security: Obtain UC-security using standard tricks [GosOstSah12]

Chapter II:

Non-interactive

UC commitment functionality

Non-interactive Commitment Functionality F NICOM

Implemented using [CanFis01] commitment based on equivocal commitments+public key encryption with
oblivious ciphertext sampling (LWE/ DDH)

Real and ideal world crs distribution is identical/statistically close

Ideal world
Adversary

Initialize F NICOM with S
F NICOM

Non-interactive Commitment Functionality F NICOM

Commiter (m)

Input: Bit message m

F SNICOM

(Commit, m)

Commitment c

Implemented using [CanFis01] commitment based on equivocal commitments+public key encryption with
oblivious ciphertext sampling (LWE/ DDH)

Real and ideal world crs distribution is identical/statistically close

Ideal world
Adversary

Initialize F NICOM with S
F NICOM

Non-interactive Commitment Functionality F NICOM

Commiter (m)

Input: Bit message m

F SNICOM

(Commit, m)

Commitment c

Implemented using [CanFis01] commitment based on equivocal commitments+public key encryption with
oblivious ciphertext sampling (LWE/ DDH)

Real and ideal world crs distribution is identical/statistically close

Ideal world
Adversary

Initialize F NICOM with S
F NICOM

Verifier V(c)

Non-interactive Commitment Functionality F NICOM

Commiter (m)

Verifier V(c)

Output: 0/1

Input: Bit message m

F SNICOM

(Commit, m)

Commitment c

(Verify, c)

0/1F S
NICOM

Implemented using [CanFis01] commitment based on equivocal commitments+public key encryption with
oblivious ciphertext sampling (LWE/ DDH)

Real and ideal world crs distribution is identical/statistically close

Ideal world
Adversary

Initialize F NICOM with S
F NICOM

Non-interactive Commitment Functionality F NICOM

Commiter (m)

Verifier V(c)

Output: 0/1

Input: Bit message m

F SNICOM

(Commit, m)

Commitment c

(Verify, c)

0/1F S
NICOM

[CanFis01]: If there exists an equivocal commitment scheme and a CCA-2 secure public key encryption
scheme with oblivious ciphertext sampling, then there exists a commitment scheme implementing F NICOM

Ideal world
Adversary

Initialize F NICOM with S
F NICOM

Our Contributions

Parties access F NICOM locally for
Commitment generation and
verification

Functionality outputs commitment
string during Commit phase

Protocol Friendly

Non-interactive UC-Commitment
Functionality FNICOM

InstantiationsTriply Adaptive NIZK

Triply adaptive Sigma protocol
in F NICOM model

Compile the above Sigma
protocol to obtain Triply
adaptive NIZK

Apply Correlation Intractability
for NIZK arguments

Most Sigma protocols are
Triply adaptive in F NICOM
model

Implement F NICOM with
[CanFis01] commitment
scheme

UC-Security: Obtain UC-security using standard tricks [GosOstSah12]

Chapter III:

Adaptively Secure Sigma Protocol

Sigma Protocol
Mast2015-18) Prover P(x, w) Verifier V(x)

Input: NP statement x

Samples challenge e ∈ (
Output: 0/1

Input: NP statement x,
witness w

Output: Proof !
Correctness: If x ∈ # and w is a valid witness then V(x, a, e, z) outputs 1

Special Soundness: If a corrupt prover outputs two accepting proofs (a, e, z) and (a, e’, z’) then there exists PPT
witness extractor algorithm :

Ext(x, a, e, e’, z, z’) = w if V(x, a, e, z) = V(x, a, e’, z’) =1 for e ≠ e’

Honest Verifier Zero Knowledge: ∃PPT algorithm Sim, such that HVZK proof is indistinguishable from real proof:
P(x, w) ≈ Sim(x, e)

(where e ∈ (is a random challenge)

a

e

z

Adaptively Secure Sigma Protocol in FS
NICOM model

Mast2015-18) Prover P(x, w) Verifier V(x)

Input: NP statement x

Samples challenge e ∈ (
Output: 0/1

Input: NP statement x,
witness w

Output: Proof !
Correctness, Special Soundness: Same as Sigma protocol

Honest Verifier Zero Knowledge: ∃PPT algorithm Sim1
s, such that HVZK proof is indistinguishable from real proof:

P(x, w; r) ≈ Sim1
s(x, e; r’)

(where e ∈ (is a random challenge, s is the Simulator for F SNICOM)

Adaptive Security: ∃PPT algorithm Sim2
s, such that:

{crs, P(x, w; r), r} ≈ {crs, Sim1
s(x, e; r’), Sim2

s(r’)}

a

e

z

F SNICOM F SNICOM

Adaptively Secure Sigma Protocol in FS
NICOM model

Mast2015-18) Prover P(x, w) Verifier V(x)

Input: NP statement x

Samples challenge e ∈ (
Output: 0/1

Input: NP statement x,
witness w

Output: Proof !
Correctness, Special Soundness: Same as Sigma protocol

Honest Verifier Zero Knowledge: ∃PPT algorithm Sim1
s, such that HVZK proof is indistinguishable from real proof:

P(x, w; r) ≈ Sim1
s(x, e; r’)

(where e ∈ (is a random challenge, s is the Simulator for F SNICOM)

Adaptive Security: ∃PPT algorithm Sim2
s, such that:

{crs, P(x, w; r), r} ≈ {crs, Sim1
s(x, e; r’), Sim2

s(r’)}

a

e

z

F SNICOM F SNICOM

Adaptively Secure Sigma Protocol in FS
NICOM model

Mast2015-18) Prover P(x, w) Verifier V(x)

Input: NP statement x

Samples challenge e ∈ (
Output: 0/1

Input: NP statement x,
witness w

Output: Proof !
Correctness, Special Soundness: Same as Sigma protocol

Honest Verifier Zero Knowledge: ∃PPT algorithm Sim1
s, such that HVZK proof is indistinguishable from real proof:

P(x, w; r) ≈ Sim1
s(x, e; r’)

(where e ∈ (is a random challenge, s is the Simulator for F SNICOM)

Adaptive Security: ∃PPT algorithm Sim2
s, such that:

{crs, P(x, w; r), r} ≈ {crs, Sim1
s(x, e; r’), Sim2

s(r’)}

a

e

z

F SNICOM F SNICOM

Adaptively Secure Sigma Protocol in FS
NICOM model

Mast2015-18) Prover P(x, w) Verifier V(x)

Input: NP statement x

Samples challenge e ∈ (
Output: 0/1

Input: NP statement x,
witness w

Output: Proof !
Correctness, Special Soundness: Same as Sigma protocol

Honest Verifier Zero Knowledge: ∃PPT algorithm Sim1
s, such that HVZK proof is indistinguishable from real proof:

P(x, w; r) ≈ Sim1
s(x, e; r’)

(where e ∈ (is a random challenge, s is the Simulator for F SNICOM)

Adaptive Security: ∃PPT algorithm Sim2
s, such that:

{crs, P(x, w; r), r} ≈ {crs, Sim1
s(x, e; r’), Sim2

s(r’)}

a

e

z

F SNICOM F SNICOM

Adaptively Secure Sigma Protocol in FS
NICOM model

Mast2015-18) Prover P(x, w) Verifier V(x)

Input: NP statement x

Samples challenge e ∈ (
Output: 0/1

Input: NP statement x,
witness w

Output: Proof !
Correctness, Special Soundness: Same as Sigma protocol

Honest Verifier Zero Knowledge: ∃PPT algorithm Sim1
s, such that HVZK proof is indistinguishable from real proof:

P(x, w; r) ≈ Sim1
s(x, e; r’)

(where e ∈ (is a random challenge, s is the Simulator for F SNICOM)

Adaptive Security: ∃PPT algorithm Sim2
s, such that:

{crs, P(x, w; r), r} ≈ {crs, Sim1
s(x, e; r’), Sim2

s(w, r’)}

a

e

z

F SNICOM F SNICOM

Adaptively Secure Sigma Protocol in FS
NICOM model

Mast2015-18) Prover P(x, w) Verifier V(x)

Input: NP statement x

Samples challenge e ∈ (
Output: 0/1

Input: NP statement x,
witness w

Output: Proof !
Correctness, Special Soundness: Same as Sigma protocol

Adaptive Secure Honest Verifier Zero Knowledge: ∃PPT algorithm (Sim1
s, Sim2

s) such that HVZK proof is
indistinguishable from real proof:

{crs, P(x, w; r), r} ≈ {crs, Sim1
s(x, e; r’), Sim2

s(w, r’)}

(where e ∈ (is a random challenge, s is the Simulator for F SNICOM)

a

e

z

F SNICOM F SNICOM

Adaptively Secure Sigma Protocol in FS
NICOM model

Mast2015-18) Prover P(x, w) Verifier V(x)

Input: NP statement x

Samples challenge e ∈ (
Output: 0/1

Input: NP statement x,
witness w

Output: Proof !
Correctness, Special Soundness: Same as Sigma protocol

Adaptive Secure Honest Verifier Zero Knowledge: ∃PPT algorithm (Sim1
s, Sim2

s) such that HVZK proof is
indistinguishable from real proof:

{crs, P(x, w; r), r} ≈ {crs, Sim1
s(x, e; r’), Sim2

s(w, r’)}

(where e ∈ (is a random challenge, s is the Simulator for F SNICOM)

Next Step: Compile to an adaptively secure NIZK

a

e

z

F SNICOM F SNICOM

Our Contributions

Parties access F NICOM locally for
Commitment generation and
verification

Functionality outputs commitment
string during Commit phase

Protocol Friendly

Non-interactive UC-Commitment
Functionality FNICOM

InstantiationsTriply Adaptive NIZK

Triply adaptive Sigma protocol
in F NICOM model

Compile the above Sigma
protocol to obtain Triply
adaptive NIZK

Apply Correlation Intractability
for NIZK arguments

Most Sigma protocols are
Triply adaptive in F NICOM
model

Implement F NICOM with
[CanFis01] commitment
scheme

UC-Security: Obtain UC-security using standard tricks [GosOstSah12]

Chapter IV:

Preliminaries for NIZK

Fiat Shamir Transform

Prover P(x, w) Verifier V(x)

Input: NP statement x

Output: V(x, a, e, z)

Input: NP statement x,
witness w

Output: Proof ! = (a, e, z)

a

e

z

Sigma Protocol

Fiat Shamir Transform

Prover P(x, w) Verifier V(x)Setup: Hash function h

Input: NP statement x

Compute e = h(a)

Output: V(x, a, e, z)

Input: NP statement x,
witness w

Output: Proof ! = (a, e, z)

a

e

z

a, z

e = h(a)

Sigma Protocol NIZK

A hash family H is correlation intractable for a sparse relation $ if:

Given h ∈! H, infeasible to find x s.t. (x, h(x)) ∈ $

∀PPT adversaries A,
Pr"←$

%←&(")
(x, h(x)) ∈ $ = ,-./0(2)

Example: for a function f, let $) = { x, f(x))

Correlation Intractability [CCH+19, PS19, BKM20]

Fiat Shamir Transform : CI-based Instantiation

Prover P(x, w) Verifier V(x)Setup: CI-Hash h for +!

Input: NP statement x

Compute e = h(a)

Output: V(x, a, e, z)

Input: NP statement x,
witness w

Output: Proof ! = (a, e, z)

Consider +! = a, e ∶ ∃z s. t. Veri8ier accepts x, a, e, z)

a, z

e = h(a)

Sigma Protocol NIZK

Fiat Shamir Transform : CI-based Instantiation

Prover P(x, w) Verifier V(x)Setup: CI-Hash h for +!

Input: NP statement x

Compute e = h(a)

Output: V(x, a, e, z)

Input: NP statement x,
witness w

Output: Proof ! = (a, e, z)

Consider +! = a, e ∶ ∃z s. t. Veri8ier accepts x, a, e, z)

Correctness: If x ∈ # and w is a valid witness then V(x, a, e, z) outputs 1
Soundness: If x ∉ #, then V(x, a, z) outputs 0 for a PPT Prover P
Zero Knowledge: ∃PPT algorithm Sim, such that the simulated proof is indistinguishable from real proof:

P(x, w) ≈ Sim(x), (where h is sampled by Sim in ideal world)

a, z

e = h(a)

Sigma Protocol NIZK

Chapter V:

Triply Adaptively Secure NIZK Protocol

Adaptively Secure Sigma protocol Σ Adaptively Secure NIZK
Mast2015-18) Prover P(x, w) Verifier V(x)

Input: NP statement x

Samples challenge e ∈ (
Output: 0/1

Input: NP statement x,
witness w

Output: Proof ! = (=, >)

5, 6F SNICOM F SNICOM

Setup: CI-Hash hS for +"

Compute two transcripts for the same first message for prover chosen
challenges c0 ≠ c1 ∈ # :

(a, c0, c1, z0, z1) = Σ.P(x, w; r)

Commit to challenge as (C, %c) = F S
NICOM (c0, c1)

Commit to responses as (Z0 , %0) = F S
NICOM(z0), (Z1 , %1) = F S

NICOM(z1)

Construct first message & = (a, C, Z0, Z1)

Construct challenge e = hS(&)

Construct response γ = (c0, c1, %c, ze, %e)

Compute e = H(&)

Verify Decommitments to c0, c1, ze in γ
Verify c0 ≠ c1

Output Σ.V(x, a, ce, ze)

f(=) = 0 iff V(x, a, c0, z0) = 1
where c0, z0 are extracted
from = using S algorithm

Adaptively Secure Sigma protocol Σ Adaptively Secure NIZK
Mast2015-18) Prover P(x, w) Verifier V(x)

Input: NP statement x

Samples challenge e ∈ (
Output: 0/1

Input: NP statement x,
witness w

Output: Proof ! = (=, >)

5, 6F SNICOM F SNICOM

Setup: CI-Hash hS for +"

Compute two transcripts (a, c0, z0), (a, c1, z1) for the same first message for
prover chosen challenges c0 ≠ c1 ∈ # :

(a, c0, c1, z0, z1) = Σ.P(x, w; r)

Commit to challenge as (C, %c) = F S
NICOM (c0, c1)

Commit to responses as (Z0 , %0) = F S
NICOM(z0), (Z1 , %1) = F S

NICOM(z1)

Construct first message & = (a, C, Z0, Z1)

Construct challenge e = hS(&)

Construct response γ = (c0, c1, %c, ze, %e)

Compute e = H(&)

Verify Decommitments to c0, c1, ze in γ
Verify c0 ≠ c1

Output Σ.V(x, a, ce, ze)

f(=) = 0 iff V(x, a, c0, z0) = 1
where c0, z0 are extracted
from = using S algorithm

Adaptively Secure Sigma protocol Σ Adaptively Secure NIZK
Mast2015-18) Prover P(x, w) Verifier V(x)

Input: NP statement x

Samples challenge e ∈ (
Output: 0/1

Input: NP statement x,
witness w

Output: Proof ! = (=, >)

5, 6F SNICOM F SNICOM

Setup: CI-Hash hS for +"

Compute two transcripts (a, c0, z0), (a, c1, z1) for the same first message for
prover chosen challenges c0 ≠ c1 ∈ # :

(a, c0, c1, z0, z1) = Σ.P(x, w; r)

Commit to challenge as (C, %c) = F S
NICOM (c0, c1)

Commit to responses as (Z0 , %0) = F S
NICOM(z0), (Z1 , %1) = F S

NICOM(z1)

Construct first message & = (a, C, Z0, Z1)

Construct challenge e = hS(&)

Construct response γ = (c0, c1, %c, ze, %e)

Compute e = H(&)

Verify Decommitments to c0, c1, ze in γ
Verify c0 ≠ c1

Output Σ.V(x, a, ce, ze)

f(=) = 0 iff V(x, a, c0, z0) = 1
where c0, z0 are extracted
from = using S algorithm

Adaptively Secure Sigma protocol Σ Adaptively Secure NIZK
Mast2015-18) Prover P(x, w) Verifier V(x)

Input: NP statement x

Samples challenge e ∈ (
Output: 0/1

Input: NP statement x,
witness w

Output: Proof ! = (=, >)

5, 6F SNICOM F SNICOM

Setup: CI-Hash hS for +"

Compute two transcripts (a, c0, z0), (a, c1, z1) for the same first message for
prover chosen challenges c0 ≠ c1 ∈ # :

(a, c0, c1, z0, z1) = Σ.P(x, w; r)

Commit to challenge as (C, %c) = F S
NICOM (c0, c1)

Commit to responses as (Z0 , %0) = F S
NICOM(z0), (Z1 , %1) = F S

NICOM(z1)

Construct first message & = (a, C, Z0, Z1)

Construct challenge e = hS(&)

Construct response γ = (c0, c1, %c, ze, %e)

Compute e = H(&)

Verify Decommitments to c0, c1, ze in γ
Verify c0 ≠ c1

Output Σ.V(x, a, ce, ze)

f(=) = 0 iff V(x, a, c0, z0) = 1
where c0, z0 are extracted
from = using S algorithm

Adaptively Secure Sigma protocol Σ Adaptively Secure NIZK
Mast2015-18) Prover P(x, w) Verifier V(x)

Input: NP statement x

Samples challenge e ∈ (
Output: 0/1

Input: NP statement x,
witness w

Output: Proof ! = (=, >)

5, 6F SNICOM F SNICOM

Setup: CI-Hash hS for +"

Compute two transcripts (a, c0, z0), (a, c1, z1) for the same first message for
prover chosen challenges c0 ≠ c1 ∈ # :

(a, c0, c1, z0, z1) = Σ.P(x, w; r)

Commit to challenge as (C, %c) = F S
NICOM (c0, c1)

Commit to responses as (Z0 , %0) = F S
NICOM(z0), (Z1 , %1) = F S

NICOM(z1)

Construct first message & = (a, C, Z0, Z1)

Construct challenge e = hS(&)

Construct response γ = (c0, c1, %c, ze, %e)

Compute e = H(&)

Verify Decommitments to c0, c1, ze in γ
Verify c0 ≠ c1

Output Σ.V(x, a, ce, ze)

f(=) = 0 iff V(x, a, c0, z0) = 1
where c0, z0 are extracted
from = using S algorithm

Adaptively Secure Sigma protocol Σ Adaptively Secure NIZK
Mast2015-18) Prover P(x, w) Verifier V(x)

Input: NP statement x

Samples challenge e ∈ (
Output: 0/1

Input: NP statement x,
witness w

Output: Proof ! = (=, >)

5, 6F SNICOM F SNICOM

Setup: CI-Hash hS for +"

Compute two transcripts (a, c0, z0), (a, c1, z1) for the same first message for
prover chosen challenges c0 ≠ c1 ∈ # :

(a, c0, c1, z0, z1) = Σ.P(x, w; r)

Commit to challenge as (C, %c) = F S
NICOM (c0, c1)

Commit to responses as (Z0 , %0) = F S
NICOM(z0), (Z1 , %1) = F S

NICOM(z1)

Construct first message & = (a, C, Z0, Z1)

Construct challenge e = hS(&)

Construct response γ = (c0, c1, %c, ze, %e)

Compute e = H(&)

Verify Decommitments to c0, c1, ze in γ
Verify c0 ≠ c1

Output Σ.V(x, a, ce, ze)

f(=) = 0 iff V(x, a, c0, z0) = 1
where c0, z0 are extracted
from = using S algorithm

Adaptively Secure Sigma protocol Σ Adaptively Secure NIZK
Mast2015-18) Prover P(x, w) Verifier V(x)

Input: NP statement x

Samples challenge e ∈ (
Output: 0/1

Input: NP statement x,
witness w

Output: Proof ! = (=, >)

5, 6F SNICOM F SNICOM

Setup: CI-Hash hS for +"

Compute two transcripts (a, c0, z0), (a, c1, z1) for the same first message for
prover chosen challenges c0 ≠ c1 ∈ # :

(a, c0, c1, z0, z1) = Σ.P(x, w; r)

Commit to challenge as (C, %c) = F S
NICOM (c0, c1)

Commit to responses as (Z0 , %0) = F S
NICOM(z0), (Z1 , %1) = F S

NICOM(z1)

Construct first message & = (a, C, Z0, Z1)

Construct challenge e = hS(&)

Construct response γ = (c0, c1, %c, ze, %e)

Compute e = H(&)

Verify Decommitments to c0, c1, ze in γ
Verify c0 ≠ c1

Output Σ.V(x, a, ce, ze)

f(=) = 0 iff V(x, a, c0, z0) = 1
where c0, z0 are extracted
from = using S algorithm

Adaptively Secure Sigma protocol Σ Adaptively Secure NIZK
Mast2015-18) Prover P(x, w) Verifier V(x)

Input: NP statement x

Samples challenge e ∈ (
Output: 0/1

Input: NP statement x,
witness w

Output: Proof ! = (=, >)

5, 6F SNICOM F SNICOM

Setup: CI-Hash hS for +"

Compute two transcripts (a, c0, z0), (a, c1, z1) for the same first message for
prover chosen challenges c0 ≠ c1 ∈ # :

(a, c0, c1, z0, z1) = Σ.P(x, w; r)

Commit to challenge as (C, %c) = F S
NICOM (c0, c1)

Commit to responses as (Z0 , %0) = F S
NICOM(z0), (Z1 , %1) = F S

NICOM(z1)

Construct first message & = (a, C, Z0, Z1)

Construct challenge e = hS(&)

Construct response γ = (c0, c1, %c, ze, %e)

Compute e = H(&)

Verify Decommitments to c0, c1, ze in γ
Verify c0 ≠ c1

Output Σ.V(x, a, ce, ze)

f(=) = 0 iff V(x, a, c0, z0) = 1
where c0, z0 are extracted
from = using S algorithm

Adaptively Secure Sigma protocol Σ Adaptively Secure NIZK
Mast2015-18) Prover P(x, w) Verifier V(x)

Input: NP statement x

Samples challenge e ∈ (
Output: 0/1

Input: NP statement x,
witness w

Output: Proof ! = (=, >)

5, 6F SNICOM F SNICOM

Compute two transcripts (a, c0, z0), (a, c1, z1) for the same first message for
prover chosen challenges c0 ≠ c1 ∈ # :

(a, c0, c1, z0, z1) = Σ.P(x, w; r)

Commit to challenge as (C, %c) = F S
NICOM (c0, c1)

Commit to responses as (Z0 , %0) = F S
NICOM(z0), (Z1 , %1) = F S

NICOM(z1)

Construct first message & = (a, C, Z0, Z1)

Construct challenge e = hS(&)

Construct response γ = (c0, c1, %c, ze, %e)

Compute e = H(&)

Verify Decommitments to c0, c1, ze in γ
Verify c0 ≠ c1

Output Σ.V(x, a, ce, ze)

Adaptive Security and adaptive ZK of NIZK
follows from Adaptive Security of Sigma
protocol in F S

NICOM - model

Setup: CI-Hash hS for +"

f(=) = 0 iff V(x, a, c0, z0) = 1
where c0, z0 are extracted
from = using S algorithm

Adaptively Secure Sigma protocol Σ Adaptively Secure NIZK
Mast2015-18) Prover P(x, w) Verifier V(x)

Input: NP statement x

Samples challenge e ∈ (
Output: 0/1

Input: NP statement x,
witness w

Output: Proof ! = (=, >)

5, 6F SNICOM F SNICOM

Compute two transcripts (a, c0, z0), (a, c1, z1) for the same first message for
prover chosen challenges c0 ≠ c1 ∈ # :

(a, c0, c1, z0, z1) = Σ.P(x, w; r)

Commit to challenge as (C, %c) = F S
NICOM (c0, c1)

Commit to responses as (Z0 , %0) = F S
NICOM(z0), (Z1 , %1) = F S

NICOM(z1)

Construct first message & = (a, C, Z0, Z1)

Construct challenge e = hS(&)

Construct response γ = (c0, c1, %c, ze, %e)

Compute e = H(&)

Verify Decommitments to c0, c1, ze in γ
Verify c0 ≠ c1

Output Σ.V(x, a, ce, ze)

Adaptive Security and Adaptive ZK
Soundness relies on
Special soundness of Sigma protocol in
F S

NICOM - model + CI for)"

Setup: CI-Hash hS for +"

f(=) = 0 iff V(x, a, c0, z0) = 1
where c0, z0 are extracted
from = using S algorithm

Our Contributions

Parties access F NICOM locally for
Commitment generation and
verification

Functionality outputs commitment
string during Commit phase

Protocol Friendly

Non-interactive UC-Commitment
Functionality FNICOM

InstantiationsTriply Adaptive NIZK

Triply adaptive Sigma protocol
in F NICOM model

Compile the above Sigma
protocol to obtain Triply
adaptive NIZK

Apply Correlation Intractability
for NIZK arguments

Most Sigma protocols are
Triply adaptive in F NICOM
model

Implement F NICOM with
[CanFis01] commitment
scheme

UC-Security: Obtain UC-security using standard tricks [GosOstSah12]

Chapter VI:

Instantiations

Implementing Adaptively Secure Sigma Protocols in F NICOM model

Mast2015-18)
Schnorr type Protocols

Garbled circuit-based protocol of [HazVen16] (Avoids expensive Karp reductions)

Protocols for Graph Hamiltonicity by [FeiLapSha99] and [Blum86]

Implementing F NICOM model

Mast2015-18)
Implemented using [CanFis01] commitment

Based on equivocal commitments+ CCA-2 public key encryption with oblivious ciphertext
sampling

Can be instantiated from LWE/ DDH

Note: For adaptive soundness we need the crs distribution of real and ideal world to be
identical/statistically close for the commitment

Implementing F NICOM model

Mast2015-18)
Implemented using [CanFis01] commitment

Based on equivocal commitments+ CCA-2 public key encryption with oblivious ciphertext
sampling

Can be instantiated from LWE/ DDH

Note: For adaptive soundness we need the crs distribution of real and ideal world to be
identical/statistically close for the commitment

Summary

Proposed a new UC commitment
functionality which is Protocol
Friendly

Non-interactive UC-Commitment
Functionality FNICOM

InstantiationsTriply Adaptive UC-NIZK

Proposed the definition and
provided a generic UC-NIZK
compiler with triple adaptivity

Instantiated FNICOM from
[CF01]

Instantiated NIZK compiler
based on LWE/DDH+LPN by
instantiating the CI hash

Thank you

2020/1212

pratik93@bu.edu

