New Algorithms and Analyses for Sum-Preserving Encryption

Sarah Miracle and Scott Yilek University of St. Thomas

Sum-Preserving Encryption

<u>Sum-Preserving Encryption schemes:</u>

Encryption schemes in which ciphertexts and plaintexts are both integer vectors with the same sum.

Vector components are typically bounded between 0 and d.

Introduced by Tajik et al. [NDSS 2019]

Sum-Preserving Encryption

<u>Application</u>: Thumbnail-preserving encryption

Image encryption where the thumbnail of an encrypted image matches the thumbnail of the unencrypted image.

- Divide the image into *b* x *b* blocks of pixels
- Apply sum-preserving encryption to each block with component bound 255.

Background

A special type of **format-preserving encryption**.

- Originally studied by Brightwell and Smith ['97]
- Formally defined and analyzed by Bellare, Ristenpart, Rogaway, and Stegers ['09] (use a rank-encipher-unrank construction)
- Widely studied and even standardized
- Tajik, Gunasekaran, Dutta, Ellis, Bobba, Rosulek, Wright, Feng, focus on problem of creating a thumbnail encryption scheme ['19]

Idea [Tajik et al.]:

- Represent as a string of 1's and 0's
- The number of 1's is the same as the sum and 0's act as separators
- This is a regular language and thus we can use known techniques for ranking DFAs [see Bellare et al. '09]

However, high time complexity and impractical!

Idea [Tajik et al.]:

- Represent as a string of 1's and 0's
- The number of 1's is the same as the sum and 0's act as separators
- This is a regular language and thus we can use known techniques for ranking DFAs [see Bellare et al. '09]

Ranking vectors of length 2 is simple & efficient!

Tajik et al. Construction

Sum-Preserving Shuffle Markov chain: Repeat:

- 1. Choose a random shuffling on all points uniformly at random.
- 2. Pair adjacent points to create a perfect matching.
- 3. Independently for each matched pair select a pair of values u.a.r. from all valid choices that preserve the sum.

[1, 3, 7, 2, 8, 20]

Our Results

- 1. First proof bounding the mixing time of the Tajik et al. algorithm
- 2. Give practical rank and unrank algorithms for sum-preserving encryption
- 3. Create prototype implementations with performance comparisons

Tajik et al. Construction

Sum-Preserving Shuffle Markov chain: Repeat:

- 1. Choose a random shuffling on all points uniformly at random.
- 2. Pair adjacent points to create a perfect matching.
- 3. Independently for each matched pair select a pair of values u.a.r. from all valid choices that preserve the sum.

How many times do you need to repeat?

Tajik et al. Construction

Sum-Preserving Shuffle Markov chain: Repeat:

- 1. Choose a random shuffling on all points uniformly at random.
- 2. Pair adjacent points to create a perfect matching.
- 3. Independently for each matched pair select a pair of values u.a.r. from all valid choices that preserve the sum.

- Tajik et al. give heuristic arguments for what secure round choices might be but no proof.
- Test performance with 1000, 3000, and 5000 rounds.

Mixing Time

<u>Definition</u>: The total variation distance is $|| P^{t}, \pi || = \max_{x \in \Omega} \frac{1}{2} \sum_{y \in \Omega} |P^{t}(x,y) - \pi(y)|.$

<u>Definition</u>: Given ε , the mixing time is

 $\tau(\varepsilon) = \min \{t: ||P^{t'}, \pi|| < \varepsilon, \quad \forall t' \ge t\}.$

Mixing Time Bound

Sum-Preserving Shuffle Markov chain: Repeat:

- 1. Choose a random shuffling on all points uniformly at random.
- 2. Pair adjacent points to create a perfect matching.
- 3. Independently for each matched pair select a pair of values u.a.r. from all valid choices that preserve the sum.

Let *n* be the vector length, *d* the component bound, and *S* the fixed sum. We show the mixing time satisfies

 $\tau(\epsilon) \le n \ln(\min(dn, 2S)\epsilon^{-1})$

Proof Idea

Let *n* be the vector length, *d* the component bound, and *S* the fixed sum. We show the mixing time satisfies

 $\tau(\epsilon) \le n \ln(\min(dn, 2S)\epsilon^{-1})$

Use path coupling due to Dyer, Greenhill ['98]

Coupling

Simulate 2 processes:

- Start at any x_0 and y_0
- Couple moves, but each simulates the MC
- Once they agree, they move in sync
 (x_t = y_t→x_{t+1} = y_{t+1})

Expected Coupling Time > Mixing time

Prove chains getting closer in expectation in each step

Manhattan distance

Path Coupling

- Coupling: Show for all states x,y, E[Δ(dist(x,y))] < 0.
- **Path coupling**: Show for all u,v s.t. u,v differ by 2 points, that $E[\Delta (dist(u,v))] < 0$.

Consider a shortest path: $x = z_0, z_1, z_2, ..., z_r = y, z_i, z_{i+1}$ differ by 2 points.

 $\mathsf{E}[\Delta (\mathsf{dist}(\mathsf{x},\mathsf{y}))] \leq \Sigma_{\mathsf{i}} \mathsf{E}[\Delta (\mathsf{dist}(\mathsf{z}_{\mathsf{i}},\mathsf{z}_{\mathsf{i+1}})) \leq 0.$

Path Coupling

Consider 2 configuration that differ on exactly 2 points:

$$x = [1, 2, 3, 8, 10, 7, 4, 1, 0]$$

$$y = [1, 2, 5, 8, 10, 5, 4, 1, 0]$$

- If these 2 points are paired together the distance decreases to 0.
- Otherwise we show the distances stays the same.

Our Approach:

- Rank vectors directly using lexicographical order.
- Build on algorithms for unranking developed by Stein ['20] for use in random sampling.
- Uses a dynamic programming approach and pre-computes a table C_d where C_d(n,S) stores the number of vectors of length n with sum S and component bound d (we instead store the cumulative sum)

Configuration	Rank	Configuration	Rank
(0,3,3)	0	(2,3,1)	5
(1,2,3)	1	(3,0,3)	6
(1,3,2)	2	(3,1,2)	7
(2,1,3)	3	(3,2,1)	8
(2,2,2)	4	(3,3,0)	9

Component bound = 3

Recursive Block Order

To order x and y, divide each in half and compute the sum of each half.

$$\begin{array}{lll} S_{x_L} < S_{y_L} & \implies x <_B y \\ S_{x_L} > S_{y_L} & \implies x >_B y \\ S_{x_L} = S_{y_L} & \text{and } x_L <_B y_L & \implies x <_B y \\ S_{x_L} = S_{y_L} & \text{and } x_L >_B y_L & \implies x >_B y \\ S_{x_L} = S_{y_L} & \text{and } x_L = y_L & \text{and } x_R <_B x_L & \implies x <_B y \\ S_{x_L} = S_{y_L} & \text{and } x_L = y_L & \text{and } x_R <_B x_L & \implies x <_B y \end{array}$$

Recursive Block Order

$S_{x_L} < S_{y_L}$	$\implies x <_B y$
$S_{x_L} > S_{y_L}$	$\implies x >_B y$
$S_{x_L} = S_{y_L}$ and $x_L <_B y_L$	$\implies x <_B y$
$S_{x_L} = S_{y_L}$ and $x_L >_B y_L$	$\implies x >_B y$
$S_{x_L} = S_{y_L}$ and $x_L = y_L$ and $x_R <_B x_L$	$\implies x <_B y$
$S_{x_L} = S_{y_L}$ and $x_L = y_L$ and $x_R >_B x_L$	$\implies x >_B y$

Component bound = 3

Configuration	Rank	Configuration	Rank
(0,2,3,3)	0	(2,1,2,3)	7
(1,1,3,3)	1	(2,1,3,2)	8
(2,0,3,3)	2	(3,0,2,3)	9
(0,3,2,3)	3	(3,0,3,2)	10
(0,3,3,2)	4	(1,3,1,3)	11
(1,2,2,3)	5	(1,3,2,2)	12
(1,2,3,2)	6	(1,3,3,1)	13

Recursive Block Order – Rank

$$\begin{array}{ll} S_{x_L} < S_{y_L} \\ S_{x_L} > S_{y_L} \\ \hline S_{x_L} = S_{y_L} \text{ and } x_L <_B y_L \\ S_{x_L} = S_{y_L} \text{ and } x_L >_B y_L \\ \hline S_{x_L} = S_{y_L} \text{ and } x_L >_B y_L \\ \hline S_{x_L} = S_{y_L} \text{ and } x_L = y_L \text{ and } x_R <_B x_L \\ \hline S_{x_L} = S_{y_L} \text{ and } x_L = y_L \text{ and } x_R >_B x_L \\ \hline \end{array}$$

$$\operatorname{rank}_{n}(x) = \sum_{s=0}^{S_{x_{L}}-1} C(n/2, s) \cdot C(n/2, S-s) + \operatorname{rank}_{n/2}(x_{L}) \cdot C(n/2, S_{x_{R}}) + \operatorname{rank}_{n/2}(x_{R})$$

We only need 2logn rows!

Filling the C table

Dynamic Programming

Performance Tests and Results

Application	50 rounds	500 rounds	1000 rounds
10x10 image block $(n = 100, d = 255)$	0.06s	$0.39\mathrm{s}$	0.77s
16x16 image block $(n = 256, d = 255)$	0.11s	0.98s	$1.98\mathrm{s}$
32x32 image block ($n = 1024, d = 255$)	0.41s	$3.91\mathrm{s}$	7.81s
Exam scores $(n = 300, d = 100)$	0.12s	1.14s	2.26s
Salaries $(n = 30, d = 100000)$	0.02s	0.13s	$0.25\mathrm{s}$
Ratings $(n = 5000, d = 4)$	1.84s	18.5s	$37.8\mathrm{s}$

Our implementation of Tajik et al. algorithm

Application	Lexicographic			Recursive Block		
	Table size	Table time	Enc. time	Table size	Table time	Enc. time
10x10	162 MB	1.81s	0.009s	9 MB	0.87s	0.06s
16x16	1885 MB	13.1s	0.013	32 MB	5.8s	.18s
32x32	fail	-	-	$271 \mathrm{MB}$	316s	$3.50\mathrm{s}$
Exams	988MB	7.17s	0.011s	$15 \mathrm{MB}$	3.81s	.096s
Salaries	$4756 \mathrm{MB}$	79s	$0.34\mathrm{s}$	$672 \mathrm{MB}$	40.5s	4.2s
Ratings	fail	-	-	$25 \mathrm{MB}$	271 s	0.40 s

Summary

- First proof bounding the mixing time of the Tajik et al. algorithm
- Give practical rank and unrank algorithms for sumpreserving encryption
- Create prototype implementations with performance comparisons

Thank you!