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Sum-Preserving Encryption
Sum-Preserving Encryption schemes:
Encryption schemes in which ciphertexts and 
plaintexts are both integer vectors with the same sum.  

plaintext

[0, 10, 20, 5, 50]

[2, 10]

[1, 3, 7, 2, 8, 20, 9]

[5, 3, 1]

ciphertext

[15, 7, 8, 1, 54]

[5, 7]

[10, 3, 5, 8, 1, 2, 21

[2, 4, 3]

???

Vector components are typically bounded between 0 and d. 

Introduced by Tajik et al. [NDSS 2019]



Sum-Preserving Encryption

Image encryption where the thumbnail of an encrypted image 
matches the thumbnail of the unencrypted image.
• Divide the image into b x b blocks of pixels
• Apply sum-preserving encryption to each block with 

component bound 255.

Application:   Thumbnail-preserving encryption



Background

• Originally studied by Brightwell and Smith [‘97] 
• Formally defined and analyzed by Bellare, 

Ristenpart, Rogaway, and Stegers [‘09]
(use a rank-encipher-unrank construction)

• Widely studied and even standardized 
• Tajik, Gunasekaran, Dutta, Ellis, Bobba, Rosulek, 

Wright, Feng, focus on problem of creating a 
thumbnail encryption scheme [‘19]

A special type of format-preserving encryption.



Rank-Encipher-Unrank
plaintext

[0, 10, 20, 5, 50]

[2, 10]

[1, 3, 7, 2, 8, 20, 9]

[5, 3, 1]

ciphertext

[15, 7, 8, 1, 54]

[5, 7]

[10, 3, 5, 8, 1, 2, 21

[2, 4, 3]

Standard
Cipher

integer {0,…,N-1}

5

20

8

2

Rank 
Algorithm

integer {0,…,N-1}

3

9

10

1

Unrank
Algorithm



Idea [Tajik et al.]:

Rank-Encipher-Unrank

[5, 3, 1] 11111011101

• Represent as a string of 1’s and 0’s 
• The number of 1’s is the same as the sum and 0’s act as separators
• This is a regular language and thus we can use known techniques 

for ranking DFAs  [see Bellare et al. ’09]

However, high time complexity and impractical!



Idea [Tajik et al.]:

Rank-Encipher-Unrank

[5, 3, 1] 11111011101

• Represent as a string of 1’s and 0’s 
• The number of 1’s is the same as the sum and 0’s act as separators
• This is a regular language and thus we can use known techniques 

for ranking DFAs  [see Bellare et al. ’09]

Ranking vectors of length 2 is simple & efficient! 



Tajik et al. Construction
Sum-Preserving Shuffle Markov chain:
Repeat:
1. Choose a random shuffling on all points uniformly at random.
2. Pair adjacent points to create a perfect matching.
3. Independently for each matched pair select a pair of values 

u.a.r. from all valid choices that preserve the sum.

[1, 3, 7, 2, 8, 20]

[3, 7, 8, 20, 1, 2]

(0,10), (1,9), (2,8), (3,7), (4,6), (5,5), (6,4), (7,3), 
(8,2), (9,1), (10,0)

[2, 8, 4, 24, 0, 3]



Our Results

1. First proof bounding the mixing time of the Tajik 
et al. algorithm

2. Give practical rank and unrank algorithms for 
sum-preserving encryption

3. Create prototype implementations with 
performance comparisons



Tajik et al. Construction
Sum-Preserving Shuffle Markov chain:
Repeat:
1. Choose a random shuffling on all points uniformly at random.
2. Pair adjacent points to create a perfect matching.
3. Independently for each matched pair select a pair of values 

u.a.r. from all valid choices that preserve the sum.

How many times do you need to repeat?



Tajik et al. Construction
Sum-Preserving Shuffle Markov chain:
Repeat:
1. Choose a random shuffling on all points uniformly at random.
2. Pair adjacent points to create a perfect matching.
3. Independently for each matched pair select a pair of values 

u.a.r. from all valid choices that preserve the sum.

• Tajik et al. give heuristic arguments for what secure 
round choices might be but no proof.

• Test performance with 1000, 3000, and 5000 rounds.



Definition:  The total variation distance is 

||	Pt,	π	||	=		max ½ ∑			|Pt(x,y)	– π(y)|.

Definition: Given ε, the mixing time is

τ(ε)	=	min	{t:	||Ptʼ,π|| < ε,							tʼ≥	t}.A

Mixing Time

x	 Ω∈ y			Ω	∈



Mixing Time Bound
Sum-Preserving Shuffle Markov chain:
Repeat:
1. Choose a random shuffling on all points uniformly at random.
2. Pair adjacent points to create a perfect matching.
3. Independently for each matched pair select a pair of values 

u.a.r. from all valid choices that preserve the sum.

Let n be the vector length, d the component bound, and 
S the fixed sum.  We show the mixing time satisfies

𝜏 𝜖 ≤ 𝑛 ln min 𝑑𝑛, 2𝑆 𝜖!"



Proof Idea

Let n be the vector length, d the component bound, and 
S the fixed sum.  We show the mixing time satisfies

𝜏 𝜖 ≤ 𝑛 ln min 𝑑𝑛, 2𝑆 𝜖!"

Use path coupling due to Dyer, Greenhill [‘98]  



Once they agree, they 
move in sync 
(xt = yt xt+1 = yt+1)

Couple moves, but 
each simulates the MC

Start at any  x0 and y0

Simulate 2 processes:

x0

y0

Expected Coupling Time > Mixing time

Prove chains getting closer in expectation in each step

Manhattan distance

Coupling



• Coupling:   Show for all states x,y,
E[ Δ (dist(x,y)) ]  <  0.

• Path coupling:   Show for all u,v s.t. u,v differ by 2 points,
that E[ Δ (dist(u,v)) ]  <  0.

Consider a shortest path:
x = z0, z1,  z2, . . . , zr= y, zi,zi+1 differ by 2 points.

E[ Δ (dist(x,y)) ]   ≤  Σi E[ Δ (dist(zi,zi+1))  ≤  0.

Path CouplingPath Coupling



• If these 2 points are paired together the distance decreases to 0.
• Otherwise we show the distances stays the same.

Path Coupling

𝑥 = 1, 2, 3, 8, 10, 7, 4, 1, 0

Consider 2 configuration that differ on exactly 2 points:

𝑦 = 1, 2, 5, 8, 10, 5, 4, 1, 0



Our Approach:

Rank-Encipher-Unrank

• Rank vectors directly using lexicographical order.
• Build on algorithms for unranking developed by Stein [‘20] for use 

in random sampling.
• Uses a dynamic programming approach and pre-computes a table 

Cd where Cd(n,S) stores the number of vectors of length n with sum 
S and component bound d (we instead store the cumulative sum)

Configuration Rank Configuration Rank
(0,3,3) 0 (2,3,1) 5
(1,2,3) 1 (3,0,3) 6
(1,3,2) 2 (3,1,2) 7
(2,1,3) 3 (3,2,1) 8
(2,2,2) 4 (3,3,0) 9

Component bound = 3



Recursive Block Order

To order x and y, divide each in half and compute the 
sum of each half.

SxL < SyL =) x <B y

SxL > SyL =) x >B y

SxL = SyL and xL <B yL =) x <B y

SxL = SyL and xL >B yL =) x >B y

SxL = SyL and xL = yL and xR <B xL =) x <B y

SxL = SyL and xL = yL and xR >B xL =) x >B y



Recursive Block Order
SxL < SyL =) x <B y

SxL > SyL =) x >B y

SxL = SyL and xL <B yL =) x <B y

SxL = SyL and xL >B yL =) x >B y

SxL = SyL and xL = yL and xR <B xL =) x <B y

SxL = SyL and xL = yL and xR >B xL =) x >B y

Configuration Rank Configuration Rank
(0,2,3,3) 0 (2,1,2,3) 7
(1,1,3,3) 1 (2,1,3,2) 8
(2,0,3,3) 2 (3,0,2,3) 9
(0,3,2,3) 3 (3,0,3,2) 10
(0,3,3,2) 4 (1,3,1,3) 11
(1,2,2,3) 5 (1,3,2,2) 12
(1,2,3,2) 6 (1,3,3,1) 13

Component bound = 3



Recursive Block Order – Rank
SxL < SyL =) x <B y

SxL > SyL =) x >B y

SxL = SyL and xL <B yL =) x <B y

SxL = SyL and xL >B yL =) x >B y

SxL = SyL and xL = yL and xR <B xL =) x <B y

SxL = SyL and xL = yL and xR >B xL =) x >B y

rankn(x) =

SxL
�1X

s=0

C(n/2, s) · C(n/2, S � s)

+ rankn/2(xL) · C(n/2, SxR)

+ rankn/2(xR)

We only need 2logn rows!



Filling the C table

• Dynamic Programming

• Generating Functions

Cd(n, S) =
nX

k=0

(�1)k
✓
n

k

◆✓
n+ S � k(d+ 1)� 1

n� 1

◆

Cd(n, S) =

8
>>>>>><

>>>>>>:

1 if n = 1, S  d

0 if n = 1, S > d

1 if n = 0

Cd(n�1, S) + Cd(n, S�1) if n > 0, S  d

Cd(n�1, S) + Cd(n, S�1)� Cd(n�1, S�d�1) otherwise

Start with 0 Start with number > 0

Overcount by those that start with d



Performance Tests and Results

Application 50 rounds 500 rounds 1000 rounds
10x10 image block (n = 100, d = 255) 0.06s 0.39s 0.77s
16x16 image block (n = 256, d = 255) 0.11s 0.98s 1.98s
32x32 image block (n = 1024, d = 255) 0.41s 3.91s 7.81s

Exam scores (n = 300, d = 100) 0.12s 1.14s 2.26s
Salaries (n = 30, d = 100000) 0.02s 0.13s 0.25s
Ratings (n = 5000, d = 4) 1.84s 18.5s 37.8s

Our implementation of Tajik et al. algorithm

Application
Lexicographic Recursive Block

Table size Table time Enc. time Table size Table time Enc. time
10x10 162 MB 1.81s 0.009s 9 MB 0.87s 0.06s
16x16 1885 MB 13.1s 0.013 32 MB 5.8s .18s
32x32 fail - - 271 MB 316s 3.50s
Exams 988MB 7.17s 0.011s 15 MB 3.81s .096s
Salaries 4756 MB 79s 0.34s 672 MB 40.5s 4.2s
Ratings fail - - 25 MB 271 s 0.40 s



Summary

• First proof bounding the mixing time of the Tajik et 
al. algorithm
• Give practical rank and unrank algorithms for sum-

preserving encryption
• Create prototype implementations with 

performance comparisons



Thank you!


