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Sum-Preserving Encryption

Sum-Preserving Encryption schemes:

Encryption schemes in which ciphertexts and
plaintexts are both integer vectors with the same sum.

[0, 10, 20, 5, 50]
[2, 10]
[1,3,7,2,8,20,9]

[5, 3, 1]

[15, 7, 8, 1, 54]

277

- [5, 7]

[2, 4, 3]

Vector components are typically bounded between 0 and d.

Introduced by Tajik et al. [NDSS 2019]



Sum-Preserving Encryption

Application: Thumbnail-preserving encryption

Image encryption where the thumbnail of an encrypted image
matches the thumbnail of the unencrypted image.

 Divide the image into b x b blocks of pixels

* Apply sum-preserving encryption to each block with
component bound 255.




A special type of format-preserving encryption.

* Originally studied by Brightwell and Smith [‘97]

* Formally defined and analyzed by Bellare,
Ristenpart, Rogaway, and Stegers [‘09]
(use a rank-encipher-unrank construction)

* Widely studied and even standardized

* Tajik, Gunasekaran, Dutta, Ellis, Bobba, Rosulek,
Wright, Feng, focus on problem of creating a
thumbnail encryption scheme [19]



Rank-Encipher-Unrank

[0, 10, 20, 5, 50]
[2, 10]
[1,3,7,2,8,20,9]

[5, 3, 1]

[15,7, 8, 1, 54]
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[10,3,5,8,1,2,21
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Rank-Encipher-Unrank

ldea [Tajik et al.]:

5, 3, 1] m) 11111011101

* Represent as a string of 1’s and 0’s
e The number of 1’s is the same as the sum and O’s act as separators

* Thisis a regular language and thus we can use known techniques
for ranking DFAs [see Bellare et al. '09]

However, high time complexity and impractical!



Rank-Encipher-Unrank

ldea [Tajik et al.]:

5, 3, 1] m) 11111011101

* Represent as a string of 1’s and 0’s
e The number of 1’s is the same as the sum and O’s act as separators

* Thisis a regular language and thus we can use known techniques
for ranking DFAs [see Bellare et al. '09]

Ranking vectors of length 2 is simple & efficient!



Tajik et al. Construction

Sum-Preserving Shuffle Markov chain:

Repeat:

1. Choose a random shuffling on all points uniformly at random.

2. Pair adjacent points to create a perfect matching.

3. Independently for each matched pair select a pair of values
u.a.r. from all valid choices that preserve the sum.

[1,3,7,2,8, 20]

4

A A A
3, 7,8, 20,1, 2] = [2,8,4240,3]

A




Our Results

1. First proof bounding the mixing time of the Tajik
et al. algorithm

2. Give practical rank and unrank algorithms for
sum-preserving encryption

3. Create prototype implementations with
performance comparisons



Tajik et al. Construction

Sum-Preserving Shuffle Markov chain:

Repeat:

1. Choose a random shuffling on all points uniformly at random.

2. Pair adjacent points to create a perfect matching.

3. Independently for each matched pair select a pair of values
u.a.r. from all valid choices that preserve the sum.

How many times do you need to repeat?



Tajik et al. Construction

Sum-Preserving Shuffle Markov chain:

Repeat:

1. Choose a random shuffling on all points uniformly at random.

2. Pair adjacent points to create a perfect matching.

3. Independently for each matched pair select a pair of values
u.a.r. from all valid choices that preserve the sum.

* Tajik et al. give heuristic arguments for what secure
round choices might be but no proof.
e Test performance with 1000, 3000, and 5000 rounds.



Mixing Time

Definition: The IS
| P[] = max %2 ) |PY(xy) - (y)l.
xel) ye()
Definition: Given g, the is

t(e) = min {t: ||Pt, || <g WVt >t}



Mixing Time Bound

Sum-Preserving Shuffle Markov chain:
Repeat:

1. Choose a random shuffling on all points uniformly at random.

2. Pair adjacent points to create a perfect matching.

3. Independently for each matched pair select a pair of values
u.a.r. from all valid choices that preserve the sum.

Let n be the vector length, d the component bound, and
S the fixed sum. We show the mixing time satisfies

7(¢) < nln(min(dn, 25)e™1)



Let n be the vector length, d the component bound, and
S the fixed sum. We show the mixing time satisfies

7(€) < nln(min(dn, 25)e™1)

Use path coupling due to Dyer, Greenhill [*98]



Coupling

Simulate 2 processes:

eStart at any xyand vy,

e Couple moves, but
each simulates the MC

e Once they agree, they
move in sync

(Xt = Yi— X1 = yt+1)

Expected Coupling Time > Mixing time
Prove chains getting closer in expectation in each step

L; Manhattan distance



Path Coupling

* Coupling: Show for all states x,y,
E[ A (dist(x,y))] < O.

 Path coupling: Show for all u,v s.t. u,v differ by 2 points,
that E[ A (dist(u,v))] < 0.

Consider a shortest path:
X=2y 21, Zy -.-,2,=Y, Z,Z,, differ by 2 points.

E[ A (dist(x,y))] £ Z E[ A(dist(z,z,,)) £ 0.



Path Coupling

Consider 2 confiEuration that differ on exactly 2 points:

11,2,3,8,10,7,4,1,0]
11,2,5,8,10,5,4, 1, 0]

X
Y

* If these 2 points are paired together the distance decreases to 0.
* Otherwise we show the distances stays the same.



Rank-Encipher-Unrank

Our Approach:

* Rank vectors directly using lexicographical order.

e Build on algorithms for unranking developed by Stein [20] for use
in random sampling.

* Uses a dynamic programming approach and pre-computes a table
Cqywhere C4(n,S) stores the number of vectors of length n with sum
S and component bound d (we instead store the cumulative sum)

Configuration | Rank | Configuration | Rank
(0,3,3) 0 (2,3,1) 5
(1,2,3) 1 (3,0,3) 6
(1,3,2) 2 (3,1,2) 7
(2,1,3) 3 (3,2,1) 8
(2,2,2) 1 (3,3,0) 9

Component bound =3



Recursive Block Order

To order x and y, divide each in half and compute the
sum of each half.

SxL <SyL — T <BY
Sz, > Sy, — T >BY
Sz, =95, and zp <p yrL, — T <pBY
Sz, =95, and zr >p yrL, — T >pY
Se, =95y, andzp =yr and zr <prr, = T <BY
Se, =95y, and zp =yr and T >prr, = T >BY



Recursive Block Order

Sz, < Sy, — Tz <BY
Sz > Sy, — T >pY
Sy, =95y, and 1, <p YL, — x <BY
Sz, =Sy, and z1, >B YL, = T >pY

Sy, =5y, and zr, = yr, and zr <p 7L, — x<BY

Sy, =9y, and zr, =y, and zp >p 7L, = x >pY
Component bound =3

Configuration | Rank | Configuration | Rank
(0,2,3,3) 0 (2,1,2,3) 7
(1,1,3,3) 1 (2,1,3,2) 8
(2,0,3,3) 2 (3,0,2,3) 9
(0,3,2,3) 3 (3,0,3,2) 10
(0,3,3,2) 4 (1,3,1,3) 11
(1,2,2,3) 5 (1,3,2,2) 12
(1,2,3,2) 6 (1,3,3,1) 13




Recursive Block Order — Rank

SxL<SyL] — T <BY
Sp, > Sy, — z>py
(SmL:SyL and ry <p yLJ — <BY
\SwL:SyL and 1, >p yr, — T >pY
[SwL:SyL and x;, =y and xp <p xL] — x <BY
Se, =95, and zp =yr and xgp >pry, = T >BY

(5, 1 D

rank,, (z) = Z C(n/2,s)-C(n/2,S — s)
=0 J

:—I— ranky, /2(xr) - C(n/2,S:5)
-+ rank,, /2(zR)

We only need 2logn rows!



Filling the C table

* Dynamic Programming

C’d(n, S) = <

/

1 ifn=15<d
0 | Start with O | | Start with number >0 iftn=1,5>d
1 ifn=20

Cd(n—l, S) + C’d(n, S—l) ifn>0,5<d

* Generating Functions

Caln, §) = S (~1)F (Z) (n o _nk(—d1+ . 1>

k=0

Ca(n—1,8) + Ca(n, S—1) — C4(n—1,5—-d—1) otherwise

1

Overcount by those that start with d




Performance Tests and Results

Our implementation of Tajik et al. algorithm

Application 50 rounds | 500 rounds | 1000 rounds
10x10 image block (n = 100, d = 255) 0.06s 0.39s 0.77s
16x16 image block (n = 256, d = 255) 0.11s 0.98s 1.98s
32x32 image block (n = 1024, d = 255) 0.41s 3.91s 7.81s
Exam scores (n = 300,d = 100) 0.12s 1.14s 2.26s
Salaries (n = 30,d = 100000) 0.02s 0.13s 0.25s
Ratings (n = 5000,d = 4) 1.84s 18.5s 37.8s
Application Lexicographic Recursive Block
Table size | Table time | Enc. time | Table size | Table time | Enc. time
10x10 162 MB 1.81s 0.009s 9 MB 0.87s 0.06s
16x16 1885 MB 13.1s 0.013 32 MB 5.8s 18s
32x32 fail - - 271 MB 316s 3.50s
Exams 988MB 7.17s 0.011s 15 MB 3.81s .096s
Salaries 4756 MB 79s 0.34s 672 MB 40.5s 4.2s
Ratings fail - - 25 MB 271 s 0.40 s




Summary

* First proof bounding the mixing time of the Tajik et
al. algorithm

* Give practical rank and unrank algorithms for sum-
preserving encryption

* Create prototype implementations with
performance comparisons



Thank you!



