
Improved Straight-Line Extraction
in the Random Oracle Model

Yashvanth Kondi abhi shelat

with Applications to Signature Aggregation

!is Work
• We explore two dimensions of Fischlin’s NIZKPoK compiler:

• Applicability:
Only proven for Sigma protocols with ‘quasi-unique responses’
(doesn’t include logical OR, Pedersen commitment PoK, etc.)
Folklore: “works anyway”

• Computation cost:
Usually the bo"leneck — can we improve on it?
2) Lower bound: Fischlin05 is optimal up to a small constant
3) Application-speci#c optimization: 200 for EdDSA aggregation×

1a) Contrary to folklore: a"ack on Witness Indistinguishability
1b) Simple randomization #xes the problem

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

Recap: Protocol for Relation Σ R

P(X, w) V(X)

[Damgård 02]

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

Commitment

Recap: Protocol for Relation Σ R

P(X, w) V(X)
a

[Damgård 02]

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

Challenge

Commitment

Recap: Protocol for Relation Σ R

P(X, w) V(X)
a
e

[Damgård 02]

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

Challenge

Response

Commitment

Recap: Protocol for Relation Σ R

P(X, w) V(X)
a
e
z

#$%&'((a, e, z)

[Damgård 02]

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

Challenge

Response

Commitment

Recap: Protocol for Relation Σ R

P(X, w) V(X)
a
e
z

#$%&'((a, e, z)

[Damgård 02]

-special soundness:2
 such that w ← *+,(X, a, (e1, z1), (e2, z2)) R(X, w) = 1

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

Challenge

Response

Commitment

Recap: Protocol for Relation Σ R

P(X, w) V(X)
a
e
z

#$%&'((a, e, z)

[Damgård 02]

Fixed commitment

-special soundness:2
 such that w ← *+,(X, a, (e1, z1), (e2, z2)) R(X, w) = 1

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

Challenge

Response

Commitment

Recap: Protocol for Relation Σ R

P(X, w) V(X)
a
e
z

#$%&'((a, e, z)

[Damgård 02]

Varying (ch, resp) pairs

Fixed commitment

-special soundness:2
 such that w ← *+,(X, a, (e1, z1), (e2, z2)) R(X, w) = 1

• [Fiat Shamir 87] provides a simple method to compile any public-coin protocol to
a non-interactive proof, given a suitably chosen hash function

P(X, w) V(X)
a
e
z

#$%&'((a, e, z)

!e Fiat-Shamir Transform

!e Fiat-Shamir Transform
• [Fiat Shamir 87] provides a simple method to compile any public-coin protocol to

a non-interactive proof, given a suitably chosen hash function

P(X, w) V(X)
a

e = H(X, a)
z

#$%&'((a, e, z)

Fiat-Shamir: Security
• “Forking” extraction strategy in Random Oracle Model [Pointcheval Stern 96]:

P*

H

a0

ai

e0

ei

am
em

⋮

⋮

P*

H

a0

ai

e0
⋮

e*i

a*m
e*m

⋮

*+,
(ai, ei)

Outputs witness w

Probability of
success:

p p ≈ p2

* zi, z*i

/0,10, (ai, ei, zi) /0,10, (ai, e*i , z*i)

(ai, ei)

Fiat-Shamir Compilation
• Advantages:

- Simple to describe/implement
- Very e$cient; proving, veri#cation cost exactly the

same as input -protocol

• Downsides:
- Forking strategy does not compose;

unclear how to prove concurrent security
- %adratic security loss

Σ

Straight-line Extraction
• Formalized by [Pass 03] in the Random Oracle Model:

P*

H

Q0

Qi

r0

ri

Qm
rm

⋮

⋮

P*

H

Q0

Qi

r0
⋮

r*i

Q*m
r*m

⋮

*+, ((Q0, r0), ⋯(Qm, rm))
Outputs witness w

Probability of
success:

p p ≈ p

Straight-line Extraction
• Formalized by [Pass 03] in the Random Oracle Model:

P*

H

Q0

Qi

r0

ri

Qm
rm

⋮

⋮

P*

H

Q0

Qi

r0
⋮

r*i

Q*m
r*m

⋮

*+, ((Q0, r0), ⋯(Qm, rm))
Outputs witness w

Probability of
success:

p p ≈ p

Supports concurrent composition
[Pass 03]

Straight-line Extraction
• Formalized by [Pass 03] in the Random Oracle Model:

P*

H

Q0

Qi

r0

ri

Qm
rm

⋮

⋮

P*

H

Q0

Qi

r0
⋮

r*i

Q*m
r*m

⋮

*+, ((Q0, r0), ⋯(Qm, rm))
Outputs witness w

Probability of
success:

p p ≈ p

Supports concurrent composition
[Pass 03]

Gave simple cut-and-choose construction

Fischlin’s Transformation

• [Fischlin 05] gave a straight-line extractable compiler that avoids cut-and-choose
logistics through a clever “proof of work” type idea

P(X, w) V(X)
a, e, z H(a, e, z) ?= 0

#$%&'((a, e, z)

Fischlin’s Transformation

P(X, w) :

H

• Let be a random oracleH : {0,1}* ↦ {0,1}ℓ

Fischlin’s Transformation

P(X, w) :

H

Sample -protocol #rst message ‘ ’Σ a

• Let be a random oracleH : {0,1}* ↦ {0,1}ℓ

Fischlin’s Transformation

P(X, w) :

H

(a,0,z0)
Sample -protocol #rst message ‘ ’Σ a

• Let be a random oracleH : {0,1}* ↦ {0,1}ℓ

Fischlin’s Transformation

P(X, w) :

H

(a,0,z0)
0010101

Sample -protocol #rst message ‘ ’Σ a

• Let be a random oracleH : {0,1}* ↦ {0,1}ℓ

Fischlin’s Transformation

P(X, w) :

H

(a,0,z0)

(a, i, zi)

0010101

1001001
⋮

⋮

Sample -protocol #rst message ‘ ’Σ a

• Let be a random oracleH : {0,1}* ↦ {0,1}ℓ

Fischlin’s Transformation

P(X, w) :

H

(a,0,z0)

(a, i, zi)

0010101

1001001

(a, e, z)
0000000

⋮

⋮

Sample -protocol #rst message ‘ ’Σ a

• Let be a random oracleH : {0,1}* ↦ {0,1}ℓ

Output

Fischlin’s Transformation

P(X, w) :

H

(a,0,z0)

(a, i, zi)

0010101

1001001

(a, e, z)
0000000

⋮

⋮

Sample -protocol #rst message ‘ ’Σ a

• Let be a random oracleH : {0,1}* ↦ {0,1}ℓ

Output

Fischlin’s Transformation
• Let be a random oracleH : {0,1}* ↦ {0,1}ℓ

P(X, w) :

H

(a,0,z0)

(a, i, zi)

0010101

1001001

(a, e, z)
0000000

⋮

⋮

Sample -protocol #rst message ‘ ’Σ a

Soundness: Except with Pr= ,
is forced to query more than one

accepting transcript to

2−ℓ P

H

Completeness: terminates in poly
time when is small, i.e.

P
ℓ O(log κ)

Problem!

Output

Fischlin’s Transformation
• Let be a random oracleH : {0,1}* ↦ {0,1}ℓ

P(X, w) :

H

(a,0,z0)

(a, i, zi)

0010101

1001001

(a, e, z)
0000000

⋮

⋮

Sample -protocol #rst message ‘ ’Σ a

Soundness: Except with Pr= ,
is forced to query more than one

accepting transcript to

2−ℓ P

H

Completeness: terminates in poly
time when is small, i.e.

P
ℓ O(log κ)

Problem!

Output

Fischlin’s Transformation
• Let be a random oracleH : {0,1}* ↦ {0,1}ℓ

P(X, w) :

H

(a,0,z0)

(a, i, zi)

0010101

1001001

(a, e, z)
0000000

⋮

⋮

Sample -protocol #rst message ‘ ’Σ a

Soundness: Except with Pr= ,
is forced to query more than one

accepting transcript to

2−ℓ P

H

Completeness: terminates in poly
time when is small, i.e.

P
ℓ O(log κ)

Full Soundness: Repeat timesr

Fischlin05 vs Pass03
P(X, w) :

H

(a,1,z1)

(a, i, zi)

(a, e2ℓ, z2ℓ)
⋮

⋮

Sample -protocol #rst message ‘ ’Σ a

(a,1,z1)

(a, i, zi)

(a, e2ℓ, z2ℓ)

⋮

⋮
5677&, /1$8(a, ei, zi)

Soundness: 2−ℓ Soundness: 2−ℓ

Output: (a, e2ℓ, z2ℓ) Output: (a, ei, zi) + 5677&, + /1$8 bitsO(κ) O(κ) O(κ) O(κ ⋅ log κ)

Fischlin05 vs Pass03: %alitative

• Pass’ compiler works for any Sigma protocol

• Fischlin’s compiler works for a restricted class of Sigma
protocols with ‘quasi-unique responses’

• Supported by many standard Sigma protocols (eg. DLog),
but many may not—especially if a statement can have
multiple witnesses (eg. Pedersen Commitment opening,
1-of-2 witnesses, etc.)

%asi-unique Responses [Fischlin 05]
Hard: such that (a, e, z, z′) ← ;(11)

V(a, e, z) = V(a, e, z′) = 1
Fixing #xes (a, e) z

%asi-unique Responses [Fischlin 05]
Hard: such that (a, e, z, z′) ← ;(11)

V(a, e, z) = V(a, e, z′) = 1
Fixing #xes (a, e) z

H

(a,0,z0)

(a, i, zi)

(a, e, z)
⋮

⋮

%asi-unique Responses [Fischlin 05]
Hard: such that (a, e, z, z′) ← ;(11)

V(a, e, z) = V(a, e, z′) = 1
Fixing #xes (a, e) z

H

(a,0,z0)

(a,0,z′ 0)

(a,0,z′ ′ 0)
⋮

⋮
Easy to see how this

ties into soundness of
Fischlin’s compiler

%asi-unique Responses [Fischlin 05]
Hard: such that (a, e, z, z′) ← ;(11)

V(a, e, z) = V(a, e, z′) = 1
Fixing #xes (a, e) z

H

(a,0,z0)

(a,0,z′ 0)

(a,0,z′ ′ 0)
⋮

⋮ Prover can produce a proof
without ever having to try
more than one challenge

Easy to see how this
ties into soundness of

Fischlin’s compiler

%asi-unique Responses [Fischlin 05]
Hard: such that (a, e, z, z′) ← ;(11)

V(a, e, z) = V(a, e, z′) = 1
Fixing #xes (a, e) z

H

(a,0,z0)

(a,0,z′ 0)

(a,0,z′ ′ 0)
⋮

⋮ Prover can produce a proof
without ever having to try
more than one challenge

Recall:
Extractor needs transcripts
with di&erent challenges

Easy to see how this
ties into soundness of

Fischlin’s compiler

Is it really necessary, though?

• Folklore: breaking Sigma protocol abstraction, and
simply ‘adjusting syntax’ of the extractor is usually
su$cient to preserve Proof of Knowledge

• !is is demonstrated by the Sigma protocol to prove
knowledge of one-out-of-two witnesses
[Cramer Damgård Schoenmakers 94]

• Intuition: allow for the extraction of a witness(a, e, z, z′)

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

Tightening Conditions for Extraction

P(X, w) V(X)
a
e
z

-special soundness:2
 such that w ← *+,(X, a, (e1, z1), (e2, z2)) R(X, w) = 1

#$%&'((a, e, z)

[!is work]

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

Tightening Conditions for Extraction

P(X, w) V(X)
a
e
z

-special soundness:2
 such that w ← *+,(X, a, (e1, z1), (e2, z2)) R(X, w) = 1

#$%&'((a, e, z)

[!is work]

Strong

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

 OR e1 ≠ e2 z1 ≠ z2

Tightening Conditions for Extraction

P(X, w) V(X)
a
e
z

-special soundness:2
 such that w ← *+,(X, a, (e1, z1), (e2, z2)) R(X, w) = 1

#$%&'((a, e, z)

[!is work]

Strong

Presenter’s Company
Logo – replace or delete

on master slide

#RSAC

 OR e1 ≠ e2 z1 ≠ z2

Tightening Conditions for Extraction

P(X, w) V(X)
a
e
z

-special soundness:2
 such that w ← *+,(X, a, (e1, z1), (e2, z2)) R(X, w) = 1

#$%&'((a, e, z)

[!is work]

Strong

…are we done?

What about Zero-knowledge?

• Interestingly, Fischlin’s proof of Zero-knowledge also
depends on quasi-unique responses

• Unlike extraction, it is not intuitive as to why (or whether it’s
even necessary)

• [!is work]: In the absence of unique responses, an explicit
a"ack on Witness Indistinguishability

• Fact 1: In some Sigma protocols, the prover’s internal state is
exposed to an adversary who has the witness.
eg. Schnorr: ; given can solve for

• Fact 2: Once is #xed, Fischlin’s compiler is deterministic

z = xe + r x r

a

!e A"ack

P/=(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V
(a1−b, e1−b, z1−b) ← >&7(x1−b)

eb = e − e1−b

A"acker : Given Fischlin-compiled proof , retrieve prover’s internal
state, and retrace its steps, i.e. a"empt to recompute the proof

; π

• Fact 1: In some Sigma protocols, the prover’s internal state is
exposed to an adversary who has the witness.
eg. Schnorr: ; given can solve for

• Fact 2: Once is #xed, Fischlin’s compiler is deterministic

z = xe + r x r

a

!e A"ack

P/=(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V
(a1−b, e1−b, z1−b) ← >&7(x1−b)

eb = e − e1−b

A"acker : Given Fischlin-compiled proof , retrieve prover’s internal
state, and retrace its steps, i.e. a"empt to recompute the proof

; π

• Fact 1: In some Sigma protocols, the prover’s internal state is
exposed to an adversary who has the witness.
eg. Schnorr: ; given can solve for

• Fact 2: Once is #xed, Fischlin’s compiler is deterministic

z = xe + r x r

a

!e A"ack

P/=(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V
(a1−b, e1−b, z1−b) ← >&7(x1−b)

eb = e − e1−b

• Fact 3: In some Sigma protocols, for the same , the response
 will depend on which witness is used. e.g. PoK of

(a, e)
z w0 /= w1

If the “wrong” witness is used, w.h.p. will output a di!erent proof ; π′ ≠ π

A"acker : Given Fischlin-compiled proof , retrieve prover’s internal
state, and retrace its steps, i.e. a"empt to recompute the proof

; π

• Fact 1: In some Sigma protocols, the prover’s internal state is
exposed to an adversary who has the witness.
eg. Schnorr: ; given can solve for

• Fact 2: Once is #xed, Fischlin’s compiler is deterministic

z = xe + r x r

a

!e A"ack

P/=(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V
(a1−b, e1−b, z1−b) ← >&7(x1−b)

eb = e − e1−b

• Fact 3: In some Sigma protocols, for the same , the response
 will depend on which witness is used. e.g. PoK of

(a, e)
z w0 /= w1

How to Fix it?
• Can’t do anything about Fact 1 and Fact 3, i.e. properties of

many natural Sigma protocols

• We can #x Fact 2—Fischlin’s compiler can be randomized

• Instead of incrementally stepping through challenges, the Prover
can try random challenges until an accepting transcript is found

• Retrieving Sigma protocol randomness (via Fact 1) is now
insu$cient to retrace the Prover’s steps

!is Work
• We explore two dimensions of Fischlin’s NIZKPoK compiler:

• Applicability:
Only proven for Sigma protocols with ‘quasi-unique responses’
(doesn’t include logical OR, Pedersen commitment PoK, etc.)
Folklore: “works anyway”

• Computation cost:
Usually the bo"leneck — can we improve on it?
2) Lower bound: Fischlin05 is optimal up to a small constant
3) Application-speci#c optimization: 200 for EdDSA aggregation×

1a) Contrary to folklore: a"ack on Witness Indistinguishability
1b) Simple randomization #xes the problem

Straight-line Extractable NIZK in the ROM

For simple algebraic statements,
eg. Schnorr’s PoK of DLog

2022
~14 bn BC

Straight-line Extractable NIZK in the ROM

For simple algebraic statements,
eg. Schnorr’s PoK of DLog

[Pass 03]

2022
~14 bn BC

Straight-line Extractable NIZK in the ROM

For simple algebraic statements,
eg. Schnorr’s PoK of DLog

[Pass 03]

[Fischlin 05] 2022
~14 bn BC

Straight-line Extractable NIZK in the ROM

For simple algebraic statements,
eg. Schnorr’s PoK of DLog

[Pass 03]

[Fischlin 05] 2022

Same old

~14 bn BC

Straight-line Extractable NIZK in the ROM

For simple algebraic statements,
eg. Schnorr’s PoK of DLog

[Pass 03]

[Fischlin 05] 2022

Same old

~14 bn BC

But why?

RO %ery Complexity for NIZK
• If ZK is desired, we can prove that Fischlin’s technique is nearly optimal (within factor of

) for a non-programming straight-line extractor

• Our proof is a tightening of an asymptotic bound in [Fischlin 05]

• Lower bound states that if veri#er makes queries and prover , then

e ≈ 2.7

V P (P
V) > 2κ

P

V
ZK: !is has to be simulatable without a witness

• If ZK is desired, we can prove that Fischlin’s technique is nearly optimal (within factor of
) for a non-programming straight-line extractor

• Our proof is a tightening of an asymptotic bound in [Fischlin 05]

• Lower bound states that if veri#er makes queries and prover , then

e ≈ 2.7

V P (P
V) > 2κ

RO %ery Complexity for NIZK

P

V
ZK: !is has to be simulatable without a witness

• If ZK is desired, we can prove that Fischlin’s technique is nearly optimal (within factor of
) for a non-programming straight-line extractor

• Our proof is a tightening of an asymptotic bound in [Fischlin 05]

• Lower bound states that if veri#er makes queries and prover , then

e ≈ 2.7

V P (P
V) > 2κ

RO %ery Complexity for NIZK

P

V
ZK: !is has to be simulatable without a witness

Loose bound? Or room for improvement?

• If ZK is desired, we can prove that Fischlin’s technique is nearly optimal (within factor of
) for a non-programming straight-line extractor

• Our proof is a tightening of an asymptotic bound in [Fischlin 05]

• Lower bound states that if veri#er makes queries and prover , then

e ≈ 2.7

V P (P
V) > 2κ

RO %ery Complexity for NIZK

P

V
ZK: !is has to be simulatable without a witness

Having the Prover #nd collisions rather than
inversions of gives a bit of a speedupH

Loose bound? Or room for improvement?

• If ZK is desired, we can prove that Fischlin’s technique is nearly optimal (within factor of
) for a non-programming straight-line extractor

• Our proof is a tightening of an asymptotic bound in [Fischlin 05]

• Lower bound states that if veri#er makes queries and prover , then

e ≈ 2.7

V P (P
V) > 2κ

RO %ery Complexity for NIZK

P

V
ZK: !is has to be simulatable without a witness

Having the Prover #nd collisions rather than
inversions of gives a bit of a speedupH

Loose bound? Or room for improvement?

10—15% speedup in the general case for
(almost) free

Application-Speci#c Optimization
• We show that it is possible to optimize computation cost of Fischlin’s technique in

speci#c applications

• We consider Schnorr/EdDSA signature aggregation [CGKN21]: 200 improvement×

Aggregator

• Let be a random oracleH : {0,1}* ↦ {0,1}ℓ

P(X, w) :

H

(a,0,z0)

(a, i, zi)

⋮

⋮

Sample -protocol #rst message ‘ ’Σ a

Understanding Computation Cost

(a, e, z)

• Let be a random oracleH : {0,1}* ↦ {0,1}ℓ

P(X, w) :

H

(a,0,z0)

(a, i, zi)

⋮

⋮

Sample -protocol #rst message ‘ ’Σ a

Understanding Computation Cost

(a, e, z)

?@AA
%eries

Costs per query5B%(

Total cost:

We improve both dimensions

5B%(?@AA ⋅

Improving ?@AA?@AA

• !e query complexity corresponds to the (expected) running time of #nding
 inversions of an -bit hash function

• Insight: #nding collision of -bit hash is — faster than inversion

via birthday a"ack combinatorial analyses [von Mises 39, Preneel 93]
(adjusted to respect the security constraint for the same)

• !is translates to the Zero-Knowledge (NIZK) se"ing as well

?@AA
r ℓ

r ℓ′ 1.5 2×

ℓ′ κ

Improving ?@AA?@AA

• !e query complexity corresponds to the (expected) running time of #nding
 inversions of an -bit hash function

• Insight: #nding collision of -bit hash is — faster than inversion

via birthday a"ack combinatorial analyses [von Mises 39, Preneel 93]
(adjusted to respect the security constraint for the same)

• !is translates to the Zero-Knowledge (NIZK) se"ing as well

?@AA
r ℓ

r ℓ′ 1.5 2×

ℓ′ κ

Improving 5B%(

P V
f ∈ ℤq[X]

1 2 i n⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
e ∈ ℤq

f(e)

5B%(

Improving 5B%(
 in Schnorr aggregation Sigma protocol:5B%(

P V
f ∈ ℤq[X]

1 2 i n⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
e ∈ ℤq

f(e)

5B%(

Improving 5B%(
 in Schnorr aggregation Sigma protocol:5B%(

P V
f ∈ ℤq[X]

1 2 i n⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
e ∈ ℤq

f(e) is the cost of computing this5B%(Inherently multiplications in n ℤq

Improving 5B%(
 in Schnorr aggregation Sigma protocol:5B%(

P
f ∈ ℤq[X]

1 2 i n⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ H

0, f(0)

i, f(i)

e, f(e)
⋮

⋮

Fischlin proof

Improving 5B%(
 in Schnorr aggregation Sigma protocol:5B%(

P
f ∈ ℤq[X]

1 2 i n⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ H

0, f(0)

i, f(i)

e, f(e)
⋮

⋮

Fischlin proof

Amortize across evaluations

Improving 5B%(
 in Schnorr aggregation Sigma protocol:5B%(

P
f ∈ ℤq[X]

1 2 i n⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ H

0, f(0)

i, f(i)

e, f(e)
⋮

⋮

Fischlin proof

Amortize across evaluations

FFT, etc.: per evalO(log2(n))

Improving 5B%(
 in Schnorr aggregation Sigma protocol:5B%(

P
f ∈ ℤq[X]

1 2 i n⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ H

0, f(0)

i, f(i)

e, f(e)
⋮

⋮

Fischlin proof

Amortize across evaluations

Most signing curves
incompatible with FFT

Asymptotically e$cient general multipoint
evaluation is unsatisfying for n < 1000

FFT, etc.: per evalO(log2(n))

Improving 5B%(
 in Schnorr aggregation Sigma protocol:5B%(

P
f ∈ ℤq[X]

1 2 i n⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ H

0, f(0)

i, f(i)

e, f(e)
⋮

⋮

Fischlin proof

Amortize across evaluations

Most signing curves
incompatible with FFT

Asymptotically e$cient general multipoint
evaluation is unsatisfying for n < 1000

FFT, etc.: per evalO(log2(n))

!is work: per eval2 n

In Summary
• Fischlin’s transform does not preserve Witness Indistinguishability

in general — we show how randomization can #x this

• Lower bound explaining lack of progress in SLE in the ROM

• We show that application-speci#c optimization is possible

• Modest general improvement via hash collisions

eprint.iacr.org/2022/393
!anks!

!e A"ack

P/=(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V
(a1−b, e1−b, z1−b) ← >&7(x1−b)

eb = e − e1−b

• Fact 3: In some Sigma protocols, for the same , the response
 will depend on which witness is used. e.g. PoK of

(a, e)
z w0 /= w1

e(,)
P/=(w0):

P/=(w1):
If and
“agree” at , then they
“disagree” at any

P/=(w0) P/=(w1)
e

e′ ≠ e
z

Common a

Consider a given (a, e, z)

P/=(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V
(a1−b, e1−b, z1−b) ← >&7(x1−b)

eb = e − e1−b

• Fact 3: In some Sigma protocols, for the same , the response
 will depend on which witness is used. e.g. PoK of

(a, e)
z w0 /= w1

e(,)

P/=(w0):

P/=(w1):

If and
“agree” at , then they
“disagree” at any

P/=(w0) P/=(w1)
e

e′ ≠ e

z

Common a

!e A"ack

Consider a given (a, e, z)

P/=(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V
(a1−b, e1−b, z1−b) ← >&7(x1−b)

eb = e − e1−b

• Fact 3: In some Sigma protocols, for the same , the response
 will depend on which witness is used. e.g. PoK of

(a, e)
z w0 /= w1

e(,)

P/=(w0):

P/=(w1):

If and
“agree” at , then they
“disagree” at any

P/=(w0) P/=(w1)
e

e′ ≠ e

z

(0, z0)
(1, z1)

⋮

Common a

!e A"ack

Consider a given (a, e, z)

P/=(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V
(a1−b, e1−b, z1−b) ← >&7(x1−b)

eb = e − e1−b

• Fact 3: In some Sigma protocols, for the same , the response
 will depend on which witness is used. e.g. PoK of

(a, e)
z w0 /= w1

e(,)

P/=(w0):

P/=(w1):

If and
“agree” at , then they
“disagree” at any

P/=(w0) P/=(w1)
e

e′ ≠ e

z

(0, z0)
(1, z1)

⋮

(0, z′ 0) (1, z′ 1) ⋯

Common a

!e A"ack

Consider a given (a, e, z)

P/=(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V
(a1−b, e1−b, z1−b) ← >&7(x1−b)

eb = e − e1−b

• Fact 3: In some Sigma protocols, for the same , the response
 will depend on which witness is used. e.g. PoK of

(a, e)
z w0 /= w1

e(,)

P/=(w0):

P/=(w1):

If and
“agree” at , then they
“disagree” at any

P/=(w0) P/=(w1)
e

e′ ≠ e

z

(0, z0)
(1, z1)

⋮

(0, z′ 0) (1, z′ 1) ⋯

Common a

!e A"ack

Consider a given (a, e, z)

Unequal

P/=(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V
(a1−b, e1−b, z1−b) ← >&7(x1−b)

eb = e − e1−b

• Fact 3: In some Sigma protocols, for the same , the response
 will depend on which witness is used. e.g. PoK of

(a, e)
z w0 /= w1

e(,)

P/=(w0):

P/=(w1): z

(0, z0)
(1, z1)

⋮

(0, z′ 0) (1, z′ 1) ⋯

Given produced by
Fischlin’s compiler, we can

test which path is “plausible”

(a, e, z)

!e A"ack

Consider a given (a, e, z)

P/=(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V
(a1−b, e1−b, z1−b) ← >&7(x1−b)

eb = e − e1−b

• Fact 3: In some Sigma protocols, for the same , the response
 will depend on which witness is used. e.g. PoK of

(a, e)
z w0 /= w1

e(,)

P/=(w0):

P/=(w1): z

(0, z0)
(1, z1)

⋮

(0, z′ 0) (1, z′ 1) ⋯

Given produced by
Fischlin’s compiler, we can

test which path is “plausible”

(a, e, z)

H

!e A"ack

Consider a given (a, e, z)

P/=(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V
(a1−b, e1−b, z1−b) ← >&7(x1−b)

eb = e − e1−b

• Fact 3: In some Sigma protocols, for the same , the response
 will depend on which witness is used. e.g. PoK of

(a, e)
z w0 /= w1

e(,)

P/=(w0):

P/=(w1): z

(0, z0)
(1, z1)

⋮

(0, z′ 0) (1, z′ 1) ⋯

Given produced by
Fischlin’s compiler, we can

test which path is “plausible”

(a, e, z)

H

!e A"ack

Consider a given (a, e, z)

P/=(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V
(a1−b, e1−b, z1−b) ← >&7(x1−b)

eb = e − e1−b

• Fact 3: In some Sigma protocols, for the same , the response
 will depend on which witness is used. e.g. PoK of

(a, e)
z w0 /= w1

e(,)

P/=(w0):

P/=(w1): z

(0, z0)
(1, z1)

⋮

(0, z′ 0) (1, z′ 1) ⋯

Given produced by
Fischlin’s compiler, we can

test which path is “plausible”

(a, e, z)

H

W.h.p., only one
path—

induced by one
of or

—
is plausible

P/=(w0)
P/=(w1)

!e A"ack

Consider a given (a, e, z)

P/=(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V
(a1−b, e1−b, z1−b) ← >&7(x1−b)

eb = e − e1−b

• Fact 3: In some Sigma protocols, for the same , the response
 will depend on which witness is used. e.g. PoK of

(a, e)
z w0 /= w1

e(,)

P/=(w0):

P/=(w1): z

(0, z0)
(1, z1)

⋮

(0, z′ 0) (1, z′ 1) ⋯

Given produced by
Fischlin’s compiler, we can

test which path is “plausible”

(a, e, z)

H

W.h.p., only one
path—

induced by one
of or

—
is plausible

P/=(w0)
P/=(w1)

!e A"ack

Consider a given (a, e, z)

P/=(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V
(a1−b, e1−b, z1−b) ← >&7(x1−b)

eb = e − e1−b

• Fact 3: In some Sigma protocols, for the same , the response
 will depend on which witness is used. e.g. PoK of

(a, e)
z w0 /= w1

e(,)

P/=(w0):

P/=(w1): z

(0, z0)
(1, z1)

⋮

(0, z′ 0) (1, z′ 1) ⋯

Given produced by
Fischlin’s compiler, we can

test which path is “plausible”

(a, e, z)

H

W.h.p., only one
path—

induced by one
of or

—
is plausible

P/=(w0)
P/=(w1)

!e A"ack

Consider a given (a, e, z)

P/=(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V
(a1−b, e1−b, z1−b) ← >&7(x1−b)

eb = e − e1−b

• Fact 3: In some Sigma protocols, for the same , the response
 will depend on which witness is used. e.g. PoK of

(a, e)
z w0 /= w1

e(,)

P/=(w0):

P/=(w1): z

(0, z0)
(1, z1)

⋮

(0, z′ 0) (1, z′ 1) ⋯

Given produced by
Fischlin’s compiler, we can

test which path is “plausible”

(a, e, z)

H

W.h.p., only one
path—

induced by one
of or

—
is plausible

P/=(w0)
P/=(w1)

!is path induces
fresh queries to H

!e A"ack

Consider a given (a, e, z)

P/=(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V
(a1−b, e1−b, z1−b) ← >&7(x1−b)

eb = e − e1−b

• Fact 3: In some Sigma protocols, for the same , the response
 will depend on which witness is used. e.g. PoK of

(a, e)
z w0 /= w1

e(,)

P/=(w0):

P/=(w1): z

(0, z0)
(1, z1)

⋮

(0, z′ 0) (1, z′ 1) ⋯

Given produced by
Fischlin’s compiler, we can

test which path is “plausible”

(a, e, z)

H

W.h.p., only one
path—

induced by one
of or

—
is plausible

P/=(w0)
P/=(w1)

!is path induces
fresh queries to H

!e A"ack

Consider a given (a, e, z)

P/=(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V
(a1−b, e1−b, z1−b) ← >&7(x1−b)

eb = e − e1−b

• Fact 3: In some Sigma protocols, for the same , the response
 will depend on which witness is used. e.g. PoK of

(a, e)
z w0 /= w1

e(,)

P/=(w0):

P/=(w1): z

(0, z0)
(1, z1)

⋮

(0, z′ 0) (1, z′ 1) ⋯

Given produced by
Fischlin’s compiler, we can

test which path is “plausible”

(a, e, z)

H

W.h.p., only one
path—

induced by one
of or

—
is plausible

P/=(w0)
P/=(w1)

!is path induces
fresh queries to H

!e A"ack

Consider a given (a, e, z)

P/=(wb)

e
a0, a1

(e0, z0), (e1, z1)

x0, x1 V
(a1−b, e1−b, z1−b) ← >&7(x1−b)

eb = e − e1−b

• Fact 3: In some Sigma protocols, for the same , the response
 will depend on which witness is used. e.g. PoK of

(a, e)
z w0 /= w1

e(,)

P/=(w0):

P/=(w1): z

(0, z0)
(1, z1)

⋮

(0, z′ 0) (1, z′ 1) ⋯

Given produced by
Fischlin’s compiler, we can

test which path is “plausible”

(a, e, z)

H

W.h.p., only one
path—

induced by one
of or

—
is plausible

P/=(w0)
P/=(w1)

Would have
terminated here

!is path induces
fresh queries to H

!e A"ack

Consider a given (a, e, z)

