Improved Straight-Line Extraction
in the Random Oracle Model

with Applications to Signature Aggregation

Yashvanth Kondi abhi shelat

AARHUS Northeastern
/v UNIVERSITY NUniversity

This Work

e We explore two dimensions of Fischlin's NIZKPoK compiler:

o Applicability:
Only proven for Sigma protocols with "quasi-unique responses’
(doesn’t include logical OR, Pedersen commitment PoK, etc.)
Folklore: “works anyway”

la) Contrary to folklore: attack on Witness Indistinguishability
1b) Simple randomization fixes the problem

e Computation cost:
Usually the bottleneck — can we improve on it?

2) Lower bound: Fischlin05 is optimal up to a small constant
3) Application-specific optimization: 200X for EADSA aggregation

Recap: X Protocol for Relation R

[Damgard 02]

©

P(X,w) V(X)

Recap: X Protocol for Relation R

[Damgard 02]

©
P(X, w) V(X)
Commitment (

—_—

Recap: X Protocol for Relation R

[Damgard 02]

£) ©
P(X, w) V(X)
Commitment (
€ Challenge

—

Recap: X Protocol for Relation R

_ [Damgard 02] ‘
e £
P(X, w) V(X)
Commitment (
—_—
€ Challenge
—
Response e
—_—

Verify(a, e, 7)

Recap: X Protocol for Relation R

_ [Damgard 02] ‘
£ &
P(X, w) V(X)

Commitment (

—_—

€ Challenge

B .
Response e

—_—

Verify(a, e, 7)

2-special soundness:

w « Ext(X, a, (e, zy), (€5,2,)) such that R(X,w) =1

Recap: X Protocol for Relation R

_ [Damgard 02] ‘
£ &
P(X, w) V(X)

Commitment (

—_—

€ Challenge

B .
Response e

—_—

Verify(a, e, 7)

2-special soundness:

w « Ext(X,a, (e, 7)), (e5,2,)) such that R(X,w) =1

Fixed commitment

Recap: X Protocol for Relation R

_ [Damgard 02] ‘
£ &
P(X, w) V(X)

Commitment (

—_—

€ Challenge

B .
Response e

—_—

Verify(a, e, 7)

2-special soundness: | ,
Varying (ch, resp) pairs

w « Ext(X, a, (e, 2y), (€5,2,)) such that R(X,w) =1

Fixed commitment

The Fiat-Shamir Transtorm

o |[Fiat Shamir 87] provides a simple method to compile any public-coin protocol to
a non-interactive proof, given a suitably chosen hash function

0

P(X,w) V(X)

Verify(a, e, 7)

The Fiat-Shamir Transtorm

o |[Fiat Shamir 87] provides a simple method to compile any public-coin protocol to
a non-interactive proof, given a suitably chosen hash function

0

P(X,w) V(X)

e = H(X, a)

Verify(a, e, 7)

Fiat-Shamir: Security

o Forking” extraction strategy in Random Oracle Model [Pointcheval Stern 96]:
i [m—
€ €0

a; E a, E C vt <(ai’ e;) (a;, ei)>

l

a,, ar Outputs witness w
e, — p pm—
Output (a;, e;, 2,) Output (a;, ¢, 2)
Probability of D D Y p2

SUCCESS:

Fiat-Shamir Compilation

o Advantages:
- Simple to describe/implement
- Very efficient; proving, verification cost exactly the
same as input 2-protocol
e Downsides:

- Forking strategy does not compose;
unclear how to prove concurrent security

- Quadratic security loss

Straight-line Extraction

o Formalized by [Pass 03] in the Random Oracle Model:

P ?:j

0, Ext ((Qpr 70): +++(Qp 7
C—— ()
0 Outputs witness w
P m—
Probability of D S,

SUCCESS:

Straight-line Extraction

o Formalized by [Pass 03] in the Random Oracle Model:

pEx Qo
pS—
Supports concurrent composition :(Qo» ro), (O, ”m))

7, — | [Pass 03]

0 Outputs witness w
P —
Probability of D S,

SUCCESS:

Straight-line Extraction

o Formalized by [Pass 03] in the Random Oracle Model:

pEx Qo
n—
Supports concurrent composition [(Q,, r,), ---(Q,,, ”m))

7, — | [Pass 03]

| Outputs witness w

O

rn «— Gave simple cut-and-choose construction

Probability of D N

N/
SUCCCSS:

Fischlin’s Transformation

o [Fischlin 05] gave a straight-line extractable compiler that avoids cut-and-choose
logistics through a clever “proof of work” type idea

P(X, w) V(X)

?
€2 H(a,ez) =0
Verify(a, e, 2)

Fischlin’s Transformation

o Let|H|: {0,1}* > {0,1}’ be a random oracle

P(X,w) :

Fischlin’s Transformation

o Let|H|: {0,1}* > {0,1}’ be a random oracle

P(X, w) : Sample X-protocol first message ‘a’

Fischlin’s Transformation

o Let|H|: {0,1}* > {0,1}’ be a random oracle

P(X, w) : Sample X-protocol first message ‘a’
(aa()aZO)

Fischlin’s Transformation

o Let|H|: {0,1}* > {0,1}’ be a random oracle

P(X, w) : Sample X-protocol first message ‘a’

(aa()aZO)
) 0010101

Fischlin’s Transformation

o Let|H|: {0,1}* > {0,1}’ be a random oracle

P(X, w) : Sample Z-protocol first message ‘a’

(aa()aZO)
) 0010101

(aa ia Zl)

) 1001001 :I 1

Fischlin’s Transformation

o Let|H|: {0,1}* > {0,1}’ be a random oracle

P(X, w) : Sample Z-protocol first message ‘a’

(aa()aZO)
) 0010101

(aa ia Zl)

) 1001001 :I 1

Fischlin’s Transformation

o Let|H|: {0,1}* > {0,1}’ be a random oracle

P(X, w) : Sample Z-protocol first message ‘a’

(aa()aZO)
) 0010101

(aa ia Zl)

) 1001001 :I 1

Fischlin’s Transformation

o Let|H|: {0,1}* > {0,1}’ be a random oracle

P(X, w) : Sample X-protocol first message ‘a’

(a,0,2)) Soundness: Except with Pr=2"%, P
) 0010101 is forced to query more than one
: accepting transcript to |

(aa ia Zl)

) 1001001 :I 1

Completeness: P terminates in poly
time when ¢ is small, i.e. O(log k)

e Let|H

Fischlin’s Transformation

- {0,1}* > {0,1}¢ be a random oracle

P(X, w) : Sample X-protocol first message ‘a’

(aa()aZO)
) 0010101

(aa ia Zl)
) 1001001

— | H

Soundness: Except with Pr=2"¢, P
is forced to query more than one
accepting transcript to |

Completeness: P terminates in poly
time when ¢ is small, i.e. O(log k)

Problem!

e Let|H

P(X.

Fischlin’s Transformation

- {0,1}* > {0,1}¢ be a random oracle
W) . Sample X-protocol first message ‘a’
(a,0,2)) Soundness: Except with Pr=27%, P
) 0010101 is forced to query more than one

accepting transcript to |

(aa ia Zl)

) 1001001 :I I

Completeness: P terminates in poly
time when ¢ is small, i.e. O(log k)

Problem!

Full Soundness: Repeat r times

Fischlin05 vs Pass03

P(X, w) : Sample X-protocol first message ‘a’

(a,1<§>) (a,1,z;)
(a, i, z;) Commit | (a,1,7) Open(a, e;, 7,)
R :I H i :
(a o) I (Cl, €rv, sz)
s €r¢y Lo :l

Soundness: 2~ Soundness: 2~

Output: O(k) bits Output: Ok) + O(k) + O(x-logk)

Fischlin05 vs Pass03: Qualitative

e Pass’ compiler works for any Sigma protocol

o Fischlin's compiler works for a restricted class of Sigma
protocols with "quasi-unique responses’

e Supported by many standard Sigma protocols (eg. DLog),
but many may not—especially if a statement can have
multiple witnesses (eg. Pedersen Commitment opening,
1-of-2 witnesses, etc.)

Quasi-unique Responses [Fischlin 05]

Hard: (a,e,z,7') < <(pp) such that
Via,e,z2) = V(a,e,7’) =1

Fixing (a, e) fixes z

Quasi-unique Responses [Fischlin 05]

Hard: (a,e,z,7') < <(pp) such that
Via,e,z2) = V(a,e,7’) =1

Fixing (a, e) fixes z

Quasi-unique Responses [Fischlin 05]

Hard: (a,e,z,7') < <(pp) such that
Via,e,z2) = V(a,e,7’) =1

Fixing (a, e) fixes z

(aa()az())
X
Easy to see how this (a,0,20) ___
ties into soundness of X :| 2
Fischlin’s compiler :
(a O,Zél):l

Quasi-unique Responses [Fischlin 05]

Hard: (a,e,z,7') < <(pp) such that
Via,e,z2) = V(a,e,7’) =1

Fixing (a, e) fixes z

(a,O,Z())
X . Prover can produce a proof
Easy to see how this (a,0,2)) = W1thouth ever havglguto try
ties into soundness of X — more than one challenge
Fischlin’s compiler :
(aaoaz(,),):

Quasi-unique Responses |Fischlin 05

Hard: (a,e,z,7') < <(pp) such that
Via,e,z2) = V(a,e,7’) =1

Fixing (a, e) fixes z

(CZ,O,Z())
X . Prover can produce a proof
Easy to see how this (d,O,Zé):I |7 Wlthouthever haw}:lgum try
ties into soundness of X more than one challenge
Fischlin’s compiler : Recall
ecall:
,O, // .
(@.0.2) '\ Extractor needs transcripts

with different challenges

[s it really necessary, though?

o Folklore: breaking Sigma protocol abstraction, and
simply ‘adjusting syntax’ of the extractor is usually
sufficient to preserve Proof of Knowledge

o This is demonstrated by the Sigma protocol to prove
knowledge of one-out-of-two witnesses
|Cramer Damgard Schoenmakers 94]

o Intuition: (a, e, z, 7') allow for the extraction of a witness

Tightening Conditions for Extraction

o [This work] o
&
P(X,w) V(X)
d
— ¢
£

Verify(a, e, 7)

2-special soundness:

w « Ext(X, a, (e, zy), (€5,2,)) such that R(X,w) =1

Tightening Conditions for Extraction

o [This work] o
&
P(X,w) V(X)
d
— ¢
£

Verify(a, e, 7)

Strong 2-special soundness:

w « Ext(X, a, (e, zy), (€5,2,)) such that R(X,w) =1

Tightening Conditions for Extraction
['This work]

.
P(X, w) V(X)
d
€
<
Verify(a, e, 7)

Strong 2-special soundness:

w « Ext(X, a, (e, 2y), (€5,2,)) such that R(X,w) =1
e, # e, OR z; # 7,

Tightening Conditions for Extraction
['This work]

.
P(X, w) V(X)
d
€
<
Verify(a, e, 7)

Strong 2-special soundness:

w « Ext(X, a, (e, 2y), (€5,2,)) such that R(X,w) =1
e, #e, OR z; # 7 ...are we done?

What about Zero-knowledge?

e Interestingly, Fischlin's proof of Zero-knowledge also
depends on quasi-unique responses

o Unlike extraction, it is not intuitive as to why (or whether it’s
even necessary)

e |This work]: In the absence of unique responses, an explicit
attack on Witness Indistinguishability

The Attack

e Fact 1: In some Sigma protocols, the prover's internal state is
exposed to an adversary who has the witness.
eg. Schnorr: z = xe + r; given x can solve for r

e Fact 2: Once a is fixed, Fischlin’s compiler is deterministic

The Attack

e Fact 1: In some Sigma protocols, the prover's internal state is
exposed to an adversary who has the witness.
eg. Schnorr: z = xe + r; given x can solve for r

e Fact 2: Once a is fixed, Fischlin’s compiler is deterministic

Attacker &f: Given Fischlin-compiled proof z, retrieve prover’s internal
state, and retrace its steps, i.e. attempt to recompute the proof

The Attack

e Fact 1: In some Sigma protocols, the prover's internal state is
exposed to an adversary who has the witness.
eg. Schnorr: z = xe + r; given x can solve for r

e Fact 2: Once a is fixed, Fischlin’s compiler is deterministic

Attacker &f: Given Fischlin-compiled proof z, retrieve prover’s internal
state, and retrace its steps, i.e. attempt to recompute the proof

e Fact 3: In some Sigma protocols, for the same (a, e), the response
z will depend on which witness is used. e.g. PoK of w; OR w,

The Attack

e Fact 1: In some Sigma protocols, the prover's internal state is
exposed to an adversary who has the witness.
eg. Schnorr: z = xe + r; given x can solve for r

e Fact 2: Once a is fixed, Fischlin’s compiler is deterministic

Attacker &f: Given Fischlin-compiled proof z, retrieve prover’s internal
state, and retrace its steps, i.e. attempt to recompute the proof

e Fact 3: In some Sigma protocols, for the same (a, e), the response
z will depend on which witness is used. e.g. PoK of w; OR w,

If the "wrong” witness is used, w.h.p. & will output a different proof 7’ # n

How to Fix it?

e Can't do anything about Fact 1 and Fact 3, i.e. properties of
many natural Sigma protocols

e We can fix Fact 2—Fischlin’s compiler can be randomized

e Instead of incrementally stepping through challenges, the Prover
can try random challenges until an accepting transcript is found

e Retrieving Sigma protocol randomness (via Fact 1) is now
insufficient to retrace the Prover’s steps

This Work

e We explore two dimensions of Fischlin's NIZKPoK compiler:

Applicability:
Only proven for Sigma protocols with "quasi-unique responses’

(doesn’t include logical OR, Pedersen commitment PoK, etc.)
Folklore: “works anyway”

la) Contrary to folklore: attack on Witness Indistinguishability
1b) Simple randomization fixes the problem

Straight-line Extractable NIZK in the ROM

For simple algebraic statements,
eg. Schnorr’s PoK of DLog

} 2022

~14 bn BC

Straight-line Extractable NIZK in the ROM

For simple algebraic statements,
eg. Schnorr’s PoK of DLog

[Pass 03}
} 2022

~14 bn BC

Straight-line Extractable NIZK in the ROM

For simple algebraic statements,
eg. Schnorr’s PoK of DLog

[Pass 03}
} [Fischlin 05) 2022

~14 bn BC

Straight-line Extractable NIZK in the ROM

For simple algebraic statements,
eg. Schnorr’s PoK of DLog

[Pass 03} Same old
} [Fischlin 05) 2022

~14 bn BC

Straight-line Extractable NIZK in the ROM

For simple algebraic statements,
eg. Schnorr’s PoK of DLog

[Pass 03} Same old
} [Fischlin 05) 2022

~14 bn BC

But why?

RO Query Complexity for NIZK

o If ZK is desired, we can prove that Fischlin’s technique is nearly optimal (within factor of
e ~ 2.7) for a non-programming straight-line extractor

e Our proof is a tightening of an asymptotic bound in [Fischlin 05]

P
, Lower bound states that if verifier makes V queries and prover P, then (V) > 2"

P

v

ZK: This has to be simulatable without a witness

RO Query Complexity for NIZK

o If ZK is desired, we can prove that Fischlin’s technique isoptimal (within factor of
e ~ 2.7) for a non-programming straight-line extractor

e Our proof is a tightening of an asymptotic bound in [Fischlin 05]

P
, Lower bound states that if verifier makes V queries and prover P, then (V) > 2"

P

v

ZK: This has to be simulatable without a witness

RO Query Complexity for NIZK

o If ZK is desired, we can prove that Fischlin’s technique is optimal (within factor of
e ~ 2.7) for a non-programming straight-lir
Loose bound?

e Our proof is a tightening of an asymptotic bound in [Fischlin 05]

P
, Lower bound states that if verifier makes V queries and prover P, then (V) > 2"

P

v

ZK: This has to be simulatable without a witness

RO Query Complexity for NIZK

optimal (within factor of

o If ZK is desired, we can prove that Fischlin’s technique is
e ~ 2.7) for a non-programming straight-li

e Our prootf is a tightening of an asymptotic bou

, Lower bound states that if verifier makes V quer

P

”

ZK: This has to be simulatable without a witness

RO Query Complexity for NIZK

o If ZK is desired, we can prove that Fischlin’s technique is optimal (within factor of
e ~ 2.7) for a non-programming straight-li

e Our prootf is a tightening of an asymptotic bou

, Lower bound states that if verifier makes V quer

P

”

ZK: This has to be simulatable without a witness

Application-Specific Optimization

o We show that it is possible to optimize computation cost of Fischlin's technique in
specific applications

o We consider Schnorr/EdDSA signature aggregation [CGKN21]: 200X improvement
RRR

Aggregator

i

Understanding Computation Cost

o Let|H|: {0,1}* > {0,1}’ be a random oracle

P(X, w) : Sample X-protocol first message ‘a’

Understanding Computation Cost

o Let|H|: {0,1}* > {0,1}’ be a random oracle

P(X, w) : Sample X-protocol first message ‘a’

(aa()aZO)
X Total cost: T, - C,,
“hs
Tagg R :I H We improve both dimensions
Queries
(aa €, Z) :l

—
Costs C,,, per query

Improving T,

o The query complexity T, , corresponds to the (expected) running time of finding

r inversions of an Z-bit hash tunction

o Insight: finding r collision of £’-bit hash is 1.5—2X faster than inversion

via birthday attack combinatorial analyses [von Mises 39, Preneel 93]
(£’ adjusted to respect the security constraint for the same «)

o This translates to the Zero-Knowledge (NIZK) setting as well

Improving T,

o The query complexity T, , corresponds to the (expected) running time of finding

r inversions of an Z-bit hash tunction

o Insight: finding r collision of #’-bit hash is 1.5—2X faster than inversion

via birthday attack combinatorial analyses [von Mises 39, Preneel 93]
(£’ adjusted to respect the security constraint for the same «)

o This translates to the Zero-Knowledge (NIZK) setting as well

Improving C_

Improving C_

C,ry In Schnorr aggregation Sigma protocol:

Improving C_

C,. in Schnorr aggregation Sigma protocol:

P |4

fez,x]

afefe Je fe i) e o] -] [Fn

C,ry 1s the cost of computing this f(e) Inherently n multiplications in Z

Improving C_

C,., In Schnorr aggregation| Fischlin proof

qry

f€ Z,)X]

afefe Je fe i) e o] -] [Fn

Improving C_

C,., In Schnorr aggregation| Fischlin proof

qry

f€ Z,)X]

afefe Je fe i) e o] -] [Fn

Amortize across evaluations

Improving C_

C,., In Schnorr aggregation| Fischlin proof

qry

fez,x]

afefe Je fe i) e o] -] [Fn

FFT, etc.: O(log*(n)) per eval

Amortize across evaluations

Improving C_

C,ry In Schnorr aggregation Fischlin proof

P 0, f(0)
fez[X] X j

afefe Je fe i) e o] -] [Fn : f% —| 1y

Most signing curves e, f(e)
, 2
FFT, etc.: O(log“(n)) per eval incompatible with FFT :|
Amortize across evaluations
Asymptotically efficient general multipoint
evaluation is unsatistying for n < 1000

Improving C_

C,ry In Schnorr aggregation Fischlin proof

P 0, f(0)
fez[X] X j

afefe Je fe i) e o] -] [Fn : f% —| 1y

Most signing curves e, f(e)
FFT, etc.: 0(log2(n)) per eval incompatible with FFT :|

Amortize across evaluations

Asymptotically efficient general multipoint
evaluation is unsatistying for n < 1000 This work: 2\/% per eval

In Summary

o Fischlin's transform does not preserve Witness Indistinguishability
in general — we show how randomization can fix this

o Lower bound explaining lack of progress in SLE in the ROM
o We show that application-specific optimization is possible

e Modest general improvement via hash collisions

Thanks!

eprint.iacr.org/2022/393

The Attack

e Fact 3: In some Sigma protocols, for the same (a, e), the response
z will depend on which witness is used. e.g. PoK of w;, OR w;,

Consider a given (a, e, 7)

Pox():
If Por(wy) and Par(wy)

POR(WI) : (e ’ Z) “agree” at e, then they

“disagree” at any e’ # e

The Attack

e Fact 3: In some Sigma protocols, for the same (a, e), the response
z will depend on which witness is used. e.g. PoK of w;, OR w;,

Consider a given (a, e, 7)

Common a

Par(wp):

If Por(wy) and Par(wy)
“agree” at e, then they
“disagree” at any e’ # e

Paor(w)): (e.2)

The Attack

e Fact 3: In some Sigma protocols, for the same (a, e), the response
z will depend on which witness is used. e.g. PoK of w;, OR w;,

Consider a given (a, e, 7)

Par(wp):

0

If Por(wy) and Par(wy)
“agree” at e, then they
“disagree” at any e’ # e

Paor(w)): (e.2)

The Attack

e Fact 3: In some Sigma protocols, for the same (a, e), the response
z will depend on which witness is used. e.g. PoK of w;, OR w;,

Consider a given (a, e, 7)

Par(wp):

b

If Por(wy) and Par(wy)
“agree” at e, then they
“disagree” at any e’ # e

POR(WI): (0, Z(,)) (1, Zi) (e,Z)

The Attack

e Fact 3: In some Sigma protocols, for the same (a, e), the response
z will depend on which witness is used. e.g. PoK of w;, OR w;,

Consider a given (a, e, 7)

Par(wp):

Lo
Common a 1
(1, Zl) If Por(wy) and Par(wy)

Unequal : “agree” at e, then they
' “disagree” at any e’ # e

POR(WI): (0, Z(,)) (1, Zi) (e,Z)

The Attack

e Fact 3: In some Sigma protocols, for the same (a, e), the response
z will depend on which witness is used. e.g. PoK of w;, OR w;,

Consider a given (a, e, 7)

Par(wp):
Given (a, e, 7) produced by (0, z,)
Fischlin’s compiler, we can
test which path is “plausible” (1, 1)

POR(WI): (0, Z(,)) (1, Zi) (e,Z)

The Attack

e Fact 3: In some Sigma protocols, for the same (a, e), the response
z will depend on which witness is used. e.g. PoK of w;, OR w;,

Consider a given (a, e, 7)

Par(wp):
Given (a, e, 7) produced by (0, z,)
Fischlin’s compiler, we can
test which path is “plausible” (1, 1)

(€,2)

The Attack

e Fact 3: In some Sigma protocols, for the same (a, e), the response
z will depend on which witness is used. e.g. PoK of w;, OR w;,

Consider a given (a, ¢, 7)

Par(wp):
Given (a, e, 7) produced by (()’ ZO)_’
Fischlin’s compiler, we can
test which path is “plausible” (1, Z1)_>

(e,2)—=

The Attack

e Fact 3: In some Sigma protocols, for the same (a, e), the response
z will depend on which witness is used. e.g. PoK of w;, OR w;,

Consider a given (a, e, 7)

Paor(wp):
Given (a, ¢,2) produced by (0, 2o) T ® Whp. only onc
Fischlin’s compiler, we can 1 - .;th—
test which path is “plausible” (1, z))— — X :

induced by one
of Por(wy) or

Por(w1)—
is plausible

— X
H_>®

(e,2)— I~

The Attack

e Fact 3: In some Sigma protocols, for the same (a, e), the response
z will depend on which witness is used. e.g. PoK of w; OR w,

Consider a given (a, e, 7)

Given (a, e, 7) produced by

W.h.p., only one
path—
induced by one
of Pogr(wy) or

.POR(WI.)_
POR(Wl): (O, Z(,)) (1, Zi) (g’z) is plausible

Fischlin’s compiler, we can
test which path is “plausible”

The Attack

e Fact 3: In some Sigma protocols, for the same (a, e), the response
z will depend on which witness is used. e.g. PoK of w; OR w,

Consider a given (a, e, 7)

Given (a, e, 7) produced by

W.h.p., only one
path—
induced by one
of Pogr(wy) or

.POR(WI.)_
POR(Wl): (O, Z(,)) (1, Zi) (g’z) is plausible

Fischlin’s compiler, we can
test which path is “plausible”

The Attack

e Fact 3: In some Sigma protocols, for the same (a, e), the response
z will depend on which witness is used. e.g. PoK of w; OR w,

Consider a given (a, e, 7)

Given (a, e, 7) produced by
Fischlin’s compiler, we can
test which path is “plausible”

This path induces
fresh queries to H

Por(wy): (0, z5) (1, z;)

W.h.p., only one
path—
induced by one
of Pogr(wy) or

Por(w))—

(o Z) is plausible

The Attack

e Fact 3: In some Sigma protocols, for the same (a, e), the response
z will depend on which witness is used. e.g. PoK of w; OR w,

Consider a given (a, e, 7)

Given (a, e, 7) produced by
Fischlin’s compiler, we can
test which path is “plausible”

This path induces
fresh queries to H

Por(wy): (0, z5) (1, z;)
X

W.h.p., only one
path—
induced by one
of Pogr(wy) or

Por(w))—

(o Z) is plausible

The Attack

e Fact 3: In some Sigma protocols, for the same (a, e), the response
z will depend on which witness is used. e.g. PoK of w; OR w,

Consider a given (a, e, 7)

Given (a, e, 7) produced by
Fischlin’s compiler, we can
test which path is “plausible”

This path induces
fresh queries to H

Por(wy): (0, z5) (1, z;)
X

W.h.p., only one
path—
induced by one
of Pogr(wy) or

Por(w))—

(o Z) is plausible

The Attack

e Fact 3: In some Sigma protocols, for the same (a, e), the response
z will depend on which witness is used. e.g. PoK of w; OR w,

Consider a given (a, e, 7)

Given (a, e, 7) produced by

h.p., onl
Fischlin’s compiler, we can W-h.p., only one

test which path is “plausible” o durc):lhl;f one
This path ipduces Would have of Par(W,) or
fresh queries to H terminated here .P OIR(Wl')b—l
, is plausible
POR(Wl) (0, z9) (1, z9) - (e,z)

X

