EvalRound Algorithm in CKKS Bootstrapping

Seonghak Kim¹, Minji Park², Jaehyung Kim¹, Taekyung Kim¹ and Chohong Min^{2*}

¹ Crypto Lab Inc. and ² Ewha Womans University * Corresponding Author

Topic of this talk

- **CKKS**¹ is a representative HE for real numbers
- CKKS **bootstrapping**² is an operation which enables a CKKS ciphertext to be evaluated arbitrary times
- The efficiency of CKKS bootstrapping greatly depends on its modulus consumption
- We propose a simple yet effective variant of CKKS bootstrapping with less modulus consumption which can be implemented with a negligible cost

¹[Cheon et al., Asiacrypt17] Homomorphic Encryption for Arithmetic of Approximate Numbers

TABLE OF CONTENTS

Background

- Focusing on the modulus consumption of CKKS

Conventional bootstrapping algorithm

EvalRound algorithm

Background

The concept of Homomorphic Encryption

CKKS : HE Scheme for real numbers

CKKS : HE Scheme for real numbers

- Homomorphic structure is constructed on the **polynomial with finite field coefficients**

-
$$\mathsf{ct} = \mathsf{Enc}(\mathsf{pt}) \implies [\langle \mathsf{ct}, \mathsf{sk} \rangle]_q = \mathsf{pt} + e$$

- Homomorphism between polynomials and vectors by Discrete Fourier Transform
- Scale up / down to encode / decode real numbers
- $\mathsf{Ecd}(\mathbf{z}; \Delta) = \lfloor \Delta \cdot \mathsf{iDFT}(\mathbf{z}) \rceil$, $\mathsf{Dcd}(\mathsf{pt}; \Delta) = \mathsf{DFT}(\mathsf{pt}/\Delta)$

Modulus consumption of CKKS

- Size of encrypted plaintext grows by each multiplication

 $\begin{aligned} \mathsf{pt}_1 &= \mathsf{Ecd}(\mathbf{z}_1; \Delta_1), \mathsf{pt}_2 = \mathsf{Ecd}(\mathbf{z}_2; \Delta_2) \\ \implies \mathsf{pt}_1 * \mathsf{pt}_2 &= \mathsf{Ecd}(\mathbf{z}_1 \mathbf{z}_2; \Delta_1 \Delta_2) \end{aligned}$

- CKKS supports **rescaling** to maintain the size of encrypted plaintext

 $\mathsf{RS}(\ell, \mathsf{ct}) = \left| q_{\ell}^{-1} \mathsf{ct} \right| \pmod{Q_{\ell-1}}$

- Rescaling **consumes modulus** as much as the encrypted plaintext has scaled down

- **Bootstrapping**² is the operation of recovering the modulus of ciphertext

- **Bootstrapping**² is the operation of recovering the modulus of ciphertext

CKKS Bootstrapping

- **Bootstrapping**² is the operation of recovering the modulus of ciphertext
- Our goal is to reduce the modulus consumption of CKKS Bootstrapping

Steps of conventional bootstrapping algorithm

- Input: $\mathsf{ct} = \mathsf{Enc}_{Q_0}(\mathsf{pt}) \in R^2_{Q_0}$
- Desired output: $\mathsf{ct}_{bts} = \mathsf{Enc}_{Q_{bts}}(\mathsf{pt}) \in R^2_{Q_{bts}}$ for some $Q_0 < Q_{bts}$

Step 1 : ModRaise

- $\operatorname{ct} \in R_{Q_0}^2 \subset R_{Q_l}^2$, for $\forall l \ge 0$
- Recall that $[\langle \mathsf{ct}, \mathsf{sk} \rangle]_{Q_0} = \mathsf{pt}; [\langle \mathsf{ct}, \mathsf{sk} \rangle]_{Q_l} = \mathsf{pt} + q_0 \cdot I$
- How can we remove $q_0 \cdot I$ and recover original encrypted plaintext?

Step 2 : CoeffToSlot (and SlotToCoeff)

- We want manipulate the **coefficients** of plaintexts, but we have only methods for manipulating the encrypted **message(slots)**
- As $Ecd(z; \Delta) = \lfloor \Delta \cdot iDFT(z) \rceil$ is a linear map, we can homomorphically evaluate encoding / decoding
- By definition, we get the ciphertext encrypting $\, {\sf pt} + q_0 \cdot I\,$ on slot side by homorphic decoding

Step 3 : EvalMod

- Homomorphically evaluate **modular reduction** to compute **pt** from $\mathsf{pt} + q_0 \cdot I$
- Can simply approximated by sine function; various approaches^{3,4,5} have been proposed

³[Chen et al., Eurocrypt19] Improved bootstrapping for approximate homomorphic encryption

⁴[Han et al., CT-RSA20] Better bootstrapping for approximate homomorphic encryption

⁵[Lee et al., Eurocrypt22] High-precision bootstrapping for approximate homomorphic encryption by error variance minimization

Construction of EvalRound algorithm

Conventional Bootstrapping

Modification 1 : CoeffToSlot to CoeffToSlot[#]

- As CoeffToSlot is multiplying iDFT matrix homomorphically,

 $\mathsf{pt}_{CtS} = \mathsf{pt}_{diag_1} * \mathsf{pt}_{z_1} + \ldots + \mathsf{pt}_{diag_k} * \mathsf{pt}_{z_k}$

where pt_{diag_i} are encoded diagonals of iDFT matrix and pt_{z_i} are corresponding rotated plaintexts.

- Using lower scale factor on the matrix causes :
 - Less modulus consumption by rescaling
 - Imprecise result due to the imprecise value of iDFT matrix

Modification 2 : EvalMod to EvalRound

- Define the homomorphic operation EvalRound as, EvalRound := id EvalMod
- The defined EvalRound corresponds to the modular rounding
- $\begin{array}{ll} \textbf{-} & \mathsf{StC} \circ \mathsf{EvalMod} \circ \mathsf{CtS} = \mathsf{StC} \circ (\mathsf{id} \mathsf{EvalRound}) \circ \mathsf{CtS} \\ & = \mathsf{StC} \circ \mathsf{id} \circ \mathsf{CtS} \mathsf{StC} \circ \mathsf{EvalRound} \circ \mathsf{CtS} \\ & = \mathsf{id} \mathsf{StC} \circ \mathsf{EvalRound} \circ \mathsf{CtS} \end{array}$

Stability of EvalRound

	Size of	Bit size of	Scale Factor	Bootstrap	Modulus
	Message	Modulus	for CoeffToSlot	Bit Precision	Consumption
Conventional	2^{16}	2900	2^{60}	-12.53	1160
Proposed			2^{29}	-14.80	1076 = 1160 - 84

- Reduced **84** bits on a practical parameter, which is sufficient to increase **evaluation depth**s
- Effective when the evaluation depth after bootstrap is low
- No assumption / negligible effort is needed to upgrade the original bootstrapping to EvalRound

CRYPTOLAB

Crypto Lab Inc.