An Analysis of the Algebraic Group Model

Jonathan Katz
University of Maryland

Cong Zhang
Zhejiang University

Hong-Sheng Zhou
Virginia Commonwealth University

https://eprint.iacr.org/2022/210

Outline

- Background
 - Generic Group Model (GGM)
 - Algebraic Group Model (AGM)
- Our result: Analysis of the AGM
 - Issue #I
 - Issue #2
- Thoughts

Background: (Cyclic) Group based Crypto

- Diffie-Hellman 1976
- Security of a crypto scheme/protocol, can be based on an appropriate *hardness assumption* relative to a group
- Encodings matter

Background: Group Encodings

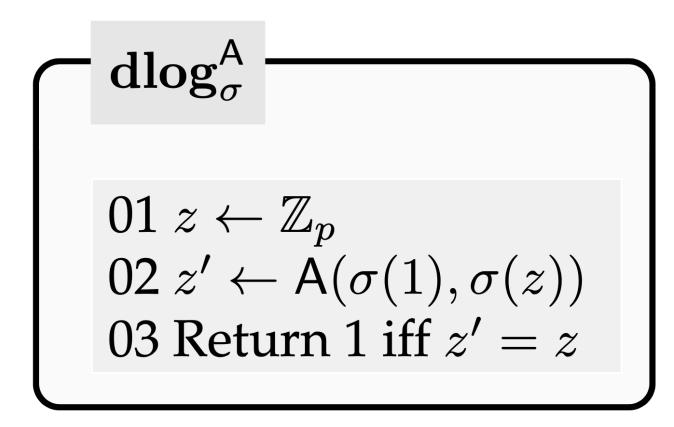
- Group encodings
 - Consider encoding $\sigma: \mathbb{Z}_p \to \{0,1\}^\ell$ $\ell \geq \lceil \log p \rceil$
 - id = trivial encoding, i.e, a binary integer; addition mod p
- Group encodings matter
 - DLOG hard: secure prime q=2p+1 order-p subgroup of \mathbb{Z}_q^* multiplication modulo q
 - DLOG trivial: \mathbb{Z}_p addition modulo p

Background: Security Games

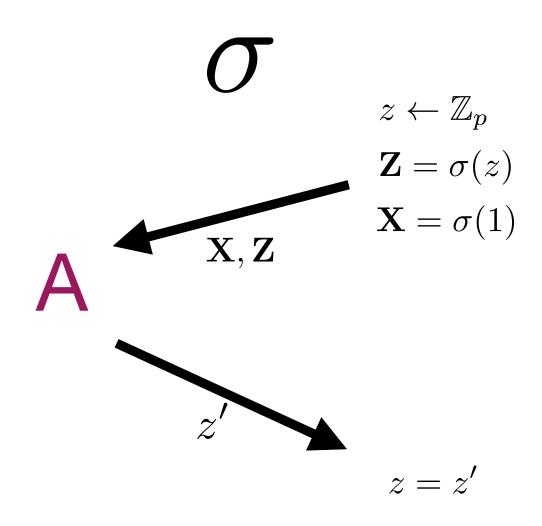
- Code-based security games (Bellare-Rogaway, Eurocrypt 2006)
- Game G_{σ} , parameterized by encoding σ , played by algorithm A

• Algorithm A succeeds if $\mathbf{G}_{\sigma}^{\mathsf{A}}=1$

$$\mathbf{Succ}_{\mathbf{G}_{\sigma}}^{\mathsf{A}} \stackrel{\text{def}}{=} \Pr[\mathbf{G}_{\sigma}^{\mathsf{A}} = 1]$$



The discrete-logarithm game **dlog**



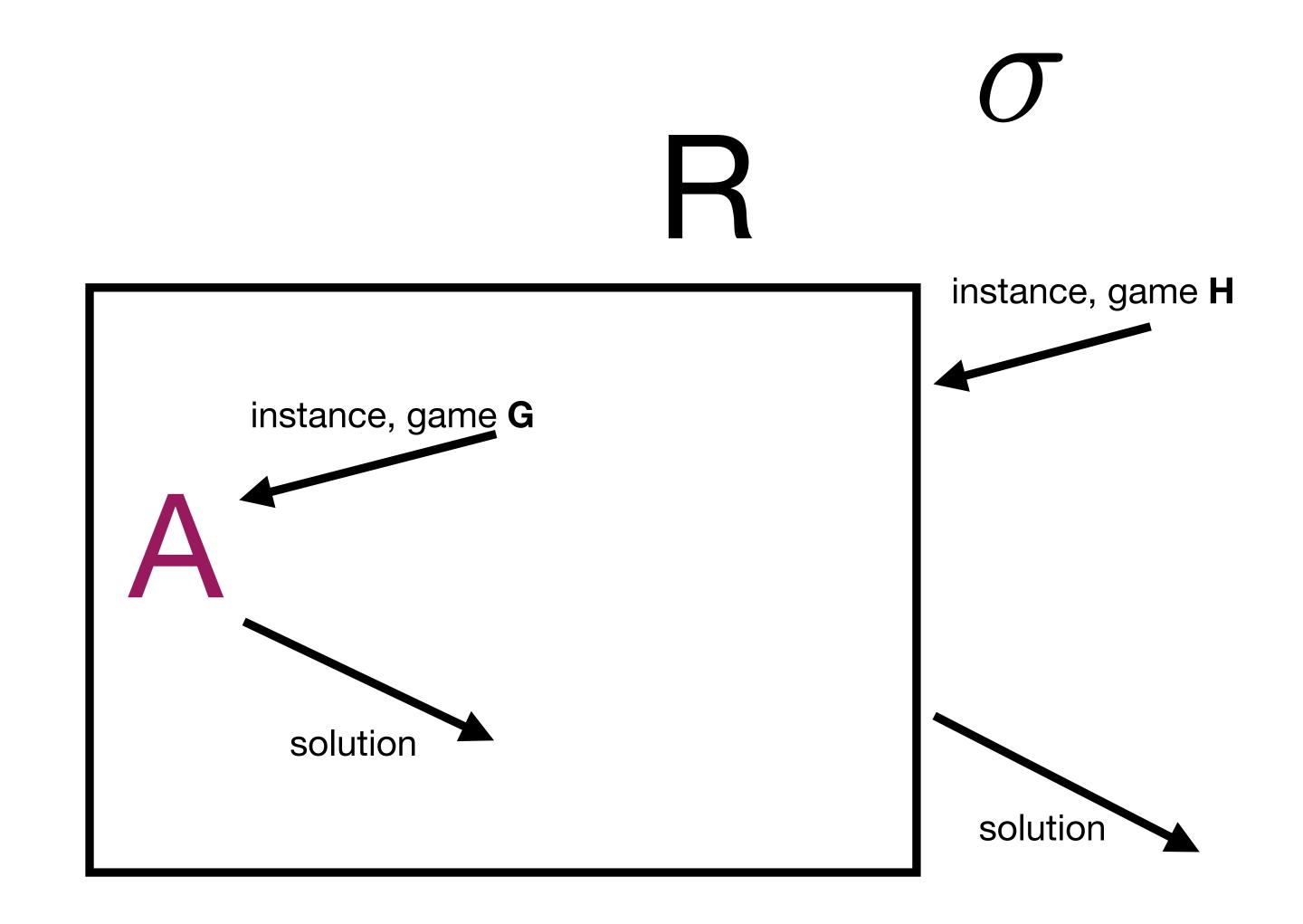
Background: Security Reductions

Let G_{σ} , H_{σ} be security games.

$$B := R^A$$

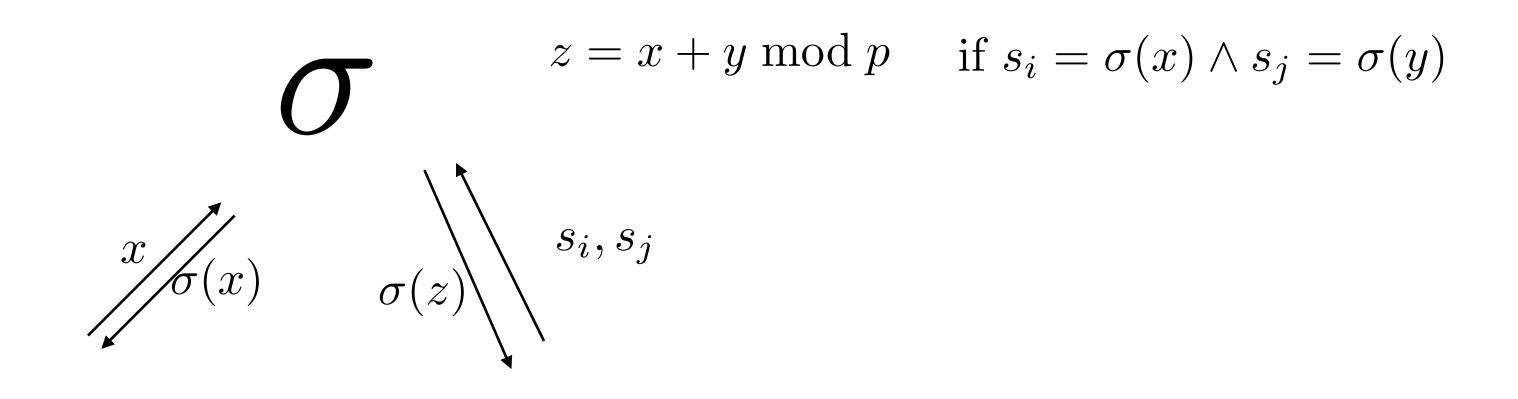
$$\mathbf{H}_{\sigma} \xrightarrow{(\Delta_t, \Delta_{\epsilon})} \mathbf{G}_{\sigma}$$

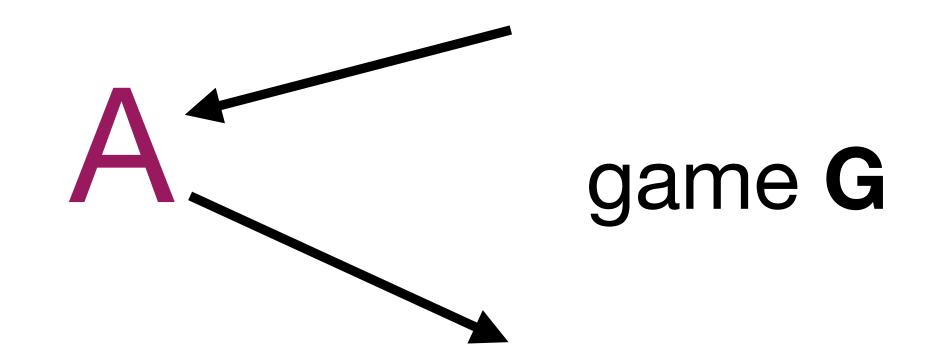
 $\mathbf{Succ}_{\mathbf{H}_{\sigma}}^{\mathsf{B}} \geq \frac{1}{\Delta_{\epsilon}} \cdot \mathbf{Succ}_{\mathbf{G}_{\sigma}}^{\mathsf{A}}, \quad \mathbf{Time}_{\mathbf{H}_{\sigma}}^{\mathsf{B}} \leq \Delta_{t} \cdot \mathbf{Time}_{\mathbf{G}_{\sigma}}^{\mathsf{A}}$



Background: Generic Group Model

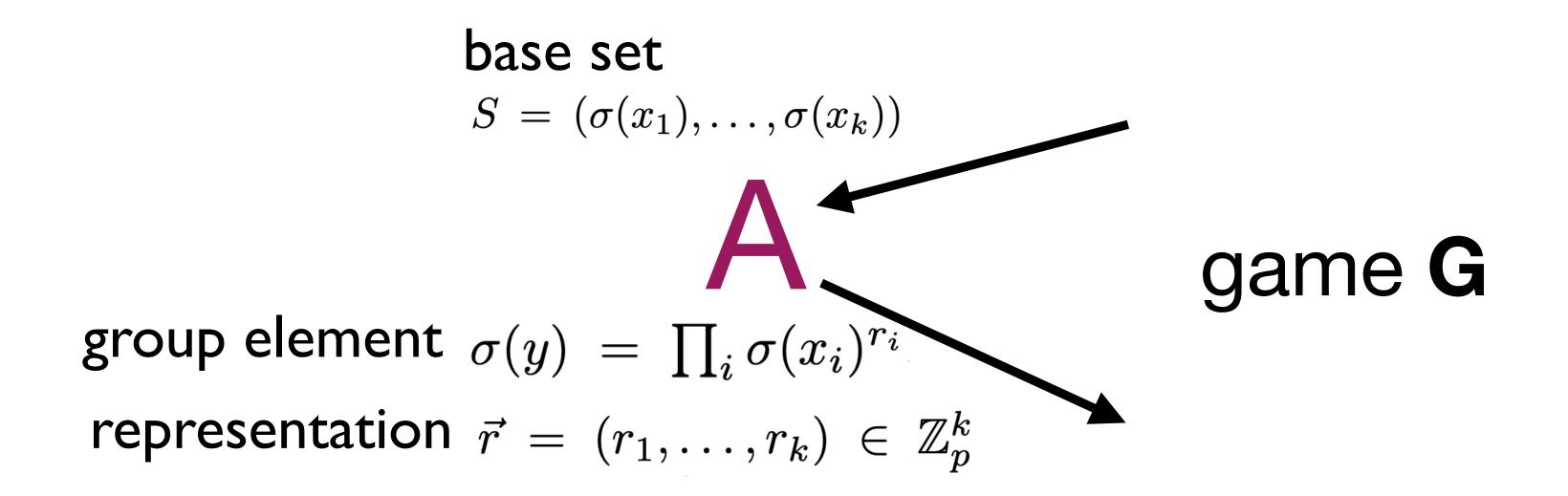
Shoup 1997





Algebraic Group Model

- Algebraic Group Model (AGM)
 - Fuchsbauer-Kiltz-Loss 2018 [FKL18]
- any group elements output by an algorithm must be accompanied by a representation relative to the ordered set S of group elements (the base set) provided to that algorithm as input



Algebraic Group Model

- Algebraic Group Model (AGM)
 - Fuchsbauer-Kiltz-Loss 2018

Lemma. Let **G** and **H** be algebraic security games such that

- $\mathbf{H} \xrightarrow{(\Delta_t, \Delta_\epsilon)}_{\mathsf{alg}} \mathbf{G};$
- **H** is (t, ϵ) -hard in the GGM;

Then **G** is $(t/\Delta_t, \epsilon \cdot \Delta_\epsilon)$ -hard in the GGM.

Outline

- Background
 - Generic Group Model (GGM)
 - Algebraic Group Model (AGM)
- Our result: Analysis of the AGM
 - Issue #I
 - Issue #2
- Thoughts

Analysis of the AGM

- Definition and intuition, mismatched:
 - Intuition in [FKL18]

 "the only way for an algebraic algorithm to output a new group element is to derive it via group multiplication from known group elements"
 - new group element using non-group operations, along with a valid representation

```
\frac{\mathsf{A}(1)}{\mathsf{01}\,r_1}, r_2 \leftarrow \mathbb{Z}_p
\mathsf{02}\,s \leftarrow r_1 \cdot r_2 \bmod p
\mathsf{03}\,\mathsf{Output}\,(s,s)
```

Algorithm A wrt the identity encoding id

Outline

- Background
 - Generic Group Model (GGM)
 - Algebraic Group Model (AGM)
- Our result: Analysis of the AGM
 - Issue #I
 - Issue #2
- Thoughts

Issue #2

- Algebraic Group Model (AGM)
 - Fuchsbauer-Kiltz-Loss 2018

Lemma. Let **G** and **H** be algebraic security games such that

- $\mathbf{H} \xrightarrow{(\Delta_t, \Delta_\epsilon)}_{\mathsf{alg}} \mathbf{G};$
- **H** *is* (t, ϵ) -hard in the GGM;

Then **G** is $(t/\Delta_t, \epsilon \cdot \Delta_\epsilon)$ -hard in the GGM.

Issue #2

- Algebraic Group Model (AGM)
 - Fuchsbauer-Kiltz-Loss 2018

• We show: A counterexample

$$\begin{array}{c} \text{beg}_{\sigma}^{\mathsf{A}} \\ \text{01 } z \leftarrow \mathbb{Z}_{p} \\ \text{02 parse } \mathbf{Z} = \sigma(z) \text{ as the bitstring } z_{1} \cdots z_{\ell} \\ \text{03 } (\mathbf{X}, \mathbf{U}_{1}, \ldots, \mathbf{U}_{\ell}) := (\sigma(1), \sigma(z_{1}), \ldots, \sigma(z_{\ell})) \\ \text{04 } \mathbf{Z}' \leftarrow \mathsf{A}(\mathbf{X}, \mathbf{U}_{1}, \ldots, \mathbf{U}_{\ell}) \\ \text{05 Return 1 iff } (\mathbf{Z}' = \mathbf{Z}) \end{array}$$

beg = binary encoding game

Lemma. Let **G** and **H** be algebraic security games such that

•
$$\mathbf{H} \xrightarrow{(\Delta_t, \Delta_\epsilon)}_{\mathsf{alg}} \mathbf{G};$$

• **H** is (t, ϵ) -hard in the GGM;

Then **G** is $(t/\Delta_t, \epsilon \cdot \Delta_\epsilon)$ -hard in the GGM.

Theorem. There are security games **G** and **H** such that

- $\mathbf{H} \stackrel{(2,1)}{\Longrightarrow}_{\mathsf{alg}} \mathbf{G};$
- **H** is $(t, O(t^2/p))$ -hard with respect to Shoup-generic algorithms;
- There is a Shoup-generic algorithm A running in time $O(\ell)$ with $\mathbf{Succ}_{\mathbf{G}}^{\mathsf{A}} = 1$.

Issue #2

We show: A counter example

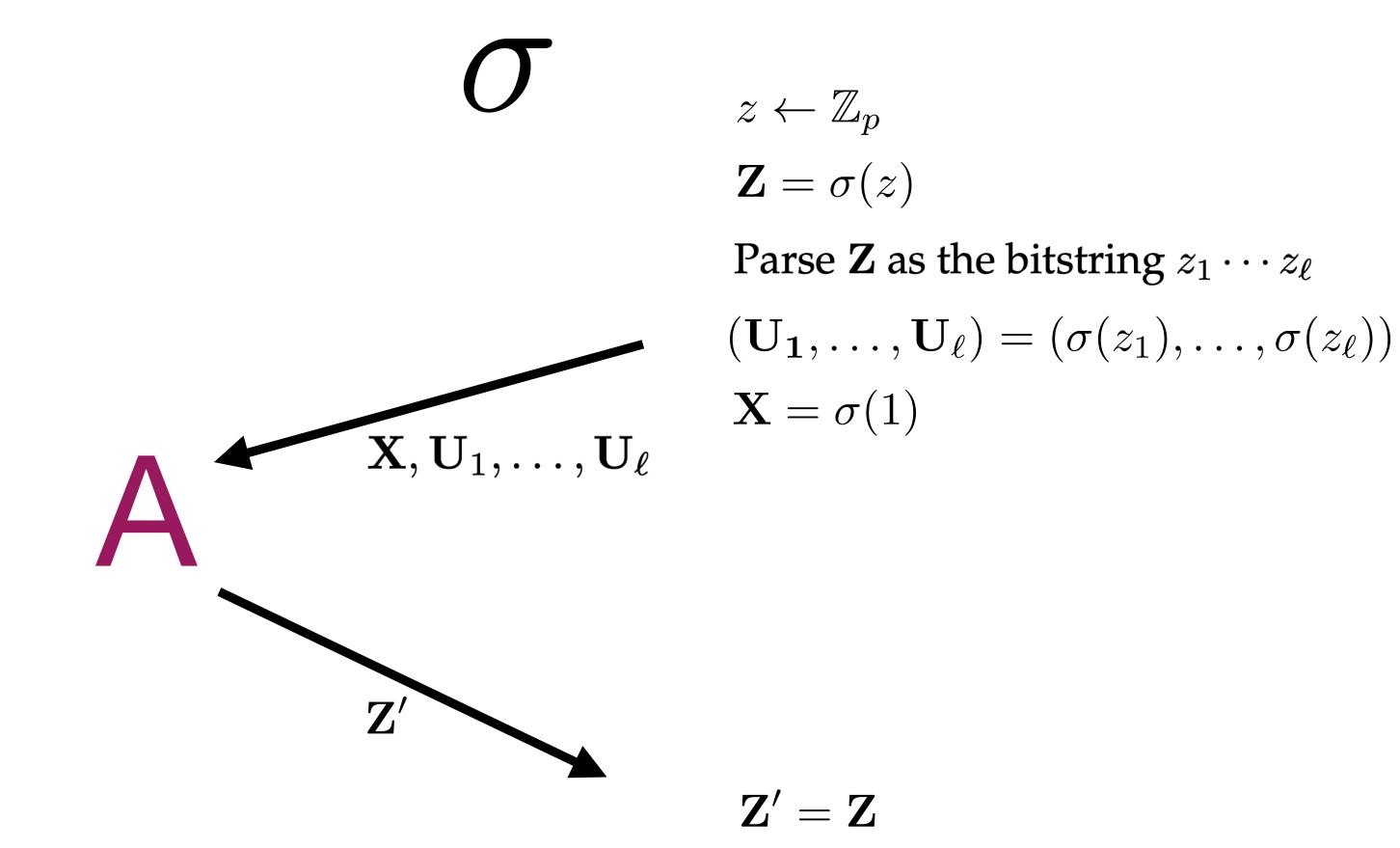
$$\mathbf{G} = \begin{bmatrix} 01 \ z \leftarrow \mathbb{Z}_p \\ 02 \ \text{parse} \ \mathbf{Z} = \sigma(z) \ \text{as the bitstring} \ z_1 \cdots z_\ell \\ 03 \ (\mathbf{X}, \mathbf{U}_1, \dots, \mathbf{U}_\ell) := (\sigma(1), \sigma(z_1), \dots, \sigma(z_\ell)) \\ 04 \ \mathbf{Z}' \leftarrow \mathsf{A}(\mathbf{X}, \mathbf{U}_1, \dots, \mathbf{U}_\ell) \\ 05 \ \text{Return} \ 1 \ \text{iff} \ (\mathbf{Z}' = \mathbf{Z}) \end{bmatrix}$$

$$\mathbf{H} = egin{pmatrix} \mathrm{dlog}_{\sigma}^{\mathsf{A}} \ 01 \ z \leftarrow \mathbb{Z}_{p} \ 02 \ z' \leftarrow \mathsf{A}(\sigma(1), \sigma(z)) \ 03 \ \mathrm{Return} \ 1 \ \mathrm{iff} \ z' = z \ \end{pmatrix}$$

Theorem. There are security games **G** and **H** such that

- $\mathbf{H} \stackrel{(2,1)}{\Longrightarrow}_{\mathsf{alg}} \mathbf{G};$
- **H** is $(t, O(t^2/p))$ -hard with respect to Shoup-generic algorithms;
- There is a Shoup-generic algorithm A running in time $O(\ell)$ with $\mathbf{Succ}_{\mathbf{G}}^{\mathsf{A}} = 1$.

$\begin{array}{l} \text{beg}_{\sigma}^{\mathsf{A}} \\ \text{01 } z \leftarrow \mathbb{Z}_{p} \\ \text{02 parse } \mathbf{Z} = \sigma(z) \text{ as the bitstring } z_{1} \cdots z_{\ell} \\ \text{03 } (\mathbf{X}, \mathbf{U}_{1}, \ldots, \mathbf{U}_{\ell}) := (\sigma(1), \sigma(z_{1}), \ldots, \sigma(z_{\ell})) \\ \text{04 } \mathbf{Z}' \leftarrow \mathsf{A}(\mathbf{X}, \mathbf{U}_{1}, \ldots, \mathbf{U}_{\ell}) \\ \text{05 Return 1 iff } (\mathbf{Z}' = \mathbf{Z}) \end{array}$



$$z \leftarrow \mathbb{Z}_p$$

$$\mathbf{Z} = \sigma(z)$$

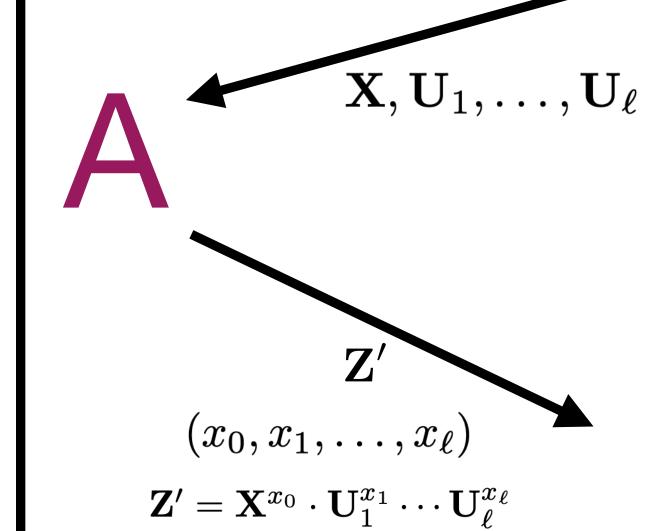
$$\mathbf{X} = \sigma(1)$$

$$\mathbf{I} = \sigma(0)$$

Parse **Z** as the bitstring $z_1 \cdots z_\ell$

$$\mathbf{U}_i = \mathbf{I} \text{ if } z_i = 0$$

$$\mathbf{U}_i = \mathbf{X} \text{ if } z_i = 1$$



$$\mathbf{Z}' = \mathbf{Z}$$

$$x_0 + \sum_{i=1}^{\ell} z_i \cdot x$$

Conclusion and Thoughts

- Analysis of the AGM:
 - it is not clear whether the class of algebraic algorithms contains the class of generic algorithms.
- the main justification for studying reductions in the AGM does not hold in certain settings.
- Future direction ?

Questions?

• Thanks for your attention

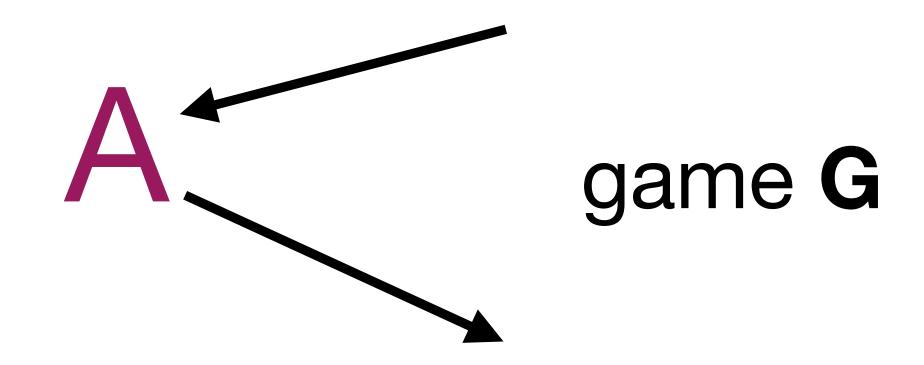
• https://eprint.iacr.org/2022/210

Backup Slides

Background: Generic Group Model

Maurer 2005

return 1 if $i, j < \mathsf{ctr} \land (i, x), (j, y)$ recorded $\land x = y$;



Background: Generic Group Model

Shoup 1997

