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Background: (Cyclic) Group based Crypto

e Diffie-Hellman 1976

e Security of a crypto scheme/protocol,
can be based on an appropriate hardness assumption relative to a group

* Encodings matter



Background: Group Encodings

* Group encodings

- Consider encoding o :Z, — {0,1}" ¢ > [log p]

- id = trivial encoding, i.e, a binary integer; addition mod p
* Group encodings matter

- DLOG hard: secure prime ¢ = 2p +1

order-p subgroup of Z
multiplication modulo ¢

- DLOG trivial: Loy

addition modulo p



Background: Security Games

dlog”

* Code-based security games (Bellare-Rogaway,
Eurocrypt 2006)

01 z < Z,
02 2" <+ A(c(1),0(2))

e Game G, parameterized by encoding 0, played 03 Return 1iff 2" = 2

by algorithm A

The discrete-logarithm game dlog

O
e Algorithm A succeeds if G, = 1 ;;Zfz)
/ X = 1 (1)

Succé\;g = Pr[G2 = 1] A L



Background: Security Reductions

Let G,, H, be security games O-
B:=RA I {
instance, game H
(At ’AEL | /
H o G o Instance, game G
1
Succ%a > — -Succga, TimeIB{a < Ay Timeﬁ‘;a I \

A

solution




Background: Generic Group Model

Shoup 1997 .
z=x+ymodp ifs=1!(x)!s =!(y)

;
x///(x) (\\
A

G
\ game



Algebraic Group Model

e Algebraic Group Model (AGM)

| Fuchsbauer-Kiltz-Loss 2018 [FKLI8]

* any group elements output by an algorithm must be accompanied by a representation relative
to the ordered set S of group elements (the base set) provided to that algorithm as input

base set
S = (o(x1),... ,O'(jk))/

group element 5(y) = [ o(z;)™

representation 7 = (ry,...,r;) € ZF



Algebraic Group Model

e Algebraic Group Model (AGM)

| Fuchsbauer-Kiltz-Loss 2018

Lemma. Let G and H be algebraic security games such that

(At7A€2

o H 7alg G,‘

o H is (¢, €)-hard in the GGM,;
Then G is (t/A¢, € - A¢)-hard in the GGM.
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Analysis of the AGM

e Definition and intuition, mismatched:

- Intuition in [FKLI8]
“the only way for an algebraic algorithm to output a

new group element is to derive it via group
multiplication from known group elements”

A(1)
01 T1,T92 < Zp

02 s ¢ ry-ro modp
03 Output (s, s)

- hew group element using non-group operations,

along with a valid representation
Algorithm A wrt the identity encoding id
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Issue #2

o A gebraic G roup Model ( AG M) Lemma. Let G and H be algebraic security games such that
o H (At’A‘S%’;ﬂg G,’
| Fuchsbauer-Kiltz-Loss 2018 o His (t,€)-hard in the GGM;

Then G is (t/ A, € - A¢)-hard in the GGM.



Issue #2

Lemma. Let G and H be algebraic security games such that

e Algebraic Group Model (AGM)

o H (At’A‘S%’;ﬂg G,’

| Fuchsbauer-Kiltz-Loss 2018 o H is (t,€)-hard in the GGM;
Then G is (t/ A, € - A¢)-hard in the GGM.

* We show: A counterexample

A
 beg, ) Theorem. There are security games G and H such that

01Z<—Zp ° H(Qz’llalg G;

02 parse Z = o(z) as the bitstring z; - - - 2

03 (X,Uy,...,Up) :=(c(1),0(21),...,0(2¢)) e His (t,0(t*/p))-hard with respect to Shoup-generic algorithms;

04Z" +— A(X,Uq,...,Uy) . . . S . A

05 Return 1 iff (Z' = Z) o There is a Shoup-generic algorithm A running in time O(¢) with Succg = 1.

beg= binary encodinggame



Issue #2

Theorem. There are security games G and H such that

e HZL, G

— beg” \ e His (t,0(t*/p))-hard with respect to Shoup-generic algorithms;

* We show:A counter example

G= A

o There is a Shoup-generic algorithm A running in time O(¢) with Succg = 1.

01 z < Z,

02 parse Z = o(z) as the bitstring z; - - - 2

03 (X7 U17 o 7U€) = (0(1)7 O-(Zl)) 00 < 70-(26))
047 +— A(X,Uy,...,Uy)

05 Return 1 iff (Z' = Z)

dlogﬁ‘

01 z + Z,
02 2" <+ A(o(1),0(2))
03 Return 1 iff 2’ = 2




— beg),

01 2 < Z,

02 parse Z = o(z) as the bitstring z; - - - z¢

03 (X, Us,..., Up) i= (0(1),0(1), ..., ()
047« A(X, Uy, ..., Up)

05 Return 1 iff (Z' = Z)

Z%Zp

Z =1(2)

Parse Z as the bitstring z; - - - 2¢

(Uq,...

U =(1(z1),...,1 (20))

X =1(1)



Z < Ly
Z =1(2)
X =1()

| = 1(0)

Parse Z as the bitstring z; - - - 2¢

Ui = | If Z; =0
/ Ui=XiIfz =1
X Uy,.... U,




Conclusion and Thoughts

* Analysis of the AGM:

- it is not clear whether the class of algebraic algorithms contains the class of
generic algorithms.

* the main justification for studying reductions in the AGM does not hold in certain
settings.

e Future direction ?



Questions!

* Thanks for your attention

* https://eprint.iacr.org/2022/210
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Background: Generic Group Model

o g _ o
Maurer 2005 return 1 if 1,] < ctr! (1,x),(],y) recorded ! x = v,

record (ctr, X); ctr + + record (ctr,x + y) if I,J < ctr! (i,x),(],y) recorded ;ctr + +

\\\
A

G
\ game



Background: Generic Group Model

Shoup 1997 .
z=x+ymodp ifs=1!(x)!s =!(y)

;
x///(x) (\\
A

G
\ game



