
Non-Interactive Zero-Knowledge Proofs to Multiple Verifiers

Kang Yang Xiao Wang

ASIACRYPT 2022

2022.12.07

State Key Laboratory of Cryptology Northwestern University

Zero-Knowledge (ZK) Proofs

Prover Verifier
(𝑥, 𝑤) 𝑥

(𝑥, 𝑤) ∈ 𝑅

• Completeness

• Soundness

• Zero Knowledge

Ø Statement 𝑥 is often represented by a circuit 𝐶

Ø𝑤 is called witness

Ø 𝑥,𝑤 ∈ 𝑅 ⇔ 𝐶 𝑤 = 0

Non-Interactive ZK (NIZK)

Prover

Verifier1

Ø NIZK is publicly verifiable, and a proof can be reused to convince multiple verifiers

Ø NIZK efficiency has been significantly improved under different frameworks

(e.g., MPC-in-the-head [IKOS07], GKR [GKR08], IOP [BCS16], …)

𝑝𝑟𝑜𝑜
𝑓

Verifier2

Verifier3

𝑝𝑟𝑜𝑜𝑓

𝑝𝑟𝑜𝑜𝑓

Designated-Verifier ZK (DVZK)

Prover Verifier1

Prover Verifier2

Prover Verifier3

Ø DVZK : an interactive protocol between a prover

and a verifier in general

Ø DVZK : convince only one verifier for every time

Ø Efficient frameworks : garbled circuit (GC) [JKO13],

VOLE/COT [BMRS21, DIO21, WYKW21], …

NIZK (zk-SNARKs) DVZK (VOLE/COT)
Prover time slower faster
Verifier time sublinear linear
Total time slower faster
Proof size sublinear linear
Memory Large small
Rounds 1 constant

#Verifiers any one for every time

Different efficiency features,

suitable for different applications

Multi-Verifier ZK (MVZK)

NIZK MVZK DVZK

Prover

Verifier1𝜋!

Verifier2

Verifier3

𝜋"

𝜋#

Ø A prover wants to convince 𝒏 verifiers

Ø 𝒕 verifiers allow to be corrupted and
collude with the prover

Ø We focus on the case of 𝒕 < 𝒏/𝟐

Ø Concretely efficient MVZK proofs

Ø Less communication than 𝑛 DVZKs
Ø Rounds same/close to NIZK
Ø Streamable ⇒ small memory

Our design goal

Streamable : the prover can generate and send the
proof on-the-fly (the circuit is proved batch-by-batch)

In the MVZK setting, there are two types of communications

Non-Interactive MVZK

NIMVZK ⇒ strong NIMVZK

Prover Verifier 𝒊 Verifier 𝒊 Verifier 𝒋

Prover Verifier 𝒊

one message
Non-interactive MVZK (NIMVZK)

Verifier 𝒊 Verifier 𝒋

one round

Ø We allow the verifiers to communicate for one round

Ø Without any communication between verifiers, constructing NIMVZKs are as difficult as NIZKs

Applications for MVZK

Ø Drop-in replacement to NIZK and DVZK: MVZK can be used in normal ZK applications

as long as the identifies of the verifiers are known ahead of time

Ø Honest-majority MPC with input predicate check: more efficient to check correctness

of the input of every party

Ø Private aggregation systems:

• Systems like Prio [CB17] use a set of servers to collect and aggregate data of users

• To prevent mistakes/attacks, users prove to the servers that their data is valid in ZK

• MVZK can be used in the systems when allowing users to collude with a minority

of servers

Ø …...

Our results

Tools Security Threshold Communication
per gate per verifier

Rounds
(𝑃 ↔ 𝑽)

Rounds
(𝑽 ↔ 𝑽) Stream

Shamir SS IT 𝑡 < 𝑛/2 1 1 log |𝐶| + 3 yes
Shamir SS CS 𝑡 < 𝑛/2 0.5 1 1 yes
Packed SS CS 𝑡 < 𝑛(1/2 − 𝜖) 𝑶(𝟏/𝒏) 1 1 yes

Three new concrete-efficient MVZK proofs with streamable property

main protocols

IT: information-theoretic, CS: computational security

NIMVZK Strong NIMVZK

Ø All protocols have the computational complexity linear to circuit size, cheaper than DVZK
Ø Streaming proofs ⇒ small memory; strong NIMVZK protocols keep the rounds among

verifiers unchanged
Ø Asymmetric : NIMVZK proofs in the CS setting allow that t verifiers have sublinear comm.

Compared to previous work for MVZK

Ø Strong NIMVZK protocol with honest-majority verifiers was first proposed in [ACF02]

Ø For 𝑡 < 𝑛/2, the protocol in [GO07] can be transformed into strong NIMVZK

Require public-key operations，not concretely efficient

Ø Distributed ZK on low-degree polynomials (instead of generic circuits) [BBCGI19]

Ø Distributed ZK implied in MPC [BGIN20] only proves degree-2 relations

Implicit in distributed ZK, not generic circuits

Ø Prio [CB17] does not allow the prover to collude with any verifier

Ø Prio requires quasi-linear (instead of linear) computation

Prio, no collusion of the prover and verifiers

Compared to concurrent work for MVZK

MVZK Rounds Security Threshold Assumption
[AKP22] 2 full security 𝑡 < 𝑛(1/2 − 𝜖) NICOM

[BJOSS22] 2 identifiable abort 𝑡 < 𝑛/3 or 𝑡 < 𝑛/4 RO
Ours (Shamir SS) 2 security with abort 𝑡 < 𝑛/2 RO
Ours (Packed SS) 2 security with abort 𝑡 < 𝑛(1/2 − 𝜖′) RO

efficiency

ascending

[AKP22]

[BJOSS22]

Ours (SSS)

Ours (PSS)

security

ascending
NICOM can be based on injective one-way
functions with sub-exponential hardness

Our framework for building NIMVZK protocols

Prover

Verifier1
{𝑥
! }, {𝑐𝑜

𝑚$} $%!
&

Verifier2

Verifier3

{𝑥"}, {𝑐𝑜𝑚$}$%!&

{𝑥 #}, {𝑐𝑜𝑚$ }$%!
&

• 𝑥 : Linear secret sharing on secret 𝑥 ;
• Shamir/packed secret sharings
• Replicated secret sharings also work

• 𝑥$: share sent to Verifier 𝑖

Share the secret values for each input wire and
output wire of MULT gates

Using Distributed ZK (DZK) technique to check
correctness of sharings of MULT gates

Distributing Fiat-Shamir ⇒ strongly non-interactive
• Prover broadcasts {𝑐𝑜𝑚!}!"#$ to every verifier,

𝑐𝑜𝑚! is a commitment of shares held by Verifier 𝑖
• Honest-majority verifiers ⇒ {𝑐𝑜𝑚!}!"#$ determine

all secret wire values

Warm-Up : Information-Theoretic NIMVZK

Circuit evaluation
• For output 𝑥 of each gate, the prover shares 𝑥 into [𝑥]
• Addition gates are free due to of linear property of secret sharings

Transformation Check correctness of multiplication gates Check inner-product tuple

{ 𝑥$, 𝑦$, 𝑧$ }$∈[!,*]⇒ 𝑧$ = 𝑥$ > 𝑦$ for 𝑖 ∈ [1, 𝑁]
coin-tossing to generate random challenge 𝜒

(𝒙 , 𝒚 , 𝑧) ⇒ 𝑧 = 𝒙, 𝒚

𝒙 = (𝑥! , 𝜒 > 𝑥" , ⋯ , 𝜒*,! > 𝑥*)

𝒚 = (𝑦! , 𝑦" , ⋯ , 𝑦*)

[𝑧] = ∑$∈[!,*]𝜒$ > [𝑧$]

• Using DZK [BBCGI19,GSZ20] to

check correctness of (𝒙 , 𝒚 , 𝑧)
• The prover generates random

sharings to mask sharings of secrets

Verification

Strong NIMVZK from Shamir Sharings

Ø The framework is the same as information-theoretic NIMVZK

Ø The challenge is to compute a public message used as the input of RO

• Only secret shares are sent by the prover to every verifier

• The verifiers have no way to compute a public message

① Prover sends 𝑀!, 𝑟! to Verifier 𝑖 where 𝑀! consists of secret shares

② Prover computes 𝑐𝑜𝑚! = 𝐻(𝑀!, 𝑟!) where 𝐻 is a RO

③ Prover sends 𝑐𝑜𝑚#, ⋯ , 𝑐𝑜𝑚$ to every verifier

④ Verifier 𝑖 checks 𝑐𝑜𝑚! = 𝐻(𝑀!, 𝑟!); 𝑡 < 𝑛/2 ⇒ a majority of commitments are correct

⑤ Challenge 𝜒 = 𝐻′(𝑐𝑜𝑚#, ⋯ , 𝑐𝑜𝑚$)

𝐻, 𝐻′
• It is unnecessary to be collision-resistant
• Random output is sufficient
• Adopt 𝝀 (rather than 𝟐𝝀) as the output length

𝒏𝟐𝝀 bits extra
communication

Construction [DNNR17]
based on fixed-key AES

Strong NIMVZK from Packed Sharings

𝑠

𝑃# 𝑃& 𝑃' 𝑃(𝑃)

𝑥#

𝑥&

𝑥'
𝑥(

𝑥)

• Shamir sharings : 𝑓 0 = 𝑠

• 𝑓 𝛼! = 𝑥!

• 𝑡 < 𝑛/2

𝑠#

𝑃# 𝑃& 𝑃' 𝑃(𝑃)

𝑠&

𝑥#

𝑥&

𝑥'
𝑥(

𝑥)𝑠'

• packed sharings : 𝑓 𝛽! = 𝑠! for 𝑖 ∈ [1, 𝑘]

• 𝑡 ≤ 𝑛/2 − 𝑘

Ø Using packed sharings, perform addition/multiplication for a group of 𝑘 gates every time

Ø Prover generates and distributes [𝒚] for every group, if the packed sharing does not exist

Ø There exists some wires that are in different groups

generalize

denoted by [𝒙] for 𝒙 ∈ 𝔽𝒌

Consistency Check for Wire Tuples

Ø Wire tuple [GPS21] : (𝒙 , 𝒚 , 𝑖, 𝑗) with 𝑥$ = 𝑦.
Ø For each 𝑖, 𝑗 ∈ [1, 𝑘], check 𝒙! , 𝒚! , 𝑖, 𝑗 ,⋯ , (𝒙/ , 𝒚/ , 𝑖, 𝑗)
Ø 𝒙 = Σ0∈[!,/]𝛼0 > 𝒙0 + [𝒙1], 𝒚 = Σ0∈[!,/]𝛼0 > 𝒚0 + [𝒚1]
Ø Open(𝒙 , 𝒚) to check 𝑥$ = 𝑦.
Ø [𝒙1] and [𝒚1] are random sharings generated by Prover such that 𝑥1,$ = 𝑦1,.
Ø Generate 𝛼 using Fiat-Shamir : 𝛼 = 𝐻′(𝜒, 𝒖, 𝒗, 𝑖, 𝑗) , where 𝒖, 𝒗 are public messages

to generate [𝒙1] and [𝒚1]
• Prover sends random sharings [𝒓] and [𝒔] to verifiers
• Prover broadcasts 𝒖 = 𝒙1 + 𝒓 and 𝒗 = 𝒚1 + 𝒔 to verifiers
• Verifiers compute 𝒙1 = 𝒖 − 𝒓 and [𝒚1] = 𝒗 − [𝒔]

n Using echo-broadcast protocol [GL05]
n The hashing of messages is sent when opening sharings ⇒ keep one round

Verification for Packed Inner-Product Tuples

(𝒙! , ⋯ , 𝒙*), 𝒚! , ⋯ , 𝒚* , 𝒛 with 𝒛 = Σ$∈[!,*]𝒙$ ∗ 𝒚$ and ∗ is component-wise product

Transform packed multiplication tuples into a packed inner-product tuple

Recursive reduction of dimension of the packed inner-product tuple

For each iteration, split a packed tuple into two packed tuples, then compress two tuples
with dimension 𝑚 into one tuple with dimension 𝑚/2

Randomize the compressed inner-product tuple and then open

• Split (𝒙! , 𝒙"), 𝒚! , 𝒚" , 𝒛 into (𝒙! , 𝒚! , 𝒛!), (𝒙" , 𝒚" , 𝒛"), 𝒛 = 𝒛! + 𝒛"
• Prover generates random tuple (𝒙1 , 𝒚1 , 𝒛1) with 𝒛1 = 𝒙1 ∗ 𝒚1
• Compress {(𝒙$, 𝒚$, 𝒛$)}$∈[1,"] into (𝒙 , 𝒚 , 𝒛) ⇒ open it to check 𝒛 = 𝒙 ∗ 𝒚

log𝑁 − 1 iterations without interaction

only one round

Non-interactive compression of inner-product tuples

Based on the polynomial approach [BBCGI19,GPS21], we use Fiat-Shamir
to realize non-interactive compression

Compress two packed inner-product tuples (𝒂#,# , ⋯ , 𝒂#,+), 𝒃#,# , ⋯ , 𝒃#,+ , 𝒄# and
𝒂&,# , ⋯ , 𝒂&,+ , 𝒃&,# , ⋯ , 𝒃&,+ , 𝒄& into one tuple (𝒙# , ⋯ , 𝒙+), 𝒚# , ⋯ , 𝒚+ , 𝒛

Ø For 𝑗 ∈ [1,𝑚], compute 𝒇, ` such that 𝒇, 𝑖 = 𝒂!,, for 𝑖 ∈ 1,2

Ø For 𝑗 ∈ [1,𝑚], compute 𝒈, ` such that 𝒈, 𝑖 = 𝒃!,, for 𝑖 ∈ [1,2]

Ø Compute ℎ ` such that 𝒉 𝑖 = 𝒄! for 𝑖 ∈ [1,2]

Ø Compute 𝛼 = 𝐻′(𝛾,𝑚𝑠𝑔) where 𝛾 is the challenge used in the previous iteration and

𝑚𝑠𝑔 is the public message sent in the current iteration

Ø For 𝑗 ∈ [1,𝑚], [𝒙,] = 𝒇, 𝛼 , [𝒚,] = 𝒈, 𝛼 , [𝒛] = 𝒉 𝛼

Stream proof without increasing rounds between verifiers

Ø Prove a large circuit batch-by-batch

• Prover can prove 𝑁 = 𝑘 ` 𝑀 multiplication gates each time

Ø For one batch, non-interactively compress a packed inner-product tuple with

dimension 𝑁 into a packed tuple 𝐼𝑃𝑡𝑢𝑝𝑙𝑒# with dimension 𝑁/2- for some integer 𝑐

Ø For another batch, perform the same operations to obtain another packed tuple

𝐼𝑃𝑡𝑢𝑝𝑙𝑒& with dimension 𝑁/2-

Ø Non-interactively compress 𝐼𝑃𝑡𝑢𝑝𝑙𝑒# and 𝐼𝑃𝑡𝑢𝑝𝑙𝑒& into one tuple with dimension 𝑁/2-

• Non-interactively compression ⇒ only one round between verifiers for all batches

• Memory 𝑂(𝑁) where 𝑁 is a parameter set according to the memory size

• Similar idea can used for consistency check of wire tuples

Future Works

Ø Recently, AntMan [WYYXW22] first achieved sublinear communication for

two-party ZK proofs in the VOLE family

• One open question is to construct an NIMVZK protocol with sublinear

communication without requiring any computation-heavy tool such as

FHE, if it is not impossible

Ø Our NIMVZK protocol works in the honest-majority setting

• Another open question is to design an MVZK protocol for 𝑡 = 𝑛 − 1 that

has significantly less communication than running 𝑛 DVZKs

Ø A future work is to implement the NIMVZK protocol and apply it to

construct a private aggregation system

If you have any questions, send emails to yangk@sklc.org

ASIACRYPT 2022

Full version can be found at https://eprint.iacr.org/2022/063

