Non-Interactive Zero-Knowledge Proofs to Multiple Verifiers

Kang Yang Xiao Wang
74
Sl
State Key Laboratory of Cryptology Northwestern University

ASIACRYPT 2022
2022.12.07

Zero-Knowledge (ZK) Proofs

o (x,w) € R o
_

Prover Verifier
(x,w) X
<
-
> Statement x is often represented by a circuit C . Completeness
> w is called witness * Soundness

>(x,w)ER ©C(w)=0 « Zero Knowledge

Non-Interactive ZK (NIZK)

Toof Verlflerl
proof
P Verlfler2
rover K o
Verifier3

» NIZK is publicly verifiable, and a proof can be reused to convince multiple verifiers
» NIZK efficiency has been significantly improved under different frameworks
(e.g., MPC-in-the-head [IKOS07], GKR [GKRO08], IOP [BCS16], ...)

Designated-Verifier ZK (DVZK)

~ » DVZK : an interactive protocol between a prover
o« and a verifier in general
Prover > Verifierl » DVZK : convince only one verifier for every time
. > Efficient frameworks : garbled circuit (GC) [JKO13],
VOLE/COT [BMRS21, DIO21, WYKW?21], ...

Prover GRLUICCENNN | NIZK (zksNARKs) | DVZK (VOLE/COT)
Prover time slower faster
- L . :
o Verifier time sublinear linear
Prover — Verifier3 Total tlme sloyver f?ster
Proof size sublinear linear
Different efficiency features, Memory =195 Sal
, , o Rounds 1 constant
suitable for different applications

#Verifiers any one for every time

Multi-Verifier ZK (MVZK)

NIZK g MVZK pog DVZK

E > A prover wants to convince n verifiers
5" Verifierl

> t verifiers allow to be corrupted and
collude with the prover
o
\> We focus on the case of t < n/2 Y

Prover Verifier2
Our design goal

» Concretely efficient MVZK proofs

Ver|f|er3 > Less communication than n DVZKs
> Rounds same/close to NIZK

~

Streamable : the prover can generate and send the > St bl I
proof on-the-fly (the circuit is proved batch-by-batch)| \ = >treamabie = small memory)

Non-Interactive MVZK

In the MVZK setting, there are two types of communications

©O—2 = —0
: - @ -

Prover Verifier i Verifier i Verifier j
one message -
> Non-interactive MVZK (NIMVZK)
_—
Prover Verifier i
fe% _ oneround 0 NIMVZK = strong NIMVZK
Verifier i Verifier j

> We allow the verifiers to communicate for one round

» Without any communication between verifiers, constructing NIMVZKs are as difficult as NIZKs

Applications for MVZK

> Drop-in replacement to NIZK and DVZK: MVZK can be used in normal ZK applications
as long as the identifies of the verifiers are known ahead of time
» Honest-majority MPC with input predicate check: more efficient to check correctness
of the input of every party
> Private aggregation systems:
« Systems like Prio [CB17] use a set of servers to collect and aggregate data of users
« To prevent mistakes/attacks, users prove to the servers that their data is valid in ZK
« MVZK can be used in the systems when allowing users to collude with a minority

of servers

Three new concrete-efficient MVZK proofs with streamable property

per gate per verifier

S_h_amir_S_S IT t <nj2 1 L1

. | ShamirSSi CS t <n/2 " 05 | A

. Paclfe_d_S_Sl CS t<n(l/2-¢) " o/n) | 1
IT: information-theoretic, CS: computational security

main protocols NIMVZK

log [C| + 3 r}és_.
i 4 ' :
1 | | yes |

I

|
L1 11 oyes |

_____] |

Strong NIMVZK

verifiers unchanged

» All protocols have the computational complexity linear to circuit size, cheaper than DVZK
» Streaming proofs = small memory; strong NIMVZK protocols keep the rounds among

» Asymmetric : NIMVZK proofs in the CS setting allow that #verifiers have sublinear comm.

Compared to previous work for MVZK

Require public-key operations , not concretely efficient

» Strong NIMVZK protocol with honest-majority verifiers was first proposed in [ACF02]
» Fort < n/2, the protocol in [GO07] can be transformed into strong NIMVZK

Implicit in distributed ZK, not generic circuits

» Distributed ZK on low-degree polynomials (instead of generic circuits) [BBCGI19]
» Distributed ZK implied in MPC [BGIN20] only proves degree-2 relations

Prio, no collusion of the prover and verifiers

» Prio [CB17] does not allow the prover to collude with any verifier

> Prio requires quasi-linear (instead of linear) computation

Compared to concurrent work for MVZK

MVZK | Rounds | Security | Threshold | Assumption _

[AKP22] 2 full security t<n(l/2—e) NICOM
[BJOSS22] 2 identifiable abort t<n/3ort<n/4 RO
Ours (Shamir SS) 2 security with abort t<n/2 RO
Ours (Packed SS) 2 security with abort t<n(l/2—¢€") RO
- . ' NICOM can be based on injective one-way |
efficiency ascending functions with sub-exponential hardness |
A
[AKP22]
[BJOSS22]
Ours (SSS)
l Ours (PSS)

ascendingﬂ security

Our framework for building NIMVZK protocols

* [x]: Linear secret sharing on secret x ;
. Shamir/packed secret sharings Share the secret values for each input wire and

+ Replicated secret sharings also work output wire of MULT gates

 x!:share sent to Verifier i ~

N o« Using Distributed ZK (DZK) technique to check
N g\comi\ﬂ‘& Verifierl correctness of sharings of MULT gates
Y
{x?}, {com;} - e o : . .
) iSi=1_ Distributing Fiat-Shamir = strongly non-interactive
Prover {,1,3} Verifier2 « Prover broadcasts {com;}}-; to every verifier,

com; is a commitment of shares held by Verifier i
« Honest-majority verifiers = {com;}}=; determine
all secret wire values

Veer3

Warm-Up : Information-Theoretic NIMVZK

« For output x of each gate, the prover shares x into
Circuit evaluation [put x J P * [x] }

« Addition gates are free due to of linear property of secret sharings

[Check correctness of multiplication gates] [Check inner-product tuple J

{(lxi) vils [ziD}iepny = 2o = xi - yi fori € [1, N]
@—tos@to generate random challenge y

Verification T (L 2 =z = (x,y)
« Using DZK [BBCGI19,GSZ20] to

N-1,

[x] = ([xl])X) [Xz],"';)(xN])

check correctness of (|x], [v], [z]) —

« The prover generates random l= (Wl bzl TnD

sharings to mask sharings of secrets _ (2] = Yiepnx" - [2i]

Strong NIMVZK from Shamir Sharings

» The framework is the same as information-theoretic NIMVZK

» The challenge is to compute a public message used as the input of RO

n? 2 bits extra
communication

« Only secret shares are sent by the prover to every verifier

« The verifiers have no way to compute a public message

<

@ Prover sends (M;, ;) to Verifier i where M; consists of secret shares

@ Prover computes com; = H(M;,r;) where H is a RO
® Prover sends (com,, -+, com,,) to every verifier
@ Verifier i checks com; = H(M;,1;); t < n/2 = a majority of commitments are correct

® Challenge y = H'(comg, ---, com,,)

It is unnecessary to be collision-resistant

Construction [DNNR17]

ﬁ> « Random output is sufficient
Adopt 2 (rather than 21) as the output length

based on fixed-key AES

Strong NIMVZK from Packed Sharings

» Shamir sharings : f(0) =s | generalize

« packed sharings: f(B;) = s; fori € [1,k]

° (a) == xl ° —_
flas t=n/2—k denoted by [x] for x € Fk
e t<n/2
1 4 ° xl. ! ®
S X X3 * X 1 x3 *
x5 ® S3 XS ®
X2 ° ,2 ®
S2
| | | | | | | | | |
P; P, Ps P, P Py P, P3 P, Ps

» Using packed sharings, perform addition/multiplication for a group of k gates every time

> Prover generates and distributes [y] for every group, if the packed sharing does not exist

» There exists some wires that are in different groups

Consistency Check for Wire Tuples

> Wire tuple [GPS21] : ([x], [y],1,)) with x; = y;

> Foreach i,j € [1,k], check ([x1], [y1], 0,)), -, (Ixml, [yml 1,))

> x] = Zhe[l,m]ah xp] + [x0], [¥] = Zhe[l,m]ah |ynl + [Vol

> Open(|x], [y]) to check x; = y;

» |xo] and [y,] are random sharings generated by Prover such that xo; = yo ;

» Generate «a using Fiat-Shamir : « = H'(y,u,v,i,j) , where u, v are public messages
to generate [xy] and [y,]

* Prover sends random sharings [r] and [s] to verifiers
* Prover broadcasts u = xy + r and v = y, + s to verifiers
 Verifiers compute [xy] = u — [r] and [yy] = v — [s]

B Using echo-broadcast protocol [GLO5]
B The hashing of messages is sent when opening sharings = keep one round

Verification for Packed Inner-Product Tuples

Transform packed multiplication tuples into a packed inner-product tuple

<

(Lxal, -5 [xn D, Ayl -5 [yw D, 2] with z = Ziepg vy * y; and * is component-wise product

Recursive reduction of dimension of the packed inner-product tuple

< logN — 1 iterations without interaction

For each iteration, split a packed tuple into two packed tuples, then compress two tuples
with dimension m into one tuple with dimension m/2

Randomize the compressed inner-product tuple and then open

@ only one round
* Split ([x1], [x2]), (Ly1], [y2D), [2] into ([x4], [y1), [21]), (Ix2), [v2l, (22D, [2] = [21] + 2]

1
* Prover generates random tuple ([xg], [Vol, [Zo]) with zy = x¢ * Y
* Compress {([x;], [vil, [2i])}ig[o,27 into ([x], [¥], [2z]) = openitto checkz = x * y

Non-interactive compression of inner-product tuples

Based on the polynomial approach [BBCGI19,GPS21], we use Fiat-Shamir
to realize non-interactive compression

Compress two packed inner-product tuples ([a,1], -+, [aim]), ([P11]) [P1m]), [c1] and
([(12,1], T [aZ,m]); ([bZ,l]' T [bZ,m])r [CZ] into one tuple ([xl]: T [xm]), ([}’1], Y [ym]); [Z]

> For j € [1,m], compute [f;(-)] such that f;(i) = a;; fori € [1,2]

» For j € [1,m], compute |g;(-)] such that g;(i) = b;; fori € [1,2]

» Compute [h(-)] such that h(i) = ¢; for i € [1,2]

» Compute a = H'(y, msg) where y is the challenge used in the previous iteration and

msg 1s the public message sent in the current iteration

> Forje[1L,m] [x]=|f;@)] [v;]=[9;@)] [2] = [h(a)]

Stream proof without increasing rounds between verifiers

» Prove a large circuit batch-by-batch
« Prover can prove N = k - M multiplication gates each time
» For one batch, non-interactively compress a packed inner-product tuple with
dimension N into a packed tuple IPtuple; with dimension N/2¢ for some integer ¢
» For another batch, perform the same operations to obtain another packed tuple
IPtuple, with dimension N/2¢

» Non-interactively compress IPtuple; and IPtuple, into one tuple with dimension N/2°¢

« Non-interactively compression = only one round between verifiers for all batches
« Memory O(N) where N is a parameter set according to the memory size

« Similar idea can used for consistency check of wire tuples

» Recently, AntMan [WYYXW22] first achieved sublinear communication for

two-party ZK proofs in the VOLE family
« One open question is to construct an NIMVZK protocol with sublinear
communication without requiring any computation-heavy tool such as
FHE, if it is not impossible
» Our NIMVZK protocol works in the honest-majority setting
« Another open question is to design an MVZK protocol for t = n — 1 that
has significantly less communication than running n DVZKs

» A future work is to implement the NIMVZK protocol and apply it to

construct a private aggregation system

ASIACRYPT 2022

Than

Full version can be found at https://eprint.iacr.org/2022/063

If you have any questions, send emails to yangk@sklc.org

