
Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Optimising Linear Key Recovery Attacks with

Affine Walsh Transform Pruning

Antonio Flórez-Gutiérrez
NTT Social Informatics Laboratories
(work carried out while at Inria Paris)

ASIACRYPT 2022
5-9 December 2022, Taipei

1 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Introduction and Motivation

2 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Linear Key Recovery Attack

Linear approximation of (part of) a block cipher (Matsui,1993):

⟨α, x̃⟩ ⊕ ⟨β, ỹ⟩ with correlation c

We express the linear approximation as a function of the plaintext,
ciphertext and key with the key recovery map, for example:

f0(x , y)⊕ f1(x ,K)⊕ f2(y ,K)

We divide the relevant part of the plaintext/ciphertext into segments
and consider key recovery maps of the form:

f0(x)⊕ f1(x1 ⊕ kO
1 , k

I
1)⊕ . . .⊕ fd(xd ⊕ kO

d , k
I
d)︸ ︷︷ ︸

f (X⊕KO ,K I)

x

E1

x̃

Em

ỹ

E2

y

α

β

K

3 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Linear Key Recovery Attack

Linear approximation of (part of) a block cipher (Matsui,1993):

⟨α, x̃⟩ ⊕ ⟨β, ỹ⟩ with correlation c

We express the linear approximation as a function of the plaintext,
ciphertext and key with the key recovery map, for example:

f0(x , y)⊕ f1(x ,K)⊕ f2(y ,K)

We divide the relevant part of the plaintext/ciphertext into segments
and consider key recovery maps of the form:

f0(x)⊕ f1(x1 ⊕ kO
1 , k

I
1)⊕ . . .⊕ fd(xd ⊕ kO

d , k
I
d)︸ ︷︷ ︸

f (X⊕KO ,K I)

x

E1

x̃

Em

ỹ

E2

y

α

β

K

3 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Linear Key Recovery Attack

Linear approximation of (part of) a block cipher (Matsui,1993):

⟨α, x̃⟩ ⊕ ⟨β, ỹ⟩ with correlation c

We express the linear approximation as a function of the plaintext,
ciphertext and key with the key recovery map, for example:

f0(x , y)⊕ f1(x ,K)⊕ f2(y ,K)

We divide the relevant part of the plaintext/ciphertext into segments
and consider key recovery maps of the form:

f0(x)⊕ f1(x1 ⊕ kO
1 , k

I
1)⊕ . . .⊕ fd(xd ⊕ kO

d , k
I
d)︸ ︷︷ ︸

f (X⊕KO ,K I)

x

E1

x̃

Em

ỹ

E2

y

α

β

K

3 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Linear Key Recovery Attack (cont.)

The objective is to compute all the experimental correlations:

ĉor(key guess k) =
1

N

∑
x∈D

(−1)⟨α,x̃(k)⟩⊕⟨β,ỹ(k)⟩, D data sample of size N ≈ 1/c2

as the correct key guess is expected to have a larger experimental correlation

For the considered form of the key recovery map, we have

ĉor(KO ,K I) =
1

N

∑
x∈D

(−1)f0(x)(−1)f (X⊕KO ,K I)

We can compute this vector either directly or with a distillation step, with costs

N · 2|K I |+|KO | (Matsui, 1993) and N + 2|K
I |+2|KO | (Matsui, 1994)

4 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Linear Key Recovery Attack (cont.)

The objective is to compute all the experimental correlations:

ĉor(key guess k) =
1

N

∑
x∈D

(−1)⟨α,x̃(k)⟩⊕⟨β,ỹ(k)⟩, D data sample of size N ≈ 1/c2

as the correct key guess is expected to have a larger experimental correlation
For the considered form of the key recovery map, we have

ĉor(KO ,K I) =
1

N

∑
x∈D

(−1)f0(x)(−1)f (X⊕KO ,K I)

We can compute this vector either directly or with a distillation step, with costs

N · 2|K I |+|KO | (Matsui, 1993) and N + 2|K
I |+2|KO | (Matsui, 1994)

4 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Linear Key Recovery Attack (cont.)

The objective is to compute all the experimental correlations:

ĉor(key guess k) =
1

N

∑
x∈D

(−1)⟨α,x̃(k)⟩⊕⟨β,ỹ(k)⟩, D data sample of size N ≈ 1/c2

as the correct key guess is expected to have a larger experimental correlation
For the considered form of the key recovery map, we have

ĉor(KO ,K I) =
1

N

∑
x∈D

(−1)f0(x)(−1)f (X⊕KO ,K I)

We can compute this vector either directly or with a distillation step, with costs

N · 2|K I |+|KO | (Matsui, 1993) and N + 2|K
I |+2|KO | (Matsui, 1994)

4 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

The Walsh Transform Technique

(Collard, Standaert, Quisquater, 2007), (Flórez-Gutiérrez, Naya-Plasencia, 2020)

ĉor(KO ,K I) =
1

N

∑
X

(−1)f (X⊕KO ,K I)
∑

x∈D, x 7→X

(−1)f0(x)︸ ︷︷ ︸
A[X] (distillation table)

Because of the convolution theorem, we can compute ĉor as follows:

Compute the distillation table A from the data (N additions)

Apply the fast Walsh transform on A (|KO |2|KO | additions)

For each guess of K I (2|K
I | in total):

Multiply elementwise by the Walsh spectrum of f (· ,K I) (2|K
O | products)

Apply the fast Walsh transform (|KO |2|KO | additions)

5 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

The Walsh Transform Technique

(Collard, Standaert, Quisquater, 2007), (Flórez-Gutiérrez, Naya-Plasencia, 2020)

ĉor(KO ,K I) =
1

N

∑
X

(−1)f (X⊕KO ,K I)
∑

x∈D, x 7→X

(−1)f0(x)︸ ︷︷ ︸
A[X] (distillation table)

Because of the convolution theorem, we can compute ĉor as follows:

Compute the distillation table A from the data (N additions)

Apply the fast Walsh transform on A (|KO |2|KO | additions)

For each guess of K I (2|K
I | in total):

Multiply elementwise by the Walsh spectrum of f (· ,K I) (2|K
O | products)

Apply the fast Walsh transform (|KO |2|KO | additions)

5 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

The Walsh Transform Technique (cont.)

N + |KO |2|KO | + 2|K
I |+|KO | + |KO |2|K I |+|KO |

DDD
...

(x , y)
...

Distillation

AAA

Walsh

For each K I

×××

f̂̂f̂f

=== Walsh

ĉor̂cor̂cor

Total complexity: O (N) +O
(
|KO |2|KO |+|K I |

)

6 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

The Walsh Transform Technique (cont.)

N

+ |KO |2|KO | + 2|K
I |+|KO | + |KO |2|K I |+|KO |

DDD
...

(x , y)
...

Distillation

AAA

Walsh

For each K I

×××

f̂̂f̂f

=== Walsh

ĉor̂cor̂cor

Total complexity: O (N) +O
(
|KO |2|KO |+|K I |

)

6 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

The Walsh Transform Technique (cont.)

N + |KO |2|KO |

+ 2|K
I |+|KO | + |KO |2|K I |+|KO |

DDD
...

(x , y)
...

Distillation

AAA

Walsh

For each K I

×××

f̂̂f̂f

=== Walsh

ĉor̂cor̂cor

Total complexity: O (N) +O
(
|KO |2|KO |+|K I |

)

6 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

The Walsh Transform Technique (cont.)

N + |KO |2|KO | + 2|K
I |+|KO |

+ |KO |2|K I |+|KO |

DDD
...

(x , y)
...

Distillation

AAA

Walsh

For each K I

×××

f̂̂f̂f

===

Walsh

ĉor̂cor̂cor

Total complexity: O (N) +O
(
|KO |2|KO |+|K I |

)

6 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

The Walsh Transform Technique (cont.)

N + |KO |2|KO | + 2|K
I |+|KO | + |KO |2|K I |+|KO |

DDD
...

(x , y)
...

Distillation

AAA

Walsh

For each K I

×××

f̂̂f̂f

=== Walsh

ĉor̂cor̂cor

Total complexity: O (N) +O
(
|KO |2|KO |+|K I |

)

6 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

The Walsh Transform Technique (cont.)

N + |KO |2|KO | + 2|K
I |+|KO | + |KO |2|K I |+|KO |

DDD
...

(x , y)
...

Distillation

AAA

Walsh

For each K I

×××

f̂̂f̂f

=== Walsh

ĉor̂cor̂cor

Total complexity: O (N) +O
(
|KO |2|KO |+|K I |

)
6 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

The Target Problem

In the cryptanalysis of real ciphers, there can be exploitable redundancies:

If N < 2|K
O |, then A is a sparse vector → Do we really need to fully build it?

Given K I , the key schedule may make some guesses of KO impossible →
Can we avoid computing the associated entries of ĉor?

The attack treats the key recovery map as an arbitrary Boolean function →
Can we exploit any specific properties to improve the time complexity?

These redundancies can be expressed as sparsity properties of the nonzero inputs
and desired outputs of the Walsh transform steps

Problem: The fast Walsh transform algorithm is a box with fixed time complexity

7 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

The Target Problem

In the cryptanalysis of real ciphers, there can be exploitable redundancies:

If N < 2|K
O |, then A is a sparse vector → Do we really need to fully build it?

Given K I , the key schedule may make some guesses of KO impossible →
Can we avoid computing the associated entries of ĉor?

The attack treats the key recovery map as an arbitrary Boolean function →
Can we exploit any specific properties to improve the time complexity?

These redundancies can be expressed as sparsity properties of the nonzero inputs
and desired outputs of the Walsh transform steps

Problem: The fast Walsh transform algorithm is a box with fixed time complexity

7 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

The Target Problem

In the cryptanalysis of real ciphers, there can be exploitable redundancies:

If N < 2|K
O |, then A is a sparse vector → Do we really need to fully build it?

Given K I , the key schedule may make some guesses of KO impossible →
Can we avoid computing the associated entries of ĉor?

The attack treats the key recovery map as an arbitrary Boolean function →
Can we exploit any specific properties to improve the time complexity?

These redundancies can be expressed as sparsity properties of the nonzero inputs
and desired outputs of the Walsh transform steps

Problem: The fast Walsh transform algorithm is a box with fixed time complexity

7 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Structure of the Presentation

1 Affine Walsh Transform Pruning

Problem statement and complexity result
Example of pruned fast Walsh transform algorithm

2 Assembling the Attack

Walsh spectrum sparsity properties
Improving the second Walsh transform step
Improving the first Walsh transform step

3 Applications and Conclusion

Application to the DES
Application to 29-round PRESENT-128
Open problems

8 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Structure of the Presentation

1 Affine Walsh Transform Pruning

Problem statement and complexity result
Example of pruned fast Walsh transform algorithm

2 Assembling the Attack

Walsh spectrum sparsity properties
Improving the second Walsh transform step
Improving the first Walsh transform step

3 Applications and Conclusion

Application to the DES
Application to 29-round PRESENT-128
Open problems

8 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Structure of the Presentation

1 Affine Walsh Transform Pruning

Problem statement and complexity result
Example of pruned fast Walsh transform algorithm

2 Assembling the Attack

Walsh spectrum sparsity properties
Improving the second Walsh transform step
Improving the first Walsh transform step

3 Applications and Conclusion

Application to the DES
Application to 29-round PRESENT-128
Open problems

8 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Affine Walsh Transform Pruning

9 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Problem Statement and Complexity Result

Affine Pruning Problem Statement

Consider a vector of length 2n f : Fn
2 −→ C and:

A list L ⊆ Fn
2 of inputs so that f (x) = 0 if x ̸∈ L

An affine subspace x0 + X ⊆ Fn
2 so that L ⊆ x0 + X

A list M ⊆ Fn
2 of outputs

An affine subspace u0 + U ⊆ Fn
2 so that M ⊆ u0 + U

We wish to compute f̂ (u) =
∑

x∈Fn
2
(−1)⟨x ,u⟩f (x) for all u ∈ M efficiently

Theorem: Walsh Transform Affine Pruning Algorithm

The previous problem can be solved in |L|+ t2t + |M | operations, where
t = dim

(
X/(X ∩ U⊥)

)
= dim

(
U/(U ∩ X⊥)

)

10 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Problem Statement and Complexity Result

Affine Pruning Problem Statement

Consider a vector of length 2n f : Fn
2 −→ C and:

A list L ⊆ Fn
2 of inputs so that f (x) = 0 if x ̸∈ L

An affine subspace x0 + X ⊆ Fn
2 so that L ⊆ x0 + X

A list M ⊆ Fn
2 of outputs

An affine subspace u0 + U ⊆ Fn
2 so that M ⊆ u0 + U

We wish to compute f̂ (u) =
∑

x∈Fn
2
(−1)⟨x ,u⟩f (x) for all u ∈ M efficiently

Theorem: Walsh Transform Affine Pruning Algorithm

The previous problem can be solved in |L|+ t2t + |M | operations, where
t = dim

(
X/(X ∩ U⊥)

)
= dim

(
U/(U ∩ X⊥)

)
10 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Affine Pruning Example{
x0 + X = (0010) + span {(0001), (0110), (1010)}
u0 + U = (0100) + span {(0001), (0010), (1100)}

111111111111
111011101110
1101
1100
1011
1010
100110011001
100010001000
0111
0110
010101010101
010001000100
001100110011
001000100010
0001
0000

1111
1110
1101
1100
101110111011
101010101010
100110011001
100010001000
011101110111
011001100110
010101010101
010001000100
0011
0010
0001
0000

We try different strategies:
11 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Affine Pruning Example{
x0 + X = (0010) + span {(0001), (0110), (1010)}
u0 + U = (0100) + span {(0001), (0010), (1100)}

111111111111
111011101110
1101
1100
1011
1010
100110011001
100010001000
0111
0110
010101010101
010001000100
001100110011
001000100010
0001
0000

1111
1110
1101
1100
101110111011
101010101010
100110011001
100010001000
011101110111
011001100110
010101010101
010001000100
0011
0010
0001
0000

We try different strategies: 64 operations
11 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Affine Pruning Example{
x0 + X = (0010) + span {(0001), (0110), (1010)}
u0 + U = (0100) + span {(0001), (0010), (1100)}

111111111111
111011101110
1101
1100
1011
1010
100110011001
100010001000
0111
0110
010101010101
010001000100
001100110011
001000100010
0001
0000

1111
1110
1101
1100
101110111011
101010101010
100110011001
100010001000
011101110111
011001100110
010101010101
010001000100
0011
0010
0001
0000

We try different strategies: 40 operations
11 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Affine Pruning Example{
x0 + X = (0010) + span {(0001), (0110), (1010)}
u0 + U = (0100) + span {(0001), (0010), (1100)}

111111111111
111011101110
1101
1100
1011
1010
100110011001
100010001000
0111
0110
010101010101
010001000100
001100110011
001000100010
0001
0000

1111
1110
1101
1100
101110111011
101010101010
100110011001
100010001000
011101110111
011001100110
010101010101
010001000100
0011
0010
0001
0000

We try different strategies: 32 operations
11 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Affine Pruning Example (cont.){
x0 + X = (0010) + span {(0001), (0110), (1010)}
u0 + U = (0100) + span {(0001), (0010), (1100)}

H =


1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1

−1 −1 −1 −1 1 1 1 1
−1 1 −1 1 1 −1 1 −1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1

−1 −1 1 1 −1 −1 1 1
−1 1 1 −1 −1 1 1 −1


111111111111
111011101110
100110011001
100010001000
010101010101
010001000100
001100110011
001000100010

101110111011
101010101010
100110011001
100010001000
011101110111
011001100110
010101010101
010001000100

Inputs differing by (1100) ∈ U⊥ appear with opposite signs

Outputs differing by (1110) ∈ X⊥ are opposites

The transform is reduced to one of size 4

16 operations

12 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Affine Pruning Example (cont.){
x0 + X = (0010) + span {(0001), (0110), (1010)}
u0 + U = (0100) + span {(0001), (0010), (1100)}

H =


1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1

−1 −1 −1 −1 1 1 1 1
−1 1 −1 1 1 −1 1 −1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1

−1 −1 1 1 −1 −1 1 1
−1 1 1 −1 −1 1 1 −1


111111111111
111011101110
100110011001
100010001000
010101010101
010001000100
001100110011
001000100010

101110111011
101010101010
100110011001
100010001000
011101110111
011001100110
010101010101
010001000100

Inputs differing by (1100) ∈ U⊥ appear with opposite signs

Outputs differing by (1110) ∈ X⊥ are opposites

The transform is reduced to one of size 4

16 operations

12 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Affine Pruning Example (cont.){
x0 + X = (0010) + span {(0001), (0110), (1010)}
u0 + U = (0100) + span {(0001), (0010), (1100)}

H =


1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1

−1 −1 −1 −1 1 1 1 1
−1 1 −1 1 1 −1 1 −1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1

−1 −1 1 1 −1 −1 1 1
−1 1 1 −1 −1 1 1 −1


111111111111
111011101110
100110011001
100010001000
010101010101
010001000100
001100110011
001000100010

101110111011
101010101010
100110011001
100010001000
011101110111
011001100110
010101010101
010001000100

Inputs differing by (1100) ∈ U⊥ appear with opposite signs

Outputs differing by (1110) ∈ X⊥ are opposites

The transform is reduced to one of size 4

16 operations

12 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Affine Pruning Example (cont.){
x0 + X = (0010) + span {(0001), (0110), (1010)}
u0 + U = (0100) + span {(0001), (0010), (1100)}

H =


1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1

−1 −1 −1 −1 1 1 1 1
−1 1 −1 1 1 −1 1 −1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1

−1 −1 1 1 −1 −1 1 1
−1 1 1 −1 −1 1 1 −1


111111111111
111011101110
100110011001
100010001000
010101010101
010001000100
001100110011
001000100010

101110111011
101010101010
100110011001
100010001000
011101110111
011001100110
010101010101
010001000100

Inputs differing by (1100) ∈ U⊥ appear with opposite signs

Outputs differing by (1110) ∈ X⊥ are opposites

The transform is reduced to one of size 4

16 operations

12 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Affine Pruning Example (cont.){
x0 + X = (0010) + span {(0001), (0110), (1010)}
u0 + U = (0100) + span {(0001), (0010), (1100)}

H =


1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1

−1 −1 −1 −1 1 1 1 1
−1 1 −1 1 1 −1 1 −1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1

−1 −1 1 1 −1 −1 1 1
−1 1 1 −1 −1 1 1 −1


111111111111
111011101110
100110011001
100010001000
010101010101
010001000100
001100110011
001000100010

101110111011
101010101010
100110011001
100010001000
011101110111
011001100110
010101010101
010001000100

Inputs differing by (1100) ∈ U⊥ appear with opposite signs

Outputs differing by (1110) ∈ X⊥ are opposites

The transform is reduced to one of size 4

16 operations

12 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Affine Pruning Example (cont.){
x0 + X = (0010) + span {(0001), (0110), (1010)}
u0 + U = (0100) + span {(0001), (0010), (1100)}

H =


1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1

−1 −1 −1 −1 1 1 1 1
−1 1 −1 1 1 −1 1 −1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1

−1 −1 1 1 −1 −1 1 1
−1 1 1 −1 −1 1 1 −1


111111111111
111011101110
100110011001
100010001000
010101010101
010001000100
001100110011
001000100010

101110111011
101010101010
100110011001
100010001000
011101110111
011001100110
010101010101
010001000100

Inputs differing by (1100) ∈ U⊥ appear with opposite signs

Outputs differing by (1110) ∈ X⊥ are opposites

The transform is reduced to one of size 4

16 operations

12 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Affine Pruning Example (cont.){
x0 + X = (0010) + span {(0001), (0110), (1010)}
u0 + U = (0100) + span {(0001), (0010), (1100)}

H =


1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1

−1 −1 −1 −1 1 1 1 1
−1 1 −1 1 1 −1 1 −1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1

−1 −1 1 1 −1 −1 1 1
−1 1 1 −1 −1 1 1 −1


111111111111
111011101110
100110011001
100010001000
010101010101
010001000100
001100110011
001000100010

101110111011
101010101010
100110011001
100010001000
011101110111
011001100110
010101010101
010001000100

Inputs differing by (1100) ∈ U⊥ appear with opposite signs

Outputs differing by (1110) ∈ X⊥ are opposites

The transform is reduced to one of size 4

16 operations

12 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Affine Pruning Example (cont.){
x0 + X = (0010) + span {(0001), (0110), (1010)}
u0 + U = (0100) + span {(0001), (0010), (1100)}

H =


1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1

−1 −1 −1 −1 1 1 1 1
−1 1 −1 1 1 −1 1 −1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1

−1 −1 1 1 −1 −1 1 1
−1 1 1 −1 −1 1 1 −1


111111111111
111011101110
100110011001
100010001000
010101010101
010001000100
001100110011
001000100010

101110111011
101010101010
100110011001
100010001000
011101110111
011001100110
010101010101
010001000100

Inputs differing by (1100) ∈ U⊥ appear with opposite signs

Outputs differing by (1110) ∈ X⊥ are opposites

The transform is reduced to one of size 4

16 operations

12 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Affine Pruning Example (cont.){
x0 + X = (0010) + span {(0001), (0110), (1010)}
u0 + U = (0100) + span {(0001), (0010), (1100)}

H =


1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1

−1 −1 −1 −1 1 1 1 1
−1 1 −1 1 1 −1 1 −1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1

−1 −1 1 1 −1 −1 1 1
−1 1 1 −1 −1 1 1 −1


111111111111
111011101110
100110011001
100010001000
010101010101
010001000100
001100110011
001000100010

101110111011
101010101010
100110011001
100010001000
011101110111
011001100110
010101010101
010001000100

Inputs differing by (1100) ∈ U⊥ appear with opposite signs

Outputs differing by (1110) ∈ X⊥ are opposites

The transform is reduced to one of size 4

16 operations

12 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Affine Pruning Example (cont.){
x0 + X = (0010) + span {(0001), (0110), (1010)}
u0 + U = (0100) + span {(0001), (0010), (1100)}

H =


1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1

−1 −1 −1 −1 1 1 1 1
−1 1 −1 1 1 −1 1 −1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1

−1 −1 1 1 −1 −1 1 1
−1 1 1 −1 −1 1 1 −1


111111111111
111011101110
100110011001
100010001000
010101010101
010001000100
001100110011
001000100010

101110111011
101010101010
100110011001
100010001000
011101110111
011001100110
010101010101
010001000100

Inputs differing by (1100) ∈ U⊥ appear with opposite signs

Outputs differing by (1110) ∈ X⊥ are opposites

The transform is reduced to one of size 4

16 operations

12 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Overview of the General Algorithm

The complexity is determined by the dimensions of X and U and their
orthogonality: The more “orthogonal” X and U are, the lower the complexity, as

t = dim (X)− dim
(
X ∩ U⊥) = dim (U)− dim

(
U ∩ X⊥)

The pruned algorithm consists of three steps:

1 A compression step which adds/subtracts each input to a position in a
vector of length 2t , with cost O(1) for each nonzero input

2 A fast Walsh transform on this compressed vector, with cost t2t

3 An expansion step which maps each desired output to a position in this
vector, with cost O(1) for each desired output

13 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Overview of the General Algorithm

The complexity is determined by the dimensions of X and U and their
orthogonality: The more “orthogonal” X and U are, the lower the complexity, as

t = dim (X)− dim
(
X ∩ U⊥) = dim (U)− dim

(
U ∩ X⊥)

The pruned algorithm consists of three steps:

1 A compression step which adds/subtracts each input to a position in a
vector of length 2t , with cost O(1) for each nonzero input

2 A fast Walsh transform on this compressed vector, with cost t2t

3 An expansion step which maps each desired output to a position in this
vector, with cost O(1) for each desired output

13 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Assembling the Attack

14 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Walsh Spectrum Example

x0x1x2x3

f (x)

α0α1α2α3

β

S S S S

S

We assume S balanced and consider the following map:

We have a nice formula for its Walsh coefficients:

f̂ (α3, α2, α1, α0) =
1

4
Ŝ(α3) Ŝ(α2) Ŝ(α1) Ŝ(α0) Ŝ(β),

where βi = 1 ⇔ αi ̸= 0 because S is balanced

If Ŝ(F) = 0, then f̂ (α3, α2, α1, α0) ̸= 0 =⇒ αi = 0 for some i

The nonzero Walsh coefficients of f are contained in 4 vector subspaces of
dimension 12 of F16

2 , given by the conditions α0 = 0, α1 = 0, α2 = 0 and α3 = 0

15 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Walsh Spectrum Example

x0x1x2x3

f (x)

α0α1α2α3

β

S S S S

S

We assume S balanced and consider the following map:

We have a nice formula for its Walsh coefficients:

f̂ (α3, α2, α1, α0) =
1

4
Ŝ(α3) Ŝ(α2) Ŝ(α1) Ŝ(α0) Ŝ(β),

where βi = 1 ⇔ αi ̸= 0 because S is balanced

If Ŝ(F) = 0, then f̂ (α3, α2, α1, α0) ̸= 0 =⇒ αi = 0 for some i

The nonzero Walsh coefficients of f are contained in 4 vector subspaces of
dimension 12 of F16

2 , given by the conditions α0 = 0, α1 = 0, α2 = 0 and α3 = 0

15 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Walsh Spectrum Example

x0x1x2x3

f (x)

α0α1α2α3

β

S S S S

S

We assume S balanced and consider the following map:

We have a nice formula for its Walsh coefficients:

f̂ (α3, α2, α1, α0) =
1

4
Ŝ(α3) Ŝ(α2) Ŝ(α1) Ŝ(α0) Ŝ(β),

where βi = 1 ⇔ αi ̸= 0 because S is balanced

If Ŝ(F) = 0, then f̂ (α3, α2, α1, α0) ̸= 0 =⇒ αi = 0 for some i

The nonzero Walsh coefficients of f are contained in 4 vector subspaces of
dimension 12 of F16

2 , given by the conditions α0 = 0, α1 = 0, α2 = 0 and α3 = 0

15 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Walsh Spectrum Example (cont.)

x0x1x2x3

f (x)

α0α1α2α3

βK I

S S S S

S

There are still two issues that we wish to solve:

What if Ŝ(F) ̸= 0?

We choose a subset X so that Ŝy∈X (F) = 0 and
reject some of the data accordingly

What happens with the addition of K I?

f̂K I (α3, α2, α1, α0) = (−1)⟨K
I ,β⟩f̂0(α3, α2, α1, α0)

The vector subspaces are the same for all K I

We can compute f̂0 and deduce the spectrum of other K I with sign swaps

16 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Walsh Spectrum Example (cont.)

x0x1x2x3

f (x)

α0α1α2α3

βK I

S S S S

S

There are still two issues that we wish to solve:

What if Ŝ(F) ̸= 0?

We choose a subset X so that Ŝy∈X (F) = 0 and
reject some of the data accordingly

What happens with the addition of K I?

f̂K I (α3, α2, α1, α0) = (−1)⟨K
I ,β⟩f̂0(α3, α2, α1, α0)

The vector subspaces are the same for all K I

We can compute f̂0 and deduce the spectrum of other K I with sign swaps

16 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Improving the Second Walsh Transform Step

N + |KO |2|KO | + 2|K
I |+|KO | + |KO |2|K I |+|KO |

N + |KO |2|KO | + 2|K
O | + |KO |2|K I |+|KO |

DDD
...

(x , y)
...

Distillation

AAA

Walsh ×××

f̂̂f̂f

=== Walsh

ĉor̂cor̂cor

For each K I

For each K I

We can multiply by the Walsh spectrum associated to K I = 0 and sign swap
at the start of the second Walsh transform

We next look at the support of the Walsh spectrum of f

17 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Improving the Second Walsh Transform Step

N + |KO |2|KO | + 2|K
I |+|KO | + |KO |2|K I |+|KO |

N + |KO |2|KO | + 2|K
O | + |KO |2|K I |+|KO |

DDD
...

(x , y)
...

Distillation

AAA

Walsh ×××

f̂̂f̂f

=== Walsh

ĉor̂cor̂cor

For each K I

For each K I

We can multiply by the Walsh spectrum associated to K I = 0 and sign swap
at the start of the second Walsh transform

We next look at the support of the Walsh spectrum of f

17 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Improving the Second Walsh Transform Step

N + |KO |2|KO | + 2|K
I |+|KO | + |KO |2|K I |+|KO |

N + |KO |2|KO | + 2|K
O | + |KO |2|K I |+|KO |

DDD
...

(x , y)
...

Distillation

AAA

Walsh ×××

f̂̂f̂f

=== Walsh

ĉor̂cor̂cor

For each K I

For each K I

We can multiply by the Walsh spectrum associated to K I = 0 and sign swap
at the start of the second Walsh transform

We next look at the support of the Walsh spectrum of f

17 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Improving the Second Walsh Transform Step (cont.)

N + |KO |2|KO | + 2dim(U) + |KO |2|K I |+|KO |

DDD
...

(x , y)
...

Distillation

AAA

Walsh ×××

f̂̂f̂f

=== Walsh

ĉor̂cor̂cor

For each K I

The nonzero inputs of the second Walsh transform step must be in the
support of f̂ , which we assume is contained in a subspace U

Given K I , we assume the possible values of KO lie in a subspace V

18 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Improving the Second Walsh Transform Step (cont.)

N + |KO |2|KO | + 2dim(U) + |KO |2|K I |+|KO |

DDD
...

(x , y)
...

Distillation

AAA

Walsh ×××

f̂̂f̂f

=== Walsh

ĉor̂cor̂cor

For each K I

The nonzero inputs of the second Walsh transform step must be in the
support of f̂ , which we assume is contained in a subspace U

Given K I , we assume the possible values of KO lie in a subspace V

18 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Improving the Second Walsh Transform Step (cont.)

N + |KO |2|KO |+ 2dim(U) + 2|K
I | (2dim(U) + r2r + 2dim(V)

)

N + |KO |2|KO |+l
(
2dim(U) + 2|K

I | (2dim(U) + r2r + 2dim(V)
))

DDD
...

(x , y)
...

Distillation

AAA

Walsh ×××

f̂̂f̂f ĉor̂cor̂cor

For each K I

===

The transforms are reduced to size 2r , where r = dim (U)− dim
(
U ∩ V⊥)

If the support of f̂ is covered by l subspaces, we can use the linearity of the
Walsh transform to separate it into several parts

19 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Improving the Second Walsh Transform Step (cont.)

N + |KO |2|KO |+ 2dim(U) + 2|K
I | (2dim(U) + r2r + 2dim(V)

)

N + |KO |2|KO |+l
(
2dim(U) + 2|K

I | (2dim(U) + r2r + 2dim(V)
))

DDD
...

(x , y)
...

Distillation

AAA

Walsh ×××

f̂̂f̂f ĉor̂cor̂cor

For each K I

===

The transforms are reduced to size 2r , where r = dim (U)− dim
(
U ∩ V⊥)

If the support of f̂ is covered by l subspaces, we can use the linearity of the
Walsh transform to separate it into several parts

19 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Improving the First Walsh Transform Step

N + |KO |2|KO |+l
(
2dim(U) + 2|K

I | (2dim(U) + r2r + 2dim(V)
))

N + l
(
2|K

O | + dim (U) 2dim(U)+2dim(U) + 2|K
I | (2dim(U) + r2r + 2dim(V)

))

DDD
...

(x , y)
...

Distillation

AAA

×××

f̂̂f̂f ĉor̂cor̂cor

For each K I

===Walsh

We don’t need to compute any outputs of the first Walsh transform
associated to zeroes in the Walsh spectrum of f

Which means we can prune the first Walsh transform at the output side

20 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Improving the First Walsh Transform Step

N + |KO |2|KO |+l
(
2dim(U) + 2|K

I | (2dim(U) + r2r + 2dim(V)
))

N + l
(
2|K

O | + dim (U) 2dim(U)+2dim(U) + 2|K
I | (2dim(U) + r2r + 2dim(V)

))

DDD
...

(x , y)
...

Distillation

AAA

×××

f̂̂f̂f ĉor̂cor̂cor

For each K I

===

Walsh

We don’t need to compute any outputs of the first Walsh transform
associated to zeroes in the Walsh spectrum of f

Which means we can prune the first Walsh transform at the output side

20 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Improving the First Walsh Transform Step (cont.)

N + l
(
2|K

O | + dim (U) 2dim(U)+2dim(U) + 2|K
I | (2dim(U) + r2r + 2dim(V)

))

l
(
N + dim (U) 2dim(U)+2dim(U) + 2|K

I | (2dim(U) + r2r + 2dim(V)
))

DDD
...

(x , y)
...

Distillation

AAA

Distillation

×××

f̂̂f̂f ĉor̂cor̂cor

For each K I

===

We note that each data pair contributes to exactly one position in A, which
then contributes to exactly one position in each of the compressed arrays

So we can perform the distillation and compression step at the same time,
skipping the construction of the array A

21 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Improving the First Walsh Transform Step (cont.)

N + l
(
2|K

O | + dim (U) 2dim(U)+2dim(U) + 2|K
I | (2dim(U) + r2r + 2dim(V)

))

l
(
N + dim (U) 2dim(U)+2dim(U) + 2|K

I | (2dim(U) + r2r + 2dim(V)
))

DDD
...

(x , y)
...

Distillation

AAA

Distillation ×××

f̂̂f̂f ĉor̂cor̂cor

For each K I

===

We note that each data pair contributes to exactly one position in A, which
then contributes to exactly one position in each of the compressed arrays
So we can perform the distillation and compression step at the same time,
skipping the construction of the array A

21 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Applications and Conclusion

22 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Application to the DES

We propose an attack on the full 16-round DES which is based on (Matsui, 1994)

We cover the last round of Matsui’s 14-round approximation with key recovery
(one key recovery round at the input and two at the output), and leverage the
Walsh spectrum of S5 to keep the time complexity down

We achieve the best known attack in terms of data complexity

Type Data Time Memory Source

Differential 247.00 CP 237.00 O(1) (Biham and Shamir, 1992)
Linear 243.00 KP 239.00 226.00 (Matsui, 1994)
Multiple Linear 242.78 KP 238.86 230.00 (Bogdanov and Vejre, 2017)
Conditional Linear 242.00 KP 242.00 228.00 (Biham and Perle, 2018)
Linear 241.50 KP 242.13 238.75 (Flórez-Gutiérrez, 2022)

23 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Application to 29-round PRESENT-128

We extend the 28-round multiple linear attack on PRESENT-80 of
(Flórez-Gutiérrez and Naya-Plasencia, 2020) by adding an additional key recovery
round (two key recovery rounds at the input and three at the output)

Without Walsh transform pruning, the attack costs at least 2130 operations per
linear approximation, with pruning techniques we manage to keep the cost of the
full attack below 2128 encryptions

Key Rds. Data Time Memory Source

80
27/31

263.8 277.3 248.0 (Bogdanov et al., 2018)
263.4 272.0 244.0 (Flórez-Gutiérrez and Naya-Plasencia, 2020)

28/31 264.0 277.4 251.0 (Flórez-Gutiérrez and Naya-Plasencia, 2020)

128
28/31 264.0 2122 284.6 (Flórez-Gutiérrez and Naya-Plasencia, 2020)

29/31 264.0 2124.06 299.2 (Flórez-Gutiérrez, 2022)

24 / 25

Introduction and Motivation Affine Walsh Transform Pruning Assembling the Attack Applications and Conclusion

Open Problems

Further applications: Differential-linear attacks seem to be good candidates

Development of automatic tools to compute the cost of optimised attacks

Improved use of memory by taking advantage of sparsity and repetition

Applicability to more general linear layers

25 / 25

	Introduction and Motivation
	Linear Key Recovery Attack
	The Walsh Transform Technique
	The Target Problem
	Structure of the Presentation

	Affine Walsh Transform Pruning
	Problem Statement and Complexity Result
	Affine Pruning Example
	Overview of the General Algorithm

	Assembling the Attack
	Walsh Spectrum Example
	Improving the Second Walsh Transform Step
	Improving the First Walsh Transform Step

	Applications and Conclusion
	Application to the DES
	Application to 29-round PRESENT-128
	Open Problems

