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Introduction
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Our contribution
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The most efficient constant-time admissible encoding into a large set of ordinary elliptic curves

m Asingle-squareroot indifferentiable hash function

m Atwo-squareroot point representation algorithm



Hashing to Elliptic Curves
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Many applications require hashing to a cryptographic group (e.g. PAKE schemes, signatures and
anything involving Fiat-Shamir transform).

For elliptic curve groups, this is not straightforward.
E/F,:y* =2 +azx+b

How do we getarandom (z,y) € E(F,)?



Hashing to Elliptic Curves
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Naive constructions:

m Hashtosomex € F, and restartuntily = 3 4 ax + bexists.
Not constant time.

m Hashtosomen € Zy and output P = nG for some generator G € E(F,).
Leaks the discrete log.



Encodings
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The basicidea: start from a hash h to a set .S and compose with an encoding f : .S — E(F,).
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The basicidea: start from a hash h to a set .S and compose with an encoding f : S — E(IF,).

s -1, EF,)

SwiftEC

S« B,

ElligatorSwift



Admissible encodings
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What do we need for f(h(x)) to be a secure hash function?

The resulting construction is secure if f is admissible [BCIMRT10]:
m Computable: f(x) can be evaluated via a deterministic polynomial-time algorithm.

m Regular: forz € F; sampled uniformly, the distribution f(z) is statistically indistinguishable
from uniform.

m Samplable: there exists a PPT algorithm which forany P € E(F,) returns a uniformly random
preimage f 1 (P).



Encoding to a conic

C:z?—y?
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Encoding to a conic
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C:a2?2—y*=1

ty

P1<—>t1



Encoding to a conic
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C:a2?2—y*=1

Py to



Encoding to a conic

C:a2?2—y*=1

This encoding is admissible and one-to-one
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Encoding to Elliptic
Curves
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Encoding to Elliptic Curves
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Shallue-van de Woestijne Encoding [SW06]

Given E : y? = 23 + ax + b := g(x),and some u € F,, we can findamap
v, : C, — V where
Cu: X+ (3u* + 4a)Y? = —g(u)
Vi 2% = g(a1)g(wa)g(as)
given by



Encoding to Elliptic Curves
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Shallue-van de Woestijne Encoding

v, : C,, — V where
Cu: X2+ (3u® 4+ 4a)Y? = —g(u)

V2% = g(@1)g(w2)g(w3)

m We know how to encode to C', (given a fixed point P,)
m Eitheroneorall of g(x;) are squares

m Test quadratic residuocity of each

m Choose x = x1 when all three are squares (arbitrary)

m Computey = +/g(x) from scratch



Shallue-van de Woestijne Encoding

Lo
Cryptography
Research
Centre

o

) select square
E—

fu3 F conicencoding Cu(Fq) & V(Fq E(Fq)

v Simple formulas, constant time

v'Main cost is one square-root (for computing , if needed)
v"Works for almost all elliptic curves and almost all u
XStill not regular



Squared Encoding
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The Squared Encoding [BCIMRT10] construction:
Fu(tla t2) = fu(tl) + fu(t2)
is regular.

v Thisis an admissible encoding for almost every curve
XRequires two evaluations of f;, (two square-roots)
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SwiftEC

Cryptography
Research
Centre

Our construction:

Rather than fixing u, consider
F(u,t) = fu(t).

Over the full (Fq)2 domain, this encoding is admissible and requires only one square-root.
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Computability of SwiftEC

Encoding to the conic C,, requires knowing a fixed point P,
Now it must be computed on the go.

The parametrized projective conic
Cu: X2+ h(u)Y? 4+ g(u)Z> =0

admits a rational point* X (u), Y (u), Z(u) iff:
—hisasquareinFy[u]/(g)
—gisasquareinFy[u]/(h)
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Computability of SwiftEC : )

Inourcase, h(u) = 3u? + 4aand —g(u) = u3 + au + b.

The conditions for Theorem 1 are equivalent to:
q=1 mod 3
The discriminant A := —16(4a3 + 27b?) isasquarein F,
Atleastone of vy := £(—b =+ /—3Af/36)isasquare
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Computability of SwiftEC
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m Compatible curves: P256, secp256k1, aswellas all BN and BLS curvesaslongasq = 1 mod 3.
m Other curves can be rescued by composing with a small isogeny:

m Curve25519 has non-square A g, but there is a compatible 2-isogenous curve
m P521 has non-square vy, but there is a compatible 3-isogenous curve

m Curveswithg Z1 mod 3 cannot be rescued (P384, Ed448-Goldilocks)
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Regularity of SwiftEC
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For the distribution to be close to uniform, we want

_ #Domain ¢
FYz) ~ = ~ 2
#E (@)~ 6 doman #BETF,/2 1
foreach x.
The map F'(u,t) = f,(t) is regularin the sense that
1 ’#F 1
= <E€
o E(F,)/2

for
= (6+o0(1))g '/
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Samplability of SwiftEC

We also introduce the E11igatorSwift algorithm which samples a random preimage
(u,t) € F~1(x).

Recall

x3 = u +4Y2 Cu: X2+ h(u)Y2 = g(u)

2|
(SRS

Pickrandomu € F,andi € {1,2,3}

Try to invert the map x; to recover X, Y (restarting if unable)
Ifall g(x;) are squaresand i # 1, restart

Invert the parametrization of C, to recover ¢

random u,i

(X, Y) conic encode +



Implementation
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Implementation
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We have implemented both SwiftECandElligatorSwift in Sage'.

‘ Add Sqr Mul Jac Inv Sqrt
SwiftEC 25 7 18 2 1 1
X-only proj. SwiftEC | 22 9 23 2 0 0

Thttps://github.com/Jchavezsaab/SwiftEC
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Preimage Distribution

Number of preimages for P10casel
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Mean counts: 2064.001934235977
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Min counts: 1651
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Conclusion



Conclusions
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m SwiftEC is now the most efficient known generic algorithm for constant-time indifferentiable
hashing into most ordinary elliptic curves

m ElligatorSwift is the most efficient generic algorithm for point representation of those curves
m Both improved on the previous state-of-the-art with more than double the performance

Future work:
m Efficient Cimplementation

m Furtherincrease the number of compatible curves
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