DAG- Σ : A DAG-based Sigma Protocol for Relations in CNF

Gongxian Zeng¹ Junzuo Lai² Zhengan Huang¹ Yu Wang¹ Zhiming Zheng^{1,3}

¹Peng Cheng Laboratory, Shenzhen, China

²College of Information Science and Technology, Jinan University, Guangzhou, China

³Institute of Artificial Intelligence, LMIB, NLSDE, Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China

Agenda

- Backgrounds & Motivations
- 2 Contributions
- 3 Construction
- 4 References

- Backgrounds & Motivations
- 2 Contributions
- 3 Construction
- 4 References

Background I: Sigma protocols

 Sigma protocols are popular and widely used as a building block in many cryptographic protocols.

Background II: k-out-of-n

- Proving k-out-of-n partial knowledge is well studied.
 - In 1994, Cramer, Damgård and Schoenmakers [CDS94] showed a general method.
 - Groth and Kohlweiss [GK15] show how to achieve *logarithmic* (in n) communication when k = 1.
 - Attema, Cramer and Fehr [ACF21] achieve logarithmic communication for general k and n in the DL setting.

A relation of k-out-of-n partial knowledge can be informally expressed in disjunctive normal formula (DNF), e.g., when k=2 and n=3,

$$(y_1 \wedge y_2) \vee (y_1 \wedge y_3) \vee (y_2 \wedge y_3),$$

where y_1 , y_2 , y_3 are 3 different statements, and we call $(y_1 \wedge y_2)$, $(y_1 \wedge y_3)$, $(y_2 \wedge y_3)$ 3 Type- \wedge clauses. There are $C_n^k = 3$ clauses, so we call such relations *complete* k-DNF relations.

Motivation I: extensions of k-out-of-n

Given the relation of complete k-DNF (k-out-of-n), e.g., $(y_1 \wedge y_2) \vee (y_1 \wedge y_3) \vee (y_2 \wedge y_3)$, it is nature to consider the extensions.

- incomplete k-DNF, e.g., $(y_1 \wedge y_2) \vee (y_1 \wedge y_3)$ (less than $C_n^k = 3$ Type- \wedge clauses).
- If we reverse the "∧" and "∨", we get a relation like

$$(y_1 \vee y_2) \wedge (y_1 \vee y_3),$$

where we call $(y_1 \lor y_2)$ and $(y_1 \lor y_3)$ are called 2 Type- \lor clauses. The relation is in *conjunctive normal formula (CNF)*, so we can such relations $\underline{k\text{-CNF}}$ relations.

This paper mainly focus on k-CNF relations (in the discrete logarithm setting).

Motivation II: applications

Relations expressed in CNF are an important collection of relations in practice, e.g.,

- many access control policies are naturally set in CNF and they have been discussed in some attribute-based encryption schemes [JK10, LDL11, CT16, Tsa19];
- instances of the k-SAT problem [IP01].

We also provide a potential application here.

A start-up company wants to show the investors a business plan (building at least a shopping mall in every k neighbouring blocks) in a zero-knowledge manner, avoiding the business roadmap being leaked.

Motivation III: problem

To the best of our knowledge, schemes for k-CNF relations:

- Cramer et al.'s scheme [CDS94]. However, it may lead to super-polynomial communication cost.
- Acyclicity program, proposed by Abe et al. [AAB+21], also works for k-CNF relations, but it is designed for non-interactive zero-knowledge proofs (NIZK), not Sigma protocols. More importantly, it seems impossible to transfer their scheme [AAB+21] into a standard Sigma protocol, so acyclicity program [AAB+21] does not have the strengths of Sigma protocols (i.e., low soundness error by design, high efficiency relative to their generic counterparts, and more flexible).

Therefore, a question is raised naturally: *Is it possible to construct a more efficient Sigma protocol for k-CNF relations?*

- Backgrounds & Motivations
- 2 Contributions
- Construction
- 4 References

Contributions

The contributions of this paper are listed as follows:

- We firstly formally define partial knowledge for k-CNF relations. Then, we propose a construction of a Sigma protocol for k-CNF relations in the discrete logarithm (DL) setting, by transferring the k-CNF relations to directed acyclic graphs. Then, we call it DAG-Σ protocol.
- As an extension, we apply our DAG- Σ protocols to construct Sigma protocols for incomplete k-DNF relations in the DL setting, by restricting the choices of statements.
- Finally, we provide an implementation of our DAG- Σ protocol based on elliptic curve groups with key size of 512 bits. It shows that our DAG- Σ protocol saves more than **95%** communication costs and more than **90%** running time, compared with [CDS94], when proving the relations in our experiments.

Theoretical comparison

Table 1: Comparison of some existing protocols (in the DL setting)*

Schemes	Σ?	k-CNF	incomplete k-DNF	complete k-DNF	
[CDS94]	Yes	$O(k \cdot num)(\mathbb{G} + \mathbb{Z}_p^*)$	$O(k \cdot num)(\mathbb{G} + \mathbb{Z}_p^*)$	$O(n)(\mathbb{G} + \mathbb{Z}_p^*)$	
[GK15]**	Yes	\	\	$O(\log n)(\mathbb{G} + \mathbb{Z}_p^*)$	
[AAB ⁺ 20]	Yes	\	$O(n) \mathbb{G} + O(num) \mathbb{Z}_p^* $	$O(n) \mathbb{G} + O(C_n^k) \mathbb{Z}_p^* $	
[AAB ⁺ 21]	No	$O(n)(\mathbb{G} + \mathbb{Z}_n^*)$	\	\	
[ACF21]	Yes	\	\	$O(\log(2n-k)) \mathbb{G} +4\times \mathbb{Z}_p^* $	
[GGHAK21]	Yes	\	\	$O(k \cdot n)^{*} \cdot x^{*}$	
Sec. 5.2	Yes	$O(n-k) \mathbb{G} + O(V) \mathbb{Z}_p^* $	\	$O(k) \mathbb{G} + O(V) \mathbb{Z}_p^* ^{\dagger}$	
Sec. 6 [‡]	Yes	\	$O(n) \mathbb{G} + O(V) \mathbb{Z}_p^* $	\	

^{*} The results here are obtained by trivially applying the corresponding protocols. There are n statements and num clauses in the expression of the k-CNF or (in)complete k-DNF relations, where each clause contains k different statements. V denotes the vertices of the DAG in our DAG- Σ protocol ($|V| \le k \cdot num$, in most cases $|V| \ll k \cdot num$).

^{**} The solution in [GK15] only works for k = 1.

^{*** [}GGHAK21] presents a discussion on this kind of relation and the result is directly obtained from the discussion. It involves a special commitment scheme, so we do not have $|\mathbb{G}|$ and $|\mathbb{Z}_p^*|$ here.

[†] The result is obtained from Remark 1 in the paper.

[‡] Our solution in Sec. 6 only works for special language.

Experimental results I: when k = 4

our DAG- Σ protocol vs. [CDS94] for k-CNF relations

Communication cost when $k = 4 \ (\times 10^4 \ \text{bits})^1$

[CDS94]	Our scheme	ratio
65.54	1.72	97.37% ↓
538.62	4.07	99.24% ↓
1964.03	7.45	99.62% ↓
5160.96	11.90	99.77% ↓
11204.6	17.48	99.84% ↓
37412.9	31.92	99.91% ↓
94310.4	50.92	99.94% ↓
	538.62 1964.03 5160.96 11204.6 37412.9	65.54 1.72 538.62 4.07 1964.03 7.45 5160.96 11.90 11204.6 17.48 37412.9 31.92

Running time when $k = 4 \text{ (s)}^2$

n	\mathcal{P}_1			\mathcal{P}_2			\mathcal{V}_2		
	[CDS94]	Ours	ratio	[CDS94]	Ours	ratio	[CDS94]	Ours	ratio
10	8.91	0.72	91.87% ↓	0.0049	1.40×10^{-4}	97.11% ↓	10.04	0.85	91.56% ↓
15	57.47	1.92	96.66% ↓	0.033	8.63×10^{-4}	97.27% ↓	65.08	2.13	96.72% ↓
20	182.23	3.91	97.85% ↓	0.11	2.20×10^{-3}	97.95% ↓	187.41	4.13	97.80% ↓
25	456.37	6.54	98.57% ↓	0.33	5.97×10^{-3}	98.20% ↓	477.74	6.66	98.61% ↓
30	1046.45	10.09	99.04% ↓	0.63	5.21×10^{-2}	91.78% ↓	1058.25	10.08	99.05% ↓

¹ ratio - 1 - bits of our scheme > 100%

²ratio = 1 = time of our scheme × 100%

Experimental results II: more detailed results

Figure 1: Communication cost

Figure 3: Running time of \mathcal{P}_2

Figure 2: Running time of \mathcal{P}_1

Figure 4: Running time of V_2

- Backgrounds & Motivations
- 2 Contributions
- 3 Construction
- 4 References

Definition of partial knowledge for k-CNF

Let y denote a statement, and $S_k := \{\{i_1, \ldots, i_k\} | 1 \le i_1 < \ldots < i_k \le n, \{i_1, \ldots, i_k\} \subset [n]\}$. Besides, $(x_l, y_l) \in \mathcal{R}_l$ $(l \in [n])$ denotes a valid witness-statement pair belonging to a relation \mathcal{R}_l .

Definition 1 (Partial knowledge for k-CNF)

Given n different statements $(y_l)_{l\in[n]}$, n sub-relations $(\mathcal{R}_l)_{l\in[n]}$, and $S_k'\subseteq S_k$, the prover proves that for all $\{i_1,\ldots,i_k\}\in S_k'$, she knows the witnesses for at least one of y_{i_1},\cdots,y_{i_k} .

The relation can be presented in CNF as follows,

$$\mathcal{R}_{k\text{-CNF},S'_k} = \{ (\mathbf{x}, \mathbf{y}) : \land_{\{i_1, \dots, i_k\} \in S'_k} (\lor_{j \in [k]} (x_{i_j}, y_{i_j}) \in \mathcal{R}_{i_j}) \}, \tag{1}$$

where \mathbf{x} , \mathbf{y} are two *n*-dimension vectors, and $\mathcal{R}_{l_j} \in \{\mathcal{R}_l \mid l \in [n]\}$ is a sub-relation. We denote the relation defined in Eq. (1) as a *k*-CNF relation.

Building block I: kCNFtoDAG (1)

Algorithm kCNFtoDAG is a deterministic algorithm, which transfers k-CNF relations to DAGs. We require that the DAG output by kCNFtoDAG should have the following properties:

- Property-(i): Each node in some path corresponds to a statement in the corresponding Type-∨ clause.
- Property-(ii): The number of paths from the nodes in S^{source} to the nodes in S^{sink} equals the number of Type-∨ clauses in the expression of R_{k-CNF,S'_k}, and the lengths of these paths are k.

A simple method to implement kCNFtoDAG.

$$\textit{E.g.}, \ \mathcal{R}_1 = \{(\textbf{x},\textbf{y}): (\Sigma_1 \vee \Sigma_2 \vee \Sigma_3) \wedge (\Sigma_1 \vee \Sigma_2 \vee \Sigma_4) \wedge (\Sigma_2 \vee \Sigma_3 \vee \Sigma_5) \wedge (\Sigma_3 \vee \Sigma_4 \vee \Sigma_5)\}$$

Figure 5: A simple idea

Figure 6: An example for CNF

Building block I: kCNFtoDAG (2)

A counter example that makes the simple method fail.

$$\mathcal{R}_{2} = \{ (\mathbf{x}, \mathbf{y}) : (\Sigma_{1} \vee \Sigma_{2} \vee \Sigma_{3}) \wedge (\Sigma_{1} \vee \Sigma_{2} \vee \Sigma_{4}) \wedge (\Sigma_{1} \vee \Sigma_{3} \vee \Sigma_{4}) \\ \wedge (\Sigma_{2} \vee \Sigma_{3} \vee \Sigma_{5}) \wedge (\Sigma_{3} \vee \Sigma_{4} \vee \Sigma_{5}) \}$$

$$(2)$$

Figure 8: A fixed graph

Building block I: kCNFtoDAG (3)

kCNFtoDAG: 1) Preparing node; 2) Merging prefixes; 3) Merging suffixes

$$\mathcal{R}_2 = \{ (\textbf{x}, \textbf{y}) : (\Sigma_1 \vee \Sigma_2 \vee \Sigma_3) \wedge (\Sigma_1 \vee \Sigma_2 \vee \Sigma_4) \wedge (\Sigma_1 \vee \Sigma_3 \vee \Sigma_4) \\ \wedge (\Sigma_2 \vee \Sigma_3 \vee \Sigma_5) \wedge (\Sigma_3 \vee \Sigma_4 \vee \Sigma_5) \}$$

Figure 9: Graph after step 1

Figure 11: Merging nodes to e_1

Figure 10: Graph after step 2

Figure 12: Graph after step 3

Building block I: kCNFtoDAG (4)

Theorem 2 (Upper bound of |V|)

Given a k-CNF relation $\mathcal{R}_{k\text{-CNF},S'_k}$ for n statements, the number of vertices |V| in the DAG, output by the above transfer algorithm kCNFtoDAG, satisfies that $|V| \leq \text{Min}(V_{\text{bound}}, (k \cdot num))$, where num is the number of the clauses in the expression of $\mathcal{R}_{k\text{-CNF},S'_k}$, and

$$V_{\text{bound}} = 2^d + 2(n - 2d + 1) + (n - 2d + 2)C_n^{\lfloor \frac{d}{2} \rfloor + 1} \begin{cases} d = k & (2 \le k < \frac{n+1}{2}) \\ d = n - k + 1 \\ (\frac{n+1}{2} \le k \le n - 1) \end{cases}$$

Advantage: it achieves nearly quadratic saving, when comparing the number of vertices in the DAG with the number of statements in the original expression of k-CNF (i.e., $k \cdot num$, where $num \in [1, C_n^k]$).

Building block I: kCNFtoDAG (5)

Another method to analyze the upper bound. Suppose k is an even,

- Prepare two sub-graphs each of which has $C_n^{k/2}$ paths with lengths k/2.
- Then for each clause $(y_1 \lor y_2 \lor \ldots \lor y_k)$, find the corresponding path for $(y_1 \lor \ldots \lor y_{k/2})$ in the sub-graph (1) and find the corresponding path for $(y_{k/2+1} \lor \ldots \lor y_k)$ in the sub-graph (2). After that, we add another arrow between the two paths and form a new path with length k.
- Finally, we remove those paths with length k/2 and get a DAG.

We can check that the obtained DAG satisfies the properties as defined above.

$$|V| \le k/2 \cdot 2 \cdot C_n^{k/2}$$
$$= k \cdot C_n^{k/2}$$

Building block II: 1-out-of-k in DL setting (1)

Let $\mathcal{R}_{1-\mathsf{OR}}$ be a 1-out-of-k relation in the DL setting, i.e.,

$$\mathcal{R}_{1\text{-OR}} = \{ (\mathbf{x}, \mathbf{y}) : y_1 = g^{x_1} \vee \ldots \vee y_k = g^{x_k} \}, \tag{3}$$
 where $\mathbf{x} \in (\mathbb{Z}_p^* \cup \{\bot\})^k \setminus \{(\bot)^k\}$ and $\mathbf{y} \in \mathbb{G}^k$.

Recall Schnorr's Sigma protocol in Fig. 13.

Figure 13: Schnorr's Sigma protocol $\Sigma^{\mathcal{R}}_{\mathsf{Sch}}$

Building block II: 1-out-of-k in DL setting (2)

$$\mathcal{R}_{1\text{-OR}} = \{ (\mathbf{x}, \mathbf{y}) : y_1 = g^{x_1} \lor \dots \lor y_k = g^{x_k} \}$$

$$\mathcal{P}_1 \quad a_1 = g^{z_1}/y_1^{\mathsf{H}(a_2)} \leftarrow \dots \leftarrow a_{\mu} = g^{z_{\mu}}/y_{\mu}^{\mathsf{H}(a_{\mu+1})} \dots \leftarrow a_{k-1} = g^{z_{k-1}}/y_{k-1}^{\mathsf{H}(a_k)} \leftarrow a_k = g^r$$

$$\mathcal{P}_2 \quad \underbrace{a_1' = g^{z_1'}/y_1^{\mathsf{H}(a_2')}}_{a_i = a_i'} \leftarrow \dots \leftarrow a_{\mu}' = g^{z_{\mu}'}/y_{\mu}^{\mathsf{H}(a_{\mu+1}')} \dots \leftarrow a_{k-1}' = g^{z_{k-1}'}/y_{k-1}^{\mathsf{H}(a_k')} \leftarrow a_k' = g^{z_k'}/y_k^c$$

$$\underbrace{a_i' = g^{z_1'}/y_1^{\mathsf{H}(a_2')}}_{a_i = a_i'} \leftarrow \underbrace{a_i' = g^{z_{\mu}'}/y_{\mu}^{\mathsf{H}(a_{\mu+1}')}}_{a_i = a_i'} \cap \underbrace{a_{\mu+1}' \cap \underbrace{a_{\mu+$$

Figure 14: An example of the proof of 1-out-of-k partial knowledge where

- $\mathbf{x} = (x_1, \dots, x_k)$ and $\mathbf{y} = (y_1, \dots, y_k)$ denote the witnesses and statements respectively;
- the witness x_{μ} for statement y_{μ} is known by the prover;
- $H: \mathbb{G} \to \mathbb{Z}_p^*$ is a collision-resistance hash function.

Advantage: the prover \mathcal{P} only needs send one commitment a_1 to the verifier \mathcal{V} .

A DAG-based Sigma protocol $\Sigma_{\mathsf{DAG}}^{\widehat{\mathcal{R}}_{k\mathsf{-CNF},S_k'}^{\mathsf{dl}}}(1)$

A k-CNF relation in DL setting is as follows:

$$\mathcal{R}^{\mathsf{dI}}_{k\text{-CNF},S'_k} = \{(\mathbf{x},\mathbf{y}) : \land_{\{i_1,\dots,i_k\} \in S'_k} (\lor_{j \in [k]} y_{i_j} = g^{x_{i_j}})\},$$

where $\mathbf{x} \in (\mathbb{Z}_p^* \cup \{\bot\})^n \setminus \{(\bot)^n\}$, $\mathbf{y} \in \mathbb{G}^n$, S_k' is defined as previously, and for all $\{i_1, \ldots, i_k\} \in S_k'$, $1 \le i_1 < \ldots < i_k \le n$.

$\Sigma_{\mathsf{DAG}}^{\mathsf{dl}}$:

- 1) run kCNFtoDAG get a DAG;
- 2) run a proving algorithm (similar to that in 1-out-of-k) for each path in the DAG.

A DAG-based Sigma protocol $\Sigma_{\mathsf{DAG}}^{\mathcal{R}^{\mathsf{dl}}_{k\mathsf{-CNF},S'_k}}$ (2)

The difference between the proving algorithm in $\Sigma_{\mathsf{DAG}}^{\mathcal{R}^{\mathsf{dl}}_{k\mathsf{-CNF}},\mathsf{S}'_{k}}$ and that in 1-out-of-k.

$$\mathcal{R}_{1\text{-OR}} \xrightarrow{\mathsf{kCNFtoDAG}} (\& \rightarrow \cdots \rightarrow @ \rightarrow @$$

$$\mathcal{R}_{1-\mathsf{OR}} = \{ (\mathbf{x}, \mathbf{y}) : y_1 = g^{\mathsf{X}_1} \lor \ldots \lor y_k = g^{\mathsf{X}_k} \}$$

$$\mathcal{P}_1 \quad a_1 = g^{\mathsf{Z}_1} / y_1^{\mathsf{H}(a_{\mathsf{Z}_2})} \hookleftarrow \ldots \hookleftarrow a_{\mu} = g^{\mathsf{Z}_{\mu}} / y_{\mu}^{\mathsf{H}(a_{\mu+1})} \ldots \hookleftarrow a_{k-1} = g^{\mathsf{Z}_{k-1}} / y_{k-1}^{\mathsf{H}(a_{k})} \hookleftarrow a_k = g'$$

$$\mathcal{P}_2 \quad \underbrace{a_1' = g^{\mathsf{Z}_1'} / y_1^{\mathsf{H}(a_2')}}_{a_i = a_1' (1 \le i \le \mu)} \smile \cdots \hookleftarrow a_{\mu}' = g^{\mathsf{Z}_{\mu}'} / y_{\mu}^{\mathsf{H}(a_{\mu+1}')} \ldots \hookleftarrow a_{k-1} = g^{\mathsf{Z}_{k-1}'} / y_{k-1}^{\mathsf{H}(a_k')} \hookleftarrow a_k' = g^{\mathsf{Z}_k'} / y_k^c$$

$$\underbrace{(z_1' = z_1 \ , \ \ldots \ , z_{\mu-1}' = z_{\mu-1} \ , \ \left[\underbrace{z_1' = z_1}_{\mu-1} + \underbrace{(\mathsf{H}(a_{\mu+1}') - \mathsf{H}(a_{\mu+1})) z_{\nu}}_{-1} \right], \ z_{\mu+1}' \hookleftarrow \mathbb{Z}_p^* \ , \ \ldots \ , \ z_k' \hookleftarrow \mathbb{Z}_p^* \}$$

Figure 15: An example of the proof of 1-out-of- $\it k$ partial knowledge

A DAG-based Sigma protocol $\Sigma_{\mathsf{DAG}}^{\mathcal{R}_{k\mathsf{-CNF}}^{\mathsf{dl}},S_k'}$ (3)

The difference between the proving algorithm in $\Sigma_{\mathsf{DAG}}^{\mathcal{R}^{\mathsf{dl}}_{k\mathsf{-CNF}},\mathsf{S}'_{k}}$ and that in 1-out-of-k.

$$E.g., \ \mathcal{R}_1 = \{(\textbf{x},\textbf{y}): (\Sigma_1 \vee \Sigma_2 \vee \Sigma_3) \wedge (\Sigma_1 \vee \Sigma_2 \vee \Sigma_4) \wedge (\Sigma_2 \vee \Sigma_3 \vee \Sigma_5) \wedge (\Sigma_3 \vee \Sigma_4 \vee \Sigma_5)\}$$

Then, when we compute the commitment of node \mathfrak{Q} , it depends on the commitments of nodes \mathfrak{P} and \mathfrak{Q} $(\varphi:\{0,1\}^* \to \mathbb{Z}_p^*$ is a collision-resistance hash function and $z_{b_2} \leftarrow \mathbb{Z}_p^*$):

$$a_{b_2} = g^{z_{b_2}}/y_{b_2}^{\varphi(a_{a_3}||a_{a_4})}.$$

Conclusion

Security analysis.

Theorem 3 (Security of
$$\sum_{\mathsf{DAG}}^{\mathcal{R}_{k-\mathsf{CNF},S_k'}^{\mathsf{dl}}}$$
)

If φ is a collision-resistant hash function, $\Sigma_{\mathsf{DAG}}^{\mathcal{R}_{\mathsf{k-CNF}}^{\mathsf{dl}},S'_{\mathsf{k}}}$ provides computational knowledge soundness and is special HVZK.

Communication complexity.

It is clear that there are $|S^{\rm sink}| \leq (n-k+1)$ group elements and (|V|+1) elements in \mathbb{Z}_p^* in the communication of the 3-move Sigma protocol $\Sigma_{\mathsf{DAG}}^{\mathcal{R}_{k-\mathsf{CNF},S'_k}^{\mathsf{dl}}}$. According to the theorem about kCNFtoDAG, $|V| \leq \text{Min}(V_{\text{bound}}, (k \cdot num))$, which implies that $|V| \leq k \cdot num$. Note

that the communication complexity of [CDS94] is $O(k \cdot num)$, so we can draw such a conclusion that the communication complexity of $\Sigma_{\mathsf{DAG}}^{\mathcal{R}_{k-\mathsf{CNF}}^{\mathsf{dl}},\mathsf{S}_{k}'}$

is better than that of [CDS94].

- Backgrounds & Motivations
- 2 Contributions
- Construction
- 4 References

References I

[IP01]

[AAB⁺20] Masayuki Abe, Miguel Ambrona, Andrej Bogdanov, Miyako Ohkubo, and Alon Rosen.

Non-interactive composition of sigma-protocols via share-then-hash.

In ASIACRYPT 2020, pages 749–773. Springer, 2020.

[AAB⁺21] Masayuki Abe, Miguel Ambrona, Andrej Bogdanov, Miyako Ohkubo, and Alon Rosen. Acyclicity programming for sigma-protocols. In TCC 2021, pages 435–465. Springer, 2021.

[ACF21] Thomas Attema, Ronald Cramer, and Serge Fehr. Compressing proofs of k-out-of-n partial knowledge. In CRYPTO 2021, pages 65–91. Springer, 2021.

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of partial knowledge and simplified design of witness hiding protocols. In CRYPTO 1994, pages 174–187. Springer, 1994.

[CT16] Sébastien Canard and Viet Cuong Trinh. Constant-size ciphertext attribute-based encryption from multi-channel broadcast encryption. In ICISS 2016, pages 193–211. Springer, 2016.

[GGHAK21] Aarushi Goel, Matthew Green, Mathias Hall-Andersen, and Gabriel Kaptchuk. Stacking sigmas: A framework to compose σ -protocols for disjunctions. Cryptology ePrint Archive, 2021.

[GK15] Jens Groth and Markulf Kohlweiss. One-out-of-many proofs: Or how to leak a secret and spend a coin. In EUROCRYPT 2015, pages 253–280. Springer, 2015.

On the complexity of k-sat.

Journal of Computer and System Sciences, 62(2):367–375, 2001.

Russell Impagliazzo and Ramamohan Paturi.

References II

[JK10] Pascal Junod and Alexandre Karlov. An efficient public-key attribute-based broadcast encryption scheme allowing arbitrary access policies. In Proceedings of the tenth annual ACM workshop on Digital rights management, pages 13–24, 2010.

[LDL11] Junzuo Lai, Robert H Deng, and Yingjiu Li. Fully secure cipertext-policy hiding cp-abe.

In Information Security Practice and Experience 2011, pages 24-39. Springer, 2011.

[Tsa19] Rotem Tsabary.

Fully secure attribute-based encryption for t-cnf from lwe.

In CRYPTO 2019, pages 62-85. Springer, 2019.

Thanks!