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Background I: Sigma protocols

e Sigma protocols are popular and widely used as a building
block in many cryptographic protocols.
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Background Il: k-out-of-n

e Proving k-out-of-n partial knowledge is well studied.
e In 1994, Cramer, Damgard and Schoenmakers [CDS94] showed
a general method.
e Groth and Kohlweiss [GK15] show how to achieve logarithmic
(in n) communication when k = 1.
e Attema, Cramer and Fehr [ACF21] achieve logarithmic
communication for general k and n in the DL setting.

A relation of k-out-of-n partial knowledge can be informally
expressed in disjunctive normal formula (DNF), e.g., when k =2
and n = 3,

1 Ay2) V(i Ay3)V(v2 Ays),

where y1, y», y3 are 3 different statements, and we call (y1 A y»),
(v1 A y3), (v2 A y3) 3 Type-A clauses. There are CX = 3 clauses, S0 g
we call such relations complete k-DNF relations.




Motivation |: extensions of k-out-of-n

Given the relation of complete k-DNF (k-out-of-n), e.g.,
(yi Ay2) V(y1 Ays) V (y2 Ays), it is nature to consider the
extensions.
e incomplete k-DNF, e.g., (y1 Ay2) V (y1 A y3) (less than
Ck = 3 Type-A clauses).
o If we reverse the “A" and “V", we get a relation like

(i Vy2) A(y1Vy3),

where we call (y1 V y2) and (y1 V y3) are called 2 Type-V
clauses. The relation is in conjunctive normal formula (CNF),
so we can such relations k-CNF relations.

This paper mainly focus on k-CNF relations (in the discrete
logarithm setting).




Motivation Il: applications

Relations expressed in CNF are an important collection of relations
in practice, e.g.,

e many access control policies are naturally set in CNF and they
have been discussed in some attribute-based encryption
schemes [JK10, LDL11, CT16, Tsal9];

e instances of the k-SAT problem [IP01].

We also provide a potential application here.

A start-up company wants to show the investors a business plan
(building at least a shopping mall in every k neighbouring blocks)
in a zero-knowledge manner, avoiding the business roadmap being
leaked.




Motivation Ill: problem

To the best of our knowledge, schemes for k-CNF relations:

e Cramer et al's scheme [CDS94]. However, it may lead to
super-polynomial communication cost.

e Acyclicity program, proposed by Abe et al. [AABT21], also
works for k-CNF relations, but it is designed for
non-interactive zero-knowledge proofs (NIZK), not Sigma
protocols. More importantly, it seems impossible to transfer
their scheme [AAB*21] into a standard Sigma protocol, so
acyclicity program [AAB™21] does not have the strengths of
Sigma protocols (i.e., low soundness error by design, high
efficiency relative to their generic counterparts, and more
flexible).

Therefore, a question is raised naturally: /s it possible to construct
a more efficient Sigma protocol for k-CNF relations?
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Contributions

The contributions of this paper are listed as follows:

e We firstly formally define partial knowledge for k-CNF
relations. Then, we propose a construction of a Sigma
protocol for k-CNF relations in the discrete logarithm (DL)
setting, by transferring the k-CNF relations to directed acyclic
graphs. Then, we call it DAG-X protocol.

e As an extension, we apply our DAG-X protocols to construct
Sigma protocols for incomplete k-DNF relations in the DL
setting, by restricting the choices of statements.

e Finally, we provide an implementation of our DAG-X protocol
based on elliptic curve groups with key size of 512 bits. It
shows that our DAG-X protocol saves more than 95%
communication costs and more than 90% running time,
compared with [CDS94], when proving the relations in our
experiments.




Theoretical comparison

Table 1: Comparison of some existing protocols (in the DL setting)*

Schemes X? k-CNF incomplete k-DNF complete k-DNF

[CDS94] Yes O(k - num)(|G| + \Z; 1) O(k - num)(|G| + |Z; )] o(n)(IG| + |Z; )]

[GK15]**  Yes \ \ O(log n)(IG| + |Z5 )
[AAB*20] Yes \ Oo(n)|G| + O(num)\Z;| o(n)|G| + O(C,’:)\Zm
[AAB*21] No o(n)(IG] + 1Z51)

[ACF21] Yes \ \ O(log(2n — k))|G| + 4 x |Z|
[GGHAK21]  Yes \ \ Ok - m)* * *

Sec. 5.2 Yes O(n*k)‘G“Fo(‘VD‘Z;I \ O(k)\([?w\JrO(\V\)\Z;PL

Sec. 6% Yes \ o(n)|G| + O(v])|Z;] \

* The results here are obtained by trivially applying the corresponding protocols. There
are n statements and num clauses in the expression of the k-CNF or (in)complete k-DNF
relations, where each clause contains k different statements. V denotes the vertices of the
DAG in our DAG-X protocol (|V| < k- num, in most cases |V| < k - num).

** The solution in [GK15] only works for k = 1.

*** [GGHAK21] presents a discussion on this kind of relation and the result is directly
obtained from the discussion. It involves a special commitment scheme, so we do not have
|G| and |Z}] here.

T The result is obtained from Remark 1 in the paper.

¥ Our solution in Sec. 6 only works for special language.




Experimental results |: when k = 4
our DAG-X protocol vs. [CDS94] for k-CNF relations

Communication cost when k = 4 (x10* bits)*

n [CDS94] Our scheme ratio

10 65.54 1.72 97.37% |
15 538.62 4.07 99.24% |
20 1964.03 7.45 99.62% |
25 5160.96 11.90 99.77% |
30 11204.6 17.48 99.84% |
40 37412.9 31.92 99.91% |
50 94310.4 50.92 99.94% |

Running time when k = 4 (s)?

n P1 P2 V2

[CDS94] Ours ratio [CDS94] Ours ratio [CDS94] Ours ratio
10 8.91 0.72 91.87% | 0.0049 1.40x10— % 97.11% | 10.04 0.85 91.56% |
15 57.47 1.92 96.66% . 0.033 8.63x 104 97.27% | 65.08 2.13 96.72% |
20 182.23 3.91 97.85% | 0.11 2.20x1073 97.95% | 187.41 4.13 97.80% |
25 456.37 6.54 98.57% | 0.33 5.97x1073 98.20% | 477.74 6.66 98.61% |
30 1046.45 10.09 99.04% | 0.63 5.21x10~2 91.78% | 1058.25 10.08 99.05% |

1. i
ratio =1 — 7b'éft:2?'fégcs";ﬁ‘e X 100%
2ratio — 1 — time of our scheme x 100%.

time of [CDS94]
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Figure 3: Running time of P,

Experimental results |I: more detailed results
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Figure 2: Running time of P;
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Definition of partial knowledge for k-CNF

Let y denote a statement, and Sx := {{i,..., ik}
1<ih<...<ix<n{i,...,ix} C[n]}. Besides, (x,y1) € Rs (I €[n])
denotes a valid witness-statement pair belonging to a relation R;.

Definition 1 (Partial knowledge for k-CNF)

Given n different statements (y;);c[n, n sub-relations (R)c[q), and
S, € Sk, the prover proves that for all {i,..., ik} € S}, she knows the
witnesses for at least one of y;, -+, ;.

The relation can be presented in CNF as follows,
Rienks;, = 1Y) Adir,ies; (View (Xi vi) € Ri)} (1)

where x, y are two n-dimension vectors, and R, € {R; | | € [n]}
is a sub-relation. We denote the relation defined in Eq. (1) as a k-CNF
relation.




Building block I: kCNFtoDAG (1)

Algorithm kCNFtoDAG is a deterministic algorithm, which transfers k-CNF
relations to DAGs. We require that the DAG output by kCNFtoDAG should
have the following properties:
® Property-(i): Each node in some path corresponds to a statement in the
corresponding Type-V clause.
e Property-(ii): The number of paths from the nodes in 5" to the
nodes in $5™ equals the number of Type-V clauses in the expression of
Rk—CNF,S,’(v and the lengths of these paths are k.

A simple method to implement kCNFtoDAG.

Eg, Ri={xy): (F1VE2VE)A(E1 VI VE)A(T2VE3V Es) A (S3V 4V Es)}

Figure 5: A simple idea Figure 6: An example for CNF




Building block I: kCNFtoDAG (2)

A counter example that makes the simple method fail.

Ro={(xy): (Z1VEVI)A(Z1 VI VI A (X1 VI3V Xy)
A (Zz VsV 25) A (23 VsV 25)}

Figure 7: A counter example

Figure 8: A fixed graph

)




Building block I: kCNFtoDAG (3)

kCNFtoDAG: 1) Preparing node; 2) Merging prefixes; 3) Merging suffixes

Ro = {(X,y) : (21 VsV 23) AN (21 VIV 24) A (Zl Vi3V :4)
A(Z2VE3VEs)A(E3VEsVIs)}

Figure 9: Graph after step 1

Figure 10: Graph after step 2
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Figure 11: Merging nodes to e;

Figure 12: Graph after step 3




Building block I: kCNFtoDAG (4)

Theorem 2 (Upper bound of |V])

Given a k-CNF relation Rk-CNF,SL for n statements, the number of
vertices | V| in the DAG, output by the above transfer algorithm
kCNFtoDAG, satisfies that |V| < Min(Vbound, (k - num)), where
num is the number of the clauses in the expression Oka—CNF,SL'

and
dek @<k< Dy
d 14]+1 2
Vbound:2 +2(n_2d+1)+(n—2d+2)cn d=n—k+1
n+1 <k<n—1)

=

Advantage: it achieves nearly quadratic saving, when comparing
the number of vertices in the DAG with the number of statements
in the original expression of k-CNF (i.e., k - num, where
num € [1, CK]).




Building block I: kCNFtoDAG (5)

Another method to analyze the upper bound.
Suppose k is an even,

e Prepare two sub-graphs each of which has
C,’f/2 paths with lengths k/2.

e Then for each clause (y1 Vy2 V...V yk),
find the corresponding path for
(y1 V...V y2) in the sub-graph (1) and
find the corresponding path for
(Ykj241 V - .- V yk) in the sub-graph (2). Sub-graph (1) Sub-graph (2)
After that, we add another arrow between e.gon="06k=4,(y1Vy2VysVuye)
the two paths and form a new path with
length k.

k/2
e Finally, we remove those paths with length V< kj2-2- Cn/
k/2 and get a DAG. — k. k2
=k-C,

We can check that the obtained DAG satisfies
the properties as defined above.




Building block II: 1-out-of-k in DL setting (1)

Let Ri.0r be a l-out-of-k relation in the DL setting, i.e.,

Rior={(x,y): 1 =8"V...Vyk=g"}, (3)
where x € (Z; U{L})*\ {(L)*} and y € G*.

Recall Schnorr's Sigma protocol in Fig. 13.

Standard mode: Wa(y, a, ¢, z): Chameleon mode:
(1) Pi(L,y) 3 —g?/y° (1) Pi(L, y):
reZp a<g' Return (a’;a) ¢ 7y
Send atoV r%ZI’;,aegr/yc/
) Vl(a)*: Simulator Sim(y, c): //Zgih.Sim(y, )
§e<n_chptoP z+ Ly, a<—g*/y° Send a to V
3) Pa(a c,x,y) Return (a, z) (2) Vi(a):
( z<—2r’+’cx7 c<—/Z;§,Se,ndct0P
Send z to V (3) Pa(arc, ' x,y):

z+r+(c—c)x
Send z to V

Figure 13: Schnorr's Sigma protocol £,




Building block II: 1-out-of-k in DL setting (2)

Rior ={(xy):y1 =g1V...Vy =gk}
H H(a, 1) H(a,

Proay =gy e =gy, Y e = gzk“/yk(_{) —a=g

7 H(3b) 2 H(, 1) z H(a) /
Pr o al=g/yy 2 ma, =gy, T A =gk y e =gk

aj=al(1<i<p)
| A

(zr=21, - vZZL71 =Zu—1; LZ,IL =2z + (H(“’:L+1) - H(a,qul))Xqu Z;H-l A Z; I ZI’( - Z;)

Figure 14: An example of the proof of 1-out-of-k partial knowledge

where

® x=(xy,...,x¢) and y = (y1,...,yk) denote the witnesses and
statements respectively;

e the witness x,, for statement y,, is known by the prover;
e H:G — Z;‘; is a collision-resistance hash function.

Advantage: the prover P only needs send one commitment a; to the
verifier V.




di
Rk»CNF.SL

A DAG-based Sigma protocol X, " (1)

A k-CNF relation in DL setting is as follows:
dl . i;
Ricenes, = {6 Y) 1 Ay, ies, (View vi = &7}

where x € (Zy U{L})"\ {(L)"}, y € G", S is defined as
previously, and for all {i,..., ik} € S5, 1<ii <...<ix <n.

dl
Rk»CNF,S,’(

zDAG
1) run kCNFtoDAG get a DAG;
2) run a proving algorithm (similar to that in 1-out-

of-k) for each path in the DAG.




Rdl

A DAG-based Sigma protocol ZD,:ENF k (2)

RzlcmF Sy
The difference between the proving algorithm in X,

and that in 1-out-of-k.

KCNFtoDAG
e

Ri-or ®—=—=0—-0

Rior = {(xy) iy =1 V...Vy =gk}

H H(a; 1) a
Proa =g/ e =gy Y e e = g 1/y ")<—ak=g'

/ /
(a5) , 2, H(a, ) z (al) /
Py al—gzl/y1 2 A, =gy, H ok a_ =gk l/yk—f — a =gk [y
aj=al(1<i<p)
’ ’ T T Y SN a ’
(zi=2z1, - o,z 1 =2z4-1, Z :Zp,+(H(3!L‘1)7H(3‘L+1))X57 z 41 <—Z ez HZ;)




Rdl

A DAG-based Sigma protocol ZD:\SNFS ©)

dl
!
The difference between the proving algorithm in ZD,:GCNF %k

and that in 1-out-of-k.

E.g,’ R1 :{(X,y) : (Z]_VZgVZg;)/\(Zl\/22\/24)/\(22VZ3VZ5)/\(Z3\/Z4\/Z5)}

kCNFtoDAG
Ry 2 () (e (e
(b (b b
@ @ (@

5 4 3 2 1
Then, when we compute the commitment of node §), it depends on the

commitments of nodes @ and @ (¢ : {0,1}* — Z7 is a
collision-resistance hash function and z,, < Zy):

— gzb2 /y;’;(aagl‘aa‘;).



Conclusion

Security analysis.

7'7d
k-CNF, s’
‘)

Theorem 3 (Security of Xyac

dl
/

R
If ¢ is a collision-resistant hash function, ZDKENF’S" provides
computational knowledge soundness and is special HVZK.

Communication complexity.

It is clear that there are |S"| < (n — k + 1) group elements and
(|V|+ 1) elements in Z in the communication of the 3-move Sigma

Rdl ,
protocol ZD,:ENF’Sk. According to the theorem about kCNFtoDAG,
[V| < Min(Vbound, (k - num)), which implies that |V| < k - num. Note
that the communication complexity of [CDS94] is O(k - num), so we can

kCNF s, & :
draw such a conclusion that the communication complexity of ¥,

is better than that of [CDS94].
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