DAG-X: A DAG-based Sigma Protocol for

Relations in CNF

Gongxian Zeng! Junzuo Lai® Zhengan Huang?
Yu Wang! Zhiming Zheng!?3

IPeng Cheng Laboratory, Shenzhen, China

2College of Information Science and Technology, Jinan University,
Guangzhou, China

3Institute of Artificial Intelligence, LMIB, NLSDE,
Beijing Advanced Innovation Center for Future Blockchain and Privacy
Computing, Beihang University, Beijing, China

@ Backgrounds & Motivations
@® Contributions
© Construction

O References

@ Backgrounds & Motivations

Background I: Sigma protocols

e Sigma protocols are popular and widely used as a building
block in many cryptographic protocols.

Input: 8 Relation: 8 Input:
statement ¥ Jr:(z,y) €R statement ¥

Witness & prover P Verifier V
P1
Proof
Generation

P2

Background Il: k-out-of-n

e Proving k-out-of-n partial knowledge is well studied.
e In 1994, Cramer, Damgard and Schoenmakers [CDS94] showed
a general method.
e Groth and Kohlweiss [GK15] show how to achieve logarithmic
(in n) communication when k = 1.
e Attema, Cramer and Fehr [ACF21] achieve logarithmic
communication for general k and n in the DL setting.

A relation of k-out-of-n partial knowledge can be informally
expressed in disjunctive normal formula (DNF), e.g., when k =2
and n = 3,

1 Ay2) V(i Ay3)V(v2 Ays),

where y1, y», y3 are 3 different statements, and we call (y1 A y»),
(v1 A y3), (v2 A y3) 3 Type-A clauses. There are CX = 3 clauses, S0 g
we call such relations complete k-DNF relations.

Motivation |: extensions of k-out-of-n

Given the relation of complete k-DNF (k-out-of-n), e.g.,
(yi Ay2) V(y1 Ays) V (y2 Ays), it is nature to consider the
extensions.
e incomplete k-DNF, e.g., (y1 Ay2) V (y1 A y3) (less than
Ck = 3 Type-A clauses).
o If we reverse the “A" and “V", we get a relation like

(i Vy2) A(y1Vy3),

where we call (y1 V y2) and (y1 V y3) are called 2 Type-V
clauses. The relation is in conjunctive normal formula (CNF),
so we can such relations k-CNF relations.

This paper mainly focus on k-CNF relations (in the discrete
logarithm setting).

Motivation Il: applications

Relations expressed in CNF are an important collection of relations
in practice, e.g.,

e many access control policies are naturally set in CNF and they
have been discussed in some attribute-based encryption
schemes [JK10, LDL11, CT16, Tsal9];

e instances of the k-SAT problem [IP01].

We also provide a potential application here.

A start-up company wants to show the investors a business plan
(building at least a shopping mall in every k neighbouring blocks)
in a zero-knowledge manner, avoiding the business roadmap being
leaked.

Motivation Ill: problem

To the best of our knowledge, schemes for k-CNF relations:

e Cramer et al's scheme [CDS94]. However, it may lead to
super-polynomial communication cost.

e Acyclicity program, proposed by Abe et al. [AABT21], also
works for k-CNF relations, but it is designed for
non-interactive zero-knowledge proofs (NIZK), not Sigma
protocols. More importantly, it seems impossible to transfer
their scheme [AAB*21] into a standard Sigma protocol, so
acyclicity program [AAB™21] does not have the strengths of
Sigma protocols (i.e., low soundness error by design, high
efficiency relative to their generic counterparts, and more
flexible).

Therefore, a question is raised naturally: /s it possible to construct
a more efficient Sigma protocol for k-CNF relations?

@® Contributions

Contributions

The contributions of this paper are listed as follows:

e We firstly formally define partial knowledge for k-CNF
relations. Then, we propose a construction of a Sigma
protocol for k-CNF relations in the discrete logarithm (DL)
setting, by transferring the k-CNF relations to directed acyclic
graphs. Then, we call it DAG-X protocol.

e As an extension, we apply our DAG-X protocols to construct
Sigma protocols for incomplete k-DNF relations in the DL
setting, by restricting the choices of statements.

e Finally, we provide an implementation of our DAG-X protocol
based on elliptic curve groups with key size of 512 bits. It
shows that our DAG-X protocol saves more than 95%
communication costs and more than 90% running time,
compared with [CDS94], when proving the relations in our
experiments.

Theoretical comparison

Table 1: Comparison of some existing protocols (in the DL setting)*

Schemes X? k-CNF incomplete k-DNF complete k-DNF

[CDS94] Yes O(k - num)(|G| + \Z; 1) O(k - num)(|G| + |Z;)] o(n)(IG| + |Z;)]

[GK15]** Yes \ \ O(log n)(IG| + |Z5)
[AAB*20] Yes \ Oo(n)|G| + O(num)\Z;| o(n)|G| + O(C,’:)\Zm
[AAB*21] No o(n)(IG] + 1Z51)

[ACF21] Yes \ \ O(log(2n — k))|G| + 4 x |Z|
[GGHAK21] Yes \ \ Ok - m)* * *

Sec. 5.2 Yes O(n*k)‘G“Fo(‘VD‘Z;I \ O(k)\([?w\JrO(\V\)\Z;PL

Sec. 6% Yes \ o(n)|G| + O(v])|Z;] \

* The results here are obtained by trivially applying the corresponding protocols. There
are n statements and num clauses in the expression of the k-CNF or (in)complete k-DNF
relations, where each clause contains k different statements. V denotes the vertices of the
DAG in our DAG-X protocol (|V| < k- num, in most cases |V| < k - num).

** The solution in [GK15] only works for k = 1.

*** [GGHAK21] presents a discussion on this kind of relation and the result is directly
obtained from the discussion. It involves a special commitment scheme, so we do not have
|G| and |Z}] here.

T The result is obtained from Remark 1 in the paper.

¥ Our solution in Sec. 6 only works for special language.

Experimental results |: when k = 4
our DAG-X protocol vs. [CDS94] for k-CNF relations

Communication cost when k = 4 (x10* bits)*

n [CDS94] Our scheme ratio

10 65.54 1.72 97.37% |
15 538.62 4.07 99.24% |
20 1964.03 7.45 99.62% |
25 5160.96 11.90 99.77% |
30 11204.6 17.48 99.84% |
40 37412.9 31.92 99.91% |
50 94310.4 50.92 99.94% |

Running time when k = 4 (s)?

n P1 P2 V2

[CDS94] Ours ratio [CDS94] Ours ratio [CDS94] Ours ratio
10 8.91 0.72 91.87% | 0.0049 1.40x10— % 97.11% | 10.04 0.85 91.56% |
15 57.47 1.92 96.66% . 0.033 8.63x 104 97.27% | 65.08 2.13 96.72% |
20 182.23 3.91 97.85% | 0.11 2.20x1073 97.95% | 187.41 4.13 97.80% |
25 456.37 6.54 98.57% | 0.33 5.97x1073 98.20% | 477.74 6.66 98.61% |
30 1046.45 10.09 99.04% | 0.63 5.21x10~2 91.78% | 1058.25 10.08 99.05% |

1. i
ratio =1 — 7b'éft:2?'fégcs";ﬁ‘e X 100%
2ratio — 1 — time of our scheme x 100%.

time of [CDS94]

CDS Ours

102 M [Jn=50_]n=40]

i] [1n=30[__|n=25|

7104 H i Edness
R
81074

10ﬁi g

10*]

456789
k

Figure 1: Communication cost

4567 89

=~

Ours

—=—n=10 —=— n=15|
10°4—|——n=20—+—n=25
—+—n=30

v
:////‘
b

4 5 6 7 8
k

4 5 6 7 8
k

Figure 3: Running time of P,

Experimental results |I: more detailed results

CDs Ours Ours(+KCNFtoDAG)
10
—=—n=10 —e—n=15

10%4 —v—n=25
T 10 () . »
o
£
F 10'y

e e
10° O O
10?
45678 45678 45678
k k k

Figure 2: Running time of P;

CDS

Ours Ours(+kCNFtoDAG)

10*
—=—n=10——n=15|
10%4 —|——n=20—+—n=25
|—+—n=30
Rl e
Iy i ﬁ
£
F 104
e e
10° 0 0
10"
45678 45678 45678
k k k

Figure 4: Running time of V,

© Construction

Definition of partial knowledge for k-CNF

Let y denote a statement, and Sx := {{i,..., ik}
1<ih<...<ix<n{i,...,ix} C[n]}. Besides, (x,y1) € Rs (I €[n])
denotes a valid witness-statement pair belonging to a relation R;.

Definition 1 (Partial knowledge for k-CNF)

Given n different statements (y;);c[n, n sub-relations (R)c[q), and
S, € Sk, the prover proves that for all {i,..., ik} € S}, she knows the
witnesses for at least one of y;, -+, ;.

The relation can be presented in CNF as follows,
Rienks;, = 1Y) Adir,ies; (View (Xi vi) € Ri)} (1)

where x, y are two n-dimension vectors, and R, € {R; | | € [n]}
is a sub-relation. We denote the relation defined in Eq. (1) as a k-CNF
relation.

Building block I: kCNFtoDAG (1)

Algorithm kCNFtoDAG is a deterministic algorithm, which transfers k-CNF
relations to DAGs. We require that the DAG output by kCNFtoDAG should
have the following properties:
® Property-(i): Each node in some path corresponds to a statement in the
corresponding Type-V clause.
e Property-(ii): The number of paths from the nodes in 5" to the
nodes in $5™ equals the number of Type-V clauses in the expression of
Rk—CNF,S,’(v and the lengths of these paths are k.

A simple method to implement kCNFtoDAG.

Eg, Ri={xy): (F1VE2VE)A(E1 VI VE)A(T2VE3V Es) A (S3V 4V Es)}

Figure 5: A simple idea Figure 6: An example for CNF

Building block I: kCNFtoDAG (2)

A counter example that makes the simple method fail.

Ro={(xy): (Z1VEVI)A(Z1 VI VI A (X1 VI3V Xy)
A (Zz VsV 25) A (23 VsV 25)}

Figure 7: A counter example

Figure 8: A fixed graph

)

Building block I: kCNFtoDAG (3)

kCNFtoDAG: 1) Preparing node; 2) Merging prefixes; 3) Merging suffixes

Ro = {(X,y) : (21 VsV 23) AN (21 VIV 24) A (Zl Vi3V :4)
A(Z2VE3VEs)A(E3VEsVIs)}

Figure 9: Graph after step 1

Figure 10: Graph after step 2

® © 0
%@/
@

(%)

s 4

2 1

®
o
& & ®
®
o
& & @

() fo
Q)

2 1

Figure 11: Merging nodes to e;

Figure 12: Graph after step 3

Building block I: kCNFtoDAG (4)

Theorem 2 (Upper bound of |V])

Given a k-CNF relation Rk-CNF,SL for n statements, the number of
vertices | V| in the DAG, output by the above transfer algorithm
kCNFtoDAG, satisfies that |V| < Min(Vbound, (k - num)), where
num is the number of the clauses in the expression Oka—CNF,SL'

and
dek @<k< Dy
d 14]+1 2
Vbound:2 +2(n_2d+1)+(n—2d+2)cn d=n—k+1
n+1 <k<n—1)

=

Advantage: it achieves nearly quadratic saving, when comparing
the number of vertices in the DAG with the number of statements
in the original expression of k-CNF (i.e., k - num, where
num € [1, CK]).

Building block I: kCNFtoDAG (5)

Another method to analyze the upper bound.
Suppose k is an even,

e Prepare two sub-graphs each of which has
C,’f/2 paths with lengths k/2.

e Then for each clause (y1 Vy2 V...V yk),
find the corresponding path for
(y1 V...V y2) in the sub-graph (1) and
find the corresponding path for
(Ykj241 V - .- V yk) in the sub-graph (2). Sub-graph (1) Sub-graph (2)
After that, we add another arrow between e.gon="06k=4,(y1Vy2VysVuye)
the two paths and form a new path with
length k.

k/2
e Finally, we remove those paths with length V< kj2-2- Cn/
k/2 and get a DAG. — k. k2
=k-C,

We can check that the obtained DAG satisfies
the properties as defined above.

Building block II: 1-out-of-k in DL setting (1)

Let Ri.0r be a l-out-of-k relation in the DL setting, i.e.,

Rior={(x,y): 1 =8"V...Vyk=g"}, (3)
where x € (Z; U{L})*\ {(L)*} and y € G*.

Recall Schnorr's Sigma protocol in Fig. 13.

Standard mode: Wa(y, a, ¢, z): Chameleon mode:
(1) Pi(L,y) 3 —g?/y° (1) Pi(L, y):
reZp a<g' Return (a’;a) ¢ 7y
Send atoV r%ZI’;,aegr/yc/
) Vl(a)*: Simulator Sim(y, c): //Zgih.Sim(y,)
§e<n_chptoP z+ Ly, a<—g*/y° Send a to V
3) Pa(a c,x,y) Return (a, z) (2) Vi(a):
(z<—2r’+’cx7 c<—/Z;§,Se,ndct0P
Send z to V (3) Pa(arc, ' x,y):

z+r+(c—c)x
Send z to V

Figure 13: Schnorr's Sigma protocol £,

Building block II: 1-out-of-k in DL setting (2)

Rior ={(xy):y1 =g1V...Vy =gk}
H H(a, 1) H(a,

Proay =gy e =gy, Y e = gzk“/yk(_{) —a=g

7 H(3b) 2 H(, 1) z H(a) /
Pr o al=g/yy 2 ma, =gy, T A =gk y e =gk

aj=al(1<i<p)
| A

(zr=21, - vZZL71 =Zu—1; LZ,IL =2z + (H(“’:L+1) - H(a,qul))Xqu Z;H-l A Z; I ZI’(- Z;)

Figure 14: An example of the proof of 1-out-of-k partial knowledge

where

® x=(xy,...,x¢) and y = (y1,...,yk) denote the witnesses and
statements respectively;

e the witness x,, for statement y,, is known by the prover;
e H:G — Z;‘; is a collision-resistance hash function.

Advantage: the prover P only needs send one commitment a; to the
verifier V.

di
Rk»CNF.SL

A DAG-based Sigma protocol X, " (1)

A k-CNF relation in DL setting is as follows:
dl . i;
Ricenes, = {6 Y) 1 Ay, ies, (View vi = &7}

where x € (Zy U{L})"\ {(L)"}, y € G", S is defined as
previously, and for all {i,..., ik} € S5, 1<ii <...<ix <n.

dl
Rk»CNF,S,’(

zDAG
1) run kCNFtoDAG get a DAG;
2) run a proving algorithm (similar to that in 1-out-

of-k) for each path in the DAG.

Rdl

A DAG-based Sigma protocol ZD,:ENF k (2)

RzlcmF Sy
The difference between the proving algorithm in X,

and that in 1-out-of-k.

KCNFtoDAG
e

Ri-or ®—=—=0—-0

Rior = {(xy) iy =1 V...Vy =gk}

H H(a; 1) a
Proa =g/ e =gy Y e e = g 1/y ")<—ak=g'

/ /
(a5) , 2, H(a,) z (al) /
Py al—gzl/y1 2 A, =gy, H ok a_ =gk l/yk—f — a =gk [y
aj=al(1<i<p)
’ ’ T T Y SN a ’
(zi=2z1, - o,z 1 =2z4-1, Z :Zp,+(H(3!L‘1)7H(3‘L+1))X57 z 41 <—Z ez HZ;)

Rdl

A DAG-based Sigma protocol ZD:\SNFS ©)

dl
!
The difference between the proving algorithm in ZD,:GCNF %k

and that in 1-out-of-k.

E.g,’ R1 :{(X,y) : (Z]_VZgVZg;)/\(Zl\/22\/24)/\(22VZ3VZ5)/\(Z3\/Z4\/Z5)}

kCNFtoDAG
Ry 2 () (e (e
(b (b b
@ @ (@

5 4 3 2 1
Then, when we compute the commitment of node §), it depends on the

commitments of nodes @ and @ (¢ : {0,1}* — Z7 is a
collision-resistance hash function and z,, < Zy):

— gzb2 /y;’;(aagl‘aa‘;).

Conclusion

Security analysis.

7'7d
k-CNF, s’
‘)

Theorem 3 (Security of Xyac

dl
/

R
If ¢ is a collision-resistant hash function, ZDKENF’S" provides
computational knowledge soundness and is special HVZK.

Communication complexity.

It is clear that there are |S"| < (n — k + 1) group elements and
(|V|+ 1) elements in Z in the communication of the 3-move Sigma

Rdl ,
protocol ZD,:ENF’Sk. According to the theorem about kCNFtoDAG,
[V| < Min(Vbound, (k - num)), which implies that |V| < k - num. Note
that the communication complexity of [CDS94] is O(k - num), so we can

kCNF s, & :
draw such a conclusion that the communication complexity of ¥,

is better than that of [CDS94].

O References

efe

[AABT20]

[AABT21]

[ACF21]

[CDS94]

[CT16]

[GGHAK21]

[GK15]

[I1PO1]

ces |

Masayuki Abe, Miguel Ambrona, Andrej Bogdanov, Miyako Ohkubo, and Alon Rosen.
Non-interactive composition of sigma-protocols via share-then-hash.
In ASIACRYPT 2020, pages 749-773. Springer, 2020.

Masayuki Abe, Miguel Ambrona, Andrej Bogdanov, Miyako Ohkubo, and Alon Rosen.
Acyclicity programming for sigma-protocols.
In TCC 2021, pages 435—-465. Springer, 2021

Thomas Attema, Ronald Cramer, and Serge Fehr.
Compressing proofs of k-out-of-n partial knowledge.
In CRYPTO 2021, pages 65-91. Springer, 2021

Ronald Cramer, Ivan Damgard, and Berry Schoenmakers.
Proofs of partial knowledge and simplified design of witness hiding protocols.
In CRYPTO 1994, pages 174-187. Springer, 1994.

Sébastien Canard and Viet Cuong Trinh.
Constant-size ciphertext attribute-based encryption from multi-channel broadcast encryption.
In ICISS 2016, pages 193-211. Springer, 2016.

Aarushi Goel, Matthew Green, Mathias Hall-Andersen, and Gabriel Kaptchuk.
Stacking sigmas: A framework to compose o-protocols for disjunctions.
Cryptology ePrint Archive, 2021.

Jens Groth and Markulf Kohlweiss.
One-out-of-many proofs: Or how to leak a secret and spend a coin.
In EUROCRYPT 2015, pages 253-280. Springer, 2015

Russell Impagliazzo and Ramamohan Paturi.
On the complexity of k-sat.
Journal of Computer and System Sciences, 62(2):367-375, 2001

erences ||

[JK10]

[LDL11]

[Tsa19]

Pascal Junod and Alexandre Karlov.
An efficient public-key attribute-based broadcast encryption scheme allowing arbitrary access policies.
In Proceedings of the tenth annual ACM workshop on Digital rights management, pages 13—-24, 2010

Junzuo Lai, Robert H Deng, and Yingjiu Li.
Fully secure cipertext-policy hiding cp-abe.
In Information Security Practice and Experience 2011, pages 24-39. Springer, 2011

Rotem Tsabary.
Fully secure attribute-based encryption for t-cnf from lwe.
In CRYPTO 2019, pages 62-85. Springer, 2019.

T ernds

	Backgrounds & Motivations
	Contributions
	Construction
	References

