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Zero-Knowledge Argument of Knowledge

Prover P Verifier V

(Lo ,z

e P(Sp, X: W) No leak info. about w 0/1 V(SV, X, 7)

R={x;w):px,w) =1}
« Completeness : If (X; w) € R, P can convince V (V outputs 1)

« Knowledge Soundness : Without knowledge of w, P’ cannot convince V (V outputs 0)

« Zero-knowledge : The proof z reveal no information except P’s knowledge of w with (X; w) € R

 We call an argument is transparent if the argument does not require trusted third party for
generating common reference string



Inner Product Argument, IPA

« Argument of Knowledge(AoK) of two vectors a,b & Z]}\,’ for their inner product relation

e Transparent IPA with logarithm communication : [BCC+16], [BP-IP, BBB+18]

* Application Ryp = {(gh € GV, u,P € G;a,b € 7)) : P = g*hPu'®)

° ZK-Hange proof Relation for BP-IP

e /KA for Arithmetic Circuits

 /ZK-Polynomial Commitment Scheme

e There is a reduction from ZKA for AC to IPA

* We focus on BP-IP and its variant for constructing ZKA

[BCC+16] : "Efficient Zero-Knowledge Arguments for Arithmetic Circuits in the discrete log setting”, EUROCRYPTO 2016
[BBB+18] : “Bulletproofs: Short Proofs for Confidential Transactions and More”, S&P 2018
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Contribution

We propose three transparent |IPAs :
* Protocol2 : The first IPA with sublogarithmic communication.
* Protocol3 : The first IPA with sublinear verifier under DL assumption.

* Protocol4 : Introduce a novel method to achieve the sublinear verifier IPA w/o pairing
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Protocol2 :
Sublogarithmic Communication



Observation 1 : Communication of BP-IP

* Key idea of logarithm communication : Withess Reduction
» Halve witness vectors a, b and update to a, b recursively b=b, |l bg

R Reduction i

N
. A:=xa; +x” aR€Z2 b:=x""b, +xby € Z;
* P should send commitments to “cross terms” per round

» Total communication = total rounds x each reduction cost :log, N X2 = 2log, N

Inner Product Relation of 4, b

(,b) =[(a,b)|+ xT(a, by)|+ xag b,)

Parallel term Cross terms
V needs commitment to these terms
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Generalization of BP-IP

 How about reducing witness vectors more shortly?
» Construct generalized BP-IP : 2n-partition technique

» Decrease total round to log, /N but each reduction cost may increase

winess L |

Reduction :l BP-|P
[ a ] » Length : N/2
Length : N :l

Length : N/(2n)

(Generalization



1st Generalization of BP-IP

- Parse witness vectors a, b to 2n subvectors a;, b, and update to a, b respectively

; i 5 T ~i 2
* P should send commitments to “cross terms”, 2n(2n — 1) group elements per round
* For constructing commitments to “cross terms”, P computes O(n/N') exponentiation

e Total communication : log,, N X 2n(2n — 1)

« n = 1 is optimal value of total communication, there is no merit to use 2n-partition technique

Cross terms
V needs commitments of each terms




Protocol1 : Commit-and-Prove approach

» P sends a short commitment com(v) rather than sending 2n(2n — 1) group elements v,
« Without v, V cannot update instance P. How to construct a reduction protocol?

. Solution : P sends P with proof 7,4 after receiving challenge x « Z,

Vo

» Ty - Proof of knowledge v such that P = v* (X is public)

 Multi Exponent Argument(MEA) : Construct similar way to IPA, based commitment : [AFG+106]

v com(V)
> >
X
< i V < Vv
A P,y pa
P,V Compute P and go to next round g

V checks 7,4, and go to next round
Generalized BP Protocol 1

[AFG+106] : "Structure-Preserving Signatures and Commitments to Group Elements”, Journal of Cryptology, 2016
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Protocol2 : Aggregation technique

» For each rounds, P sends com(v), P, 74 Whose size is O(log n)

» Total Communication : log,, N X O(logn) = O(log N)
* |n terms of communication complexity, Protocoll is the same as BP-IP

* Jo reduce communication cost more, we apply Aggregation technique

* Aggregation technique : Generating one aggregated Proof for multiple relations

Aggregate
o G
» o

e _Giwo eR

Multi proofs for relation R One aggregated proof
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Protocol2, Sublogarithm Communication

Protocol 1

Round 1 com(V), P TMEA

Round 2 com(v), P Ty

Round 3 com(v), P T\EA

l oo l<—l<—l

TAIEA

Round log,, N | com(v),P



Protocol2, Sublogarithm Communication

Protocol 2

Round 3 com(v), P

l<—l

A\
A\



Protocol2, Sublogarithm Communication

Protocol 2 Complexity

Round 1 « Communication : O(log,, N)

l e Verification : O(NN)

* Aggregated Proof
Round 2 W » Communication : O(log,, N + log n)
« Verification : O(NN)

4—'

* Total
« Communication : O(log,, N + log n)

» Verification : O(N)

. Let n = 2VI98N then we get 0(\/10g N)
3 TaggMEA !
Rouna 10g2n N com(v), P communication

* total prover complexity increase to O(N - 2V 108 1)

Round 3 com(v), P




Protocol3:
Sublinear Verifier under DL



Observation 2 : Verifier of BP-IP

e In BP-IP, sample g,h « G uniformly and use them as Common Reference String(CRS)

 For each round, P and V halve g, h and update to g, il
. g=g ogieG h=hi-hi €G>
» This update requires 2NN group exponentiations

* To avoid linear verification, we consider to change CRS form

Reduce witnhess vectors
(Only P)

HH

Reduce CRS
(P and V)



Outer-Pairing Product

e Let (&, G,, 5,) be groups of prime order p with bilinearmap e : G; X &G, — G,

- Forg € ' and H € &, define

e H) ... (g, H,)
c@H = : ’ : e G

e(g Hy) oo (g H,)

« Let N = mn be a vector length of our IPA.

m

‘,

® |

Tl
1

Outer-pairing product

- How about using g ® H,h ® H € G rather than g,h € G" on BP-IP?

14

N

! e(gl»Hl) gy e(gernj

e(gm Hy) <. . e(g,, Hnj}
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2nd Generalized BP-IP, DLR assumption

Definition (DRL assumption) : Let g € G" be uniformly chosen group elements. Then, it is intractable to
find a non-trivial relation Z & Zg such that g* = 1

 BP-IP provide knowledge soundness under Discrete Logarithm Relation(DLR) assumption

* |t is known that DRL assumption is equivalent to DL assumption

Theorem (Generalized DRL) : It is intractable to find a non-trivial relation 7. € ZZ’X” ofg@H € G/
where g < G, H < G, chosen uniformly and DL assumption is hold on G, and (3,

e The theorem guarantees hardness of finding non-trivial relation of g @ H

- Weuse {g,h € &', H € G} as CRS of our IPA, Protocol3

Uniform
Construct Sampling

Random
mxn m n
c®H hQH e G, «{g,heGI,Heﬁz} «
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Protocol3 : Sublinear Verifier

Row Reduction




Protocol3 : Sublinear Verifier

Row Reduction Column Reduction

Rou nd Withess

1 :I:II:I:
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Protocol3 : Sublinear Verifier

Row Reduction Column Reduction Complexity

* Row Reduction
« Communication : O(log m)
« Verification : O(m)

e Column Reduction
« Communication : O(log n)
» Verification : O(n)

e Jotal

« Communication : O(log mn)
« Verification : O(n + m)

eletm=n= \/N then we get
O(\/N ) Verification
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Protocol4 :
Sublinear Verifier w/o Pairing




Another view of Protocol3

. In Protocol3, We construct g @ H € G/*" for commitment to a € ZI’;”X”
* Another view : Two-tier Commitment
« Commitments via 2 steps
1. For all J-th column vector a; of matrix a, commit to a; (Pedersen Commitment)

2. Commit to results of first commitments (AFGHO Commitment)

e J[___a |
o & | E
com «~—— C

L
Cn —@

First step : Parallel commitments Second step : Commit to results
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Commitment to Elliptic Curve

* To commitment results without pairing, consider a commitment to Elliptic Curve points
« EC representations : Affine representation on Zz, Projective representation on Z?]

* |tis hard to represent “point at infinity” from Affine representation

 There is a complete addition formula from Projective representation [RCB16]

« From Projective representation, we consider a EC as a vector in Z?] and then apply
Pedersen commitment to the vector

o~

|

A ~ T
|
.\ |

|

R=P+Q

Affine Representation Projective Representation

[RCB16] :"Complete Addition Formulas for Prime Order Elliptic Curves”, EUROCRYPT 2016
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New Two-tier commitment

- Set a pair of elliptic curves : (G, G,) where G, = E(Z )
. After first commitments, consider the result group elements as vectors over Z g

e Second commitment : Pedersen commitment based Gq

* The commitment guarantees binding of message, but not provides homomorphic property

P le L o |
& i MR |
. com € G, —— |He G| [ceZ)

L
o
sl e L e

First step : Parallel commitments Second step : Commit to results

Result : n group elements ¢ View ¢ as vector over Z g
20
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Commit-and-Prove, Aggregation

« Without Homomorphic property, V cannot update IA’ which Is similar issue in Protocol1

* Apply Commit-and-Prove approach (Protocol1)
* For each round, P sends updated instance P with proof 7 to V

 After using commit-and-prove approach, total proof size is O(log2 N)

* TJo reduce total proof size more, apply aggregation technigue (Protocol?2)

L,R L. R
X X
< V < Vv
P, V update P and go to next round P.r >

V check 7 and go to next round

BP-IP, Protocol3 Reduction Reduction for new commitment
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Multi Elliptic Curve argument

 What should the proof & convince? L R P
* Knowledge of elliptic curve points satisfy elliptic curve relation rl N . A ?

A X
+ Instance: L, R, P, P € G, Witness : lL,r.p,p € G, G ) B

* Represent elliptic curve relation using Complete Addition Formula

« Use AoK for arithmetic circuit on Zq

 Proof size : O(log n) / Verification : O(n)

« MEC.Row : Multi Elliptic Curve argument for Row reduction )

« MEC.Col : Multi Elliptic Curve argument for Column reduction
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Protocol4 : Sublinear Verifier w/o Pairing

Row Reduction Column Reduction

log m, logn
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Protocol4 : Sublinear Verifier w/o Pairing

Row Reduction Column Reduction

Round 1 R.P L.R.P

R, P

Round

L, R,ﬁ L,
log m, logn
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Protocol4 : Sublinear Verifier w/o Pairing

Row Reduction Column Reduction Complexity

Round 1 R, L,R,P » Row Reduction
l « Communication : O(log mn)

» Verification : O(m + nlog m)

Round 2 , R, - e Column Reduction

« Communication : O(log n)
» Verification : O(n)

R, P
Round 3 > 1Y m e Jotal
. « Communication : O(log mn)
Round , , A L, R,ﬁ
log m, logn

» Verification : O(m + nlog m)

ﬂaggMEC.Col
eletm=n= \/N then we get

0(\/N log N) Verification
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Conclusion

We propose three transparent |PAs, which can be combined to reduction ZKA to IPA
From the reduction, we construct three ZKAs
/KA with Sublogarithmic communication
* As far as we know, this is the first sublogarithmic ZKA in transparent setting
e /KA with sublinear verifier under DL assumption
* Although the argument use pairing operation, its soundness is based on DL assumption
 ZKA with sublinear verifier without pairing

* Without reliance of pairings, we show possibility of sublinear verifier in DL setting
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Thank You

ePrint : https://eprint.iacr.org/2021/1450.pdf



