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Zero-Knowledge Argument of Knowledge
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• Completeness : If ,   can convince  (  outputs 1)


• Knowledge Soundness : Without knowledge of ,  cannot convince  (  outputs 0)


• Zero-knowledge : The proof  reveal no information except ’s knowledge of  with 


• We call an argument is transparent if the argument does not require trusted third party for 
generating common reference string

(x; w) ∈ R 𝖯 𝖵 𝖵

w 𝖯′￼ 𝖵 𝖵

π 𝖯 w (x; w) ∈ R

Prover 𝖯 Verifier 𝖵

π ← 𝖯(Sp, x; w) 0/1 ← 𝖵(SV, x, π)No leak info. about  w

I know w

R = {(x; w) : ϕ(x, w) = 1}

π



Inner Product Argument, IPA
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[BCC+16] : "Efficient Zero-Knowledge Arguments for Arithmetic Circuits in the discrete log setting”, EUROCRYPTO 2016

[BBB+18] : “Bulletproofs: Short Proofs for Confidential Transactions and More”, S&P 2018

• Argument of Knowledge(AoK) of two vectors   for their inner product relation


• Transparent IPA with logarithm communication : [BCC+16], [BP-IP, BBB+18]


• Application


• ZK-Range proof


• ZKA for Arithmetic Circuits


• ZK-Polynomial Commitment Scheme


• There is a reduction from ZKA for AC to IPA


• We focus on BP-IP and its variant for constructing ZKA

a, b ∈ ℤN
P

RBP = {(g, h ∈ 𝔾N, u, P ∈ 𝔾; a, b ∈ ℤN
p ) : P = gahbu⟨a,b⟩}

Relation for BP-IP



Contribution
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We propose three transparent IPAs :


• Protocol2 : The first IPA with sublogarithmic communication.


• Protocol3 : The first IPA with sublinear verifier under DL assumption.


• Protocol4 : Introduce a novel method to achieve the sublinear verifier IPA w/o pairing



Contribution

4

We propose three transparent IPAs :


• Protocol2 : The first IPA with sublogarithmic communication.


• Protocol3 : The first IPA with sublinear verifier under DL assumption.


• Protocol4 : Introduce a novel method to achieve the sublinear verifier IPA w/o pairing

Protocol3

BP-IP

Protocol11st Gen

2nd Gen Protocol4

Protocol2

Commit-and-Prove Aggregation

Substitution CRS Two tier commitment

W/o pairing

Communication

Verification



Protocol2 :

Sublogarithmic Communication
• Round Reducing 
• Commit-and-Prove 
• Aggregation technique



Observation 1 : Communication of BP-IP
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• Key idea of logarithm communication : Witness Reduction 


• Halve witness vectors  and update to  recursively


• ,   


•  should send commitments to “cross terms” per round


• Total communication = total rounds x each reduction cost  : 

a, b â, b̂

â := xaL + x−1aR ∈ ℤ
N
2
p b̂ := x−1bL + xbR ∈ ℤ

N
2
p

𝖯

log2 N × 2 = 2 log2 N

⟨â, b̂⟩ = ⟨a, b⟩ + x2⟨aL, bR⟩ + x−2⟨aR, bL⟩
Parallel term Cross terms


 needs commitment to these terms𝖵

Reduction

a = aL ∥ aR

b = bL ∥ bR

â
b̂

Inner Product Relation of  â, b̂



Generalization of BP-IP
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• How about reducing witness vectors more shortly?


• Construct generalized BP-IP : -partition technique


• Decrease total round to   but each reduction cost may increase

2n

log2n N

Witness

Reduction BP-IP

GeneralizationLength : N

Length : N/2

Length : N/(2n)

a

b



1st Generalization of BP-IP
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• Parse witness vectors  to  subvectors  and update to  respectively


• , 


•  should send commitments to “cross terms”,  group elements per round


• For constructing commitments to “cross terms”,  computes  exponentiation


• Total communication : 


•  is optimal value of total communication, there is no merit to use 2n-partition technique

a, b 2n ai, bi â, b̂

â := ∑ xiai ∈ ℤ
N
2n
p b̂ := ∑ x−ibi ∈ ℤ

N
2n
p

𝖯 2n(2n − 1)

𝖯 O(nN)

log2n N × 2n(2n − 1)

n = 1

⟨â, b̂⟩ = ⟨a, b⟩ + ∑
i≠j

xi−j⟨ai, bj⟩
Parallel term

Cross terms

 needs commitments of each terms 𝖵



Protocol1 : Commit-and-Prove approach
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•  sends a short commitment  rather than sending  group elements , 


• Without ,  cannot update instance . How to construct a reduction protocol?


• Solution :  sends  with proof  after receiving challenge 


•  : Proof of knowledge  such that   (  is public)


• Multi Exponent Argument(MEA) : Construct similar way to IPA, based commitment : [AFG+16]

𝖯 com(v) 2n(2n − 1) v

v 𝖵 ̂P

𝖯 ̂P πMEA x ← ℤp

πMEA v ̂P = vx x

x
P V

 Compute  and go to next round 𝖯, 𝖵 ̂P

Generalized BP

v
x

P V
̂P, πMEA

Protocol 1

 checks  and go to next round 𝖵 πMEA

com(v)

[AFG+16] : "Structure-Preserving Signatures and Commitments to Group Elements”, Journal of Cryptology, 2016



Protocol2 : Aggregation technique
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• For each rounds,  sends  whose size is 


• Total Communication : 


• In terms of communication complexity, Protocol1 is the same as BP-IP


• To reduce communication cost more, we apply Aggregation technique


• Aggregation technique : Generating one aggregated Proof for multiple relations

𝖯 com(v), ̂P, πMEA O(log n)

log2n N × O(log n) = O(log N)

(x1; w1) ∈ R

(xℓ; wℓ) ∈ R

⋮ 
(xi; wi) ∈ R
∀i = 1,…, ℓ

One aggregated proof 

Aggregate

Multi proofs for relation R

π1

πℓ

π



Commit-and-Prove approachProtocol2, Sublogarithm Communication

πMEA

πMEA

πMEA

πMEA

⋮
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Round 1

Round 2

Round 3

Round log2n N

com(v), ̂P

com(v), ̂P

com(v), ̂P

com(v), ̂P

Protocol 1



Commit-and-Prove approachProtocol2, Sublogarithm Communication

⋮
πaggMEA
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Round 1

Round 2

Round 3

Round log2n N

com(v), ̂P

com(v), ̂P

com(v), ̂P

com(v), ̂P

Protocol 2



Commit-and-Prove approachProtocol2, Sublogarithm Communication

⋮
πaggMEA
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Round 1

Round 2

Round 3

Round log2n N

com(v), ̂P

com(v), ̂P

com(v), ̂P

com(v), ̂P

Protocol 2 Complexity

• Round Reduction

• Communication : 

• Verification : 


•  Aggregated Proof

• Communication : 

• Verification : 


•  Total

• Communication : 

• Verification : 


• Let , then we get  
communication


* total prover complexity increase to 

O(log2n N)
O(N)

O(log2n N + log n)
O(N)

O(log2n N + log n)
O(N)

n = 2 log N O( log N)

O(N ⋅ 2 log N)



• Outer Pairing Product 
• Discrete Logarithm Relation Assumption

Protocol3 :

Sublinear Verifier under DL



Observation 2 : Verifier of BP-IP
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• In BP-IP, sample  uniformly and use them as Common Reference String(CRS)


• For each round,  and  halve  and update to 


• , 


• This update requires  group exponentiations


• To avoid linear verification, we consider to change CRS form

g, h ← 𝔾N

𝖯 𝖵 g, h ĝ, ĥ

ĝ = gx−1

L ∘ gx
R ∈ 𝔾N

2 ĥ = hx
L ∘ hx−1

R ∈ 𝔾N
2

2N

a b
g h

Reduce witness vectors

(Only )𝖯

Reduce CRS

(  and )𝖯 𝖵

â b̂
ĥĝ



Outer-Pairing Product
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• Let  be groups of prime order  with bilinear map 


• For  and  , define


• Let  be a vector length of our IPA.


• How about using  rather than  on BP-IP?


(𝔾1, 𝔾2, 𝔾t) p e : 𝔾1 × 𝔾2 → 𝔾t

g ∈ 𝔾m
1 H ∈ 𝔾n

2

N = mn

g ⊗ H, h ⊗ H ∈ 𝔾m×n
t g, h ∈ 𝔾N

g ⊗ H :=
e(g1, H1) … e(g1, Hn)

⋮ ⋱ ⋮
e(gm, H1) … e(gm, Hn)

∈ 𝔾m×n
t



2nd Generalized BP-IP, DLR assumption
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Definition (DRL assumption) : Let   be uniformly chosen group elements. Then, it is intractable to 
find a non-trivial relation  such that  

• BP-IP provide knowledge soundness under Discrete Logarithm Relation(DLR) assumption


• It is known that DRL assumption is equivalent to DL assumption


Theorem (Generalized DRL) : It is intractable to find a non-trivial relation  of  
where  chosen uniformly and DL assumption is hold on  and  

• The theorem guarantees hardness of finding non-trivial relation of 


• We use  as CRS of our IPA, Protocol3

g ∈ 𝔾N

z ∈ ℤN
p gz = 1𝔾

z ∈ ℤm×n
p g ⊗ H ∈ 𝔾m×n

t
g ← 𝔾1, H ← 𝔾2 𝔾1 𝔾2

g ⊗ H

{g, h ∈ 𝔾m
1 , H ∈ 𝔾n

2}

{g, h ∈ 𝔾m
1 , H ∈ 𝔾n

2}g ⊗ H, h ⊗ H ∈ 𝔾m×n
t

Random

Sampler

Uniform

SamplingConstruct



Protocol3 : Sublinear Verifier
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Row Reduction

a b1

Witness 𝔾1 𝔾2

⋮ ⋮

g
h

H

Round

2

log m



Protocol3 : Sublinear Verifier
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Row Reduction Column Reduction

a b1

Witness 𝔾1 𝔾2

⋮ ⋮

g
h

H

Round

2

log m

Witness 𝔾1 𝔾2

⋮ ⋮

Round

1

2

log n



Protocol3 : Sublinear Verifier
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• Row Reduction

• Communication : 

• Verification : 


•  Column Reduction

• Communication : 

• Verification : 


•  Total

• Communication : 

• Verification : 


• Let , then we get 
 Verification

O(log m)
O(m)

O(log n)
O(n)

O(log mn)
O(n + m)

m = n = N
O( N)

ComplexityRow Reduction Column Reduction

a b1

Witness 𝔾1 𝔾2

⋮ ⋮

g
h

H

Round

2

log m

Witness 𝔾1 𝔾2

⋮ ⋮

Round

1

2

log n



Protocol4 :

Sublinear Verifier w/o Pairing
• Two-tier commitment scheme 
• Commitment to Elliptic curve 
• Commit-and-Prove and Aggregation technique 



Another view of Protocol3
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• In Protocol3, We construct  for commitment to 


• Another view : Two-tier Commitment


• Commitments via 2 steps


1. For all -th column vector  of matrix , commit to  (Pedersen Commitment)


2. Commit to results of first commitments (AFGHO Commitment)

g ⊗ H ∈ 𝔾m×n
t a ∈ ℤm×n

p

j aj a aj

a1

H

g

First step : Parallel commitments

a2

an

g

g

c1

c2

cn

⋮c com c

Second step : Commit to results



Commitment to Elliptic Curve
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• To commitment results without pairing, consider a commitment to Elliptic Curve points


• EC representations : Affine representation on , Projective representation on 


• It is hard to represent “point at infinity” from Affine representation 


• There is a complete addition formula from Projective representation [RCB16]


• From Projective representation, we consider a EC as a vector in  and then apply 
Pedersen commitment to the vector

ℤ2
q ℤ3

q

ℤ3
q

[RCB16] :"Complete Addition Formulas for Prime Order Elliptic Curves”, EUROCRYPT 2016

Affine Representation Projective Representation



• Set a pair of elliptic curves :  where 


• After first commitments, consider the result group elements as vectors over 


• Second commitment : Pedersen commitment based 


• The commitment guarantees binding of message, but not provides homomorphic property

(𝔾p, 𝔾q) 𝔾p = E(ℤq)

ℤq

𝔾q

20

New Two-tier commitmentNew Two-tier commitment

a1

H ∈ 𝔾3n
q

g

a2

an

g

g

c1

c2

cn

⋮c ∈ 𝔾n
p

com ∈ 𝔾q c ∈ ℤ3n
q

First step : Parallel commitments

Result :  group elements  n c

Second step : Commit to results

View  as vector over c ℤq



• Without Homomorphic property,  cannot update , which is similar issue in Protocol1


• Apply Commit-and-Prove approach (Protocol1)


• For each round,  sends updated instance  with proof  to 


• After using commit-and-prove approach, total proof size is 


• To reduce total proof size more, apply aggregation technique (Protocol2)

𝖵 ̂P

𝖯 ̂P π 𝖵

O(log2 N)
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L, R

x
P V

 update  and go to next round 𝖯, 𝖵 ̂P

BP-IP, Protocol3 Reduction

L, R

x
P V

̂P, π

Reduction for new commitment

 check  and go to next round 𝖵 π

Commit-and-Prove, Aggregation
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Multi Elliptic Curve argument

• What should the proof  convince?


• Knowledge of elliptic curve points satisfy elliptic curve relation


• Instance : , Witness : 


• Represent elliptic curve relation using Complete Addition Formula


• Use AoK for arithmetic circuit on 


• Proof size :  / Verification : 


• MEC.Row : Multi Elliptic Curve argument for Row reduction

• MEC.Col : Multi Elliptic Curve argument for Column reduction

π

L, R, P, ̂P ∈ 𝔾q l, r, p, p̂ ∈ 𝔾n
p

ℤq

O(log n) O(n)

l r p

p̂

x

Arithmetic Circuit

P

̂P

L R
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Protocol4 : Sublinear Verifier w/o Pairing

πMEC.Row

πMEC.Row

πMEC.Row

πMEC.Row

⋮

Round 1

Round 2

Round 3

Round

, log m log n

L, R, ̂P

L, R, ̂P

L, R, ̂P

L, R, ̂P

πMEC.Col

πMEC.Col

πMEC.Col

πMEC.Col

⋮

L, R, ̂P

L, R, ̂P

L, R, ̂P

L, R, ̂P

Row Reduction Column Reduction
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Protocol4 : Sublinear Verifier w/o Pairing

⋮
πaggMEC.Row

Round 1

Round 2

Round 3

Round

, log m log n

L, R, ̂P

L, R, ̂P

L, R, ̂P

L, R, ̂P

⋮
πaggMEC.Col

L, R, ̂P

L, R, ̂P

L, R, ̂P

L, R, ̂P

Row Reduction Column Reduction
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Protocol4 : Sublinear Verifier w/o Pairing

• Row Reduction

• Communication : 

• Verification : 


•  Column Reduction

• Communication : 

• Verification : 


•  Total

• Communication : 

• Verification : 


• Let , then we get 
 Verification

O(log mn)
O(m + n log m)

O(log n)
O(n)

O(log mn)
O(m + n log m)

m = n = N
O( N log N)

Complexity

⋮
πaggMEC.Row

Round 1

Round 2

Round 3

Round

, log m log n

L, R, ̂P

L, R, ̂P

L, R, ̂P

L, R, ̂P

⋮
πaggMEC.Col

L, R, ̂P

L, R, ̂P

L, R, ̂P

L, R, ̂P

Row Reduction Column Reduction



Conclusion
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We propose three transparent IPAs, which can be combined to reduction ZKA to IPA


From the reduction, we construct three ZKAs


• ZKA with Sublogarithmic communication


• As far as we know, this is the first sublogarithmic ZKA in transparent setting


• ZKA with sublinear verifier under DL assumption


• Although the argument use pairing operation, its soundness is based on DL assumption


• ZKA with sublinear verifier without pairing


• Without reliance of pairings, we show possibility of sublinear verifier in DL setting
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