Asiacrypt 2022

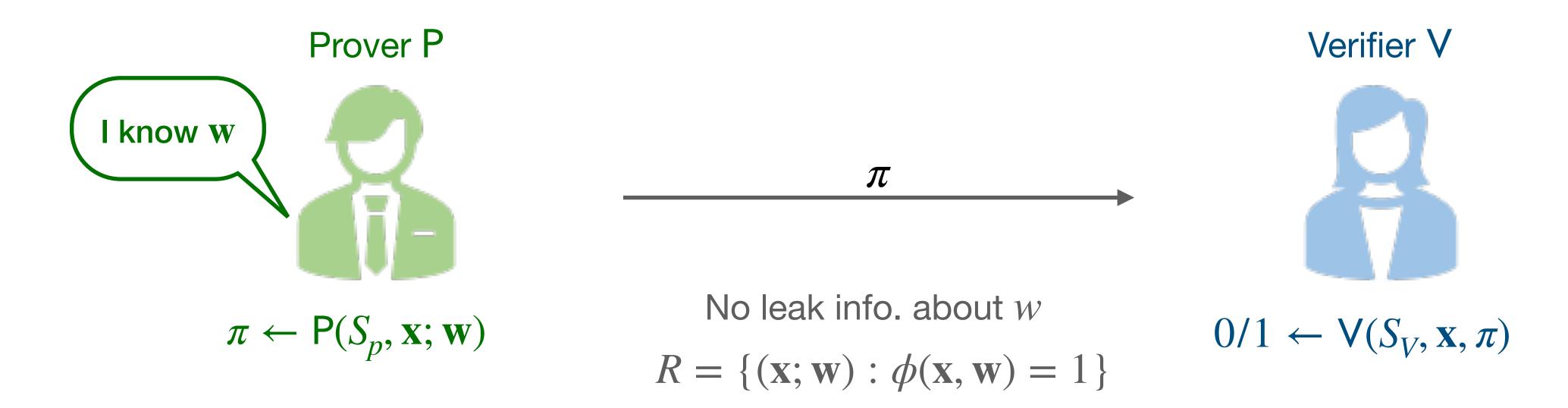
Efficient Zero-Knowledge Arguments in Discrete Logarithm Setting: Sublogarithmic Proof or Sublinear Verifier

Presenter: Hyeonbum Lee

Coauthor: Sungwook Kim, Jae Hong Seo



Zero-Knowledge Argument of Knowledge



- Completeness: If $(\mathbf{x}; \mathbf{w}) \in R$, P can convince V (V outputs 1)
- Knowledge Soundness: Without knowledge of w, P' cannot convince V (V outputs 0)
- Zero-knowledge: The proof π reveal no information except P's knowledge of w with $(x; w) \in R$
- We call an argument is transparent if the argument does not require trusted third party for generating common reference string

Inner Product Argument, IPA

- Argument of Knowledge(AoK) of two vectors $\mathbf{a},\mathbf{b}\in\mathbb{Z}_P^N$ for their inner product relation
- Transparent IPA with logarithm communication: [BCC+16], [BP-IP, BBB+18]
- Application

$$R_{BP} = \{ (\mathbf{g}, \mathbf{h} \in \mathbb{G}^N, u, P \in \mathbb{G}; \mathbf{a}, \mathbf{b} \in \mathbb{Z}_p^N) : P = \mathbf{g}^{\mathbf{a}} \mathbf{h}^{\mathbf{b}} u^{\langle \mathbf{a}, \mathbf{b} \rangle} \}$$

Relation for BP-IP

- ZK-Range proof
- ZKA for Arithmetic Circuits
- ZK-Polynomial Commitment Scheme
- There is a reduction from ZKA for AC to IPA
- We focus on BP-IP and its variant for constructing ZKA

Contribution

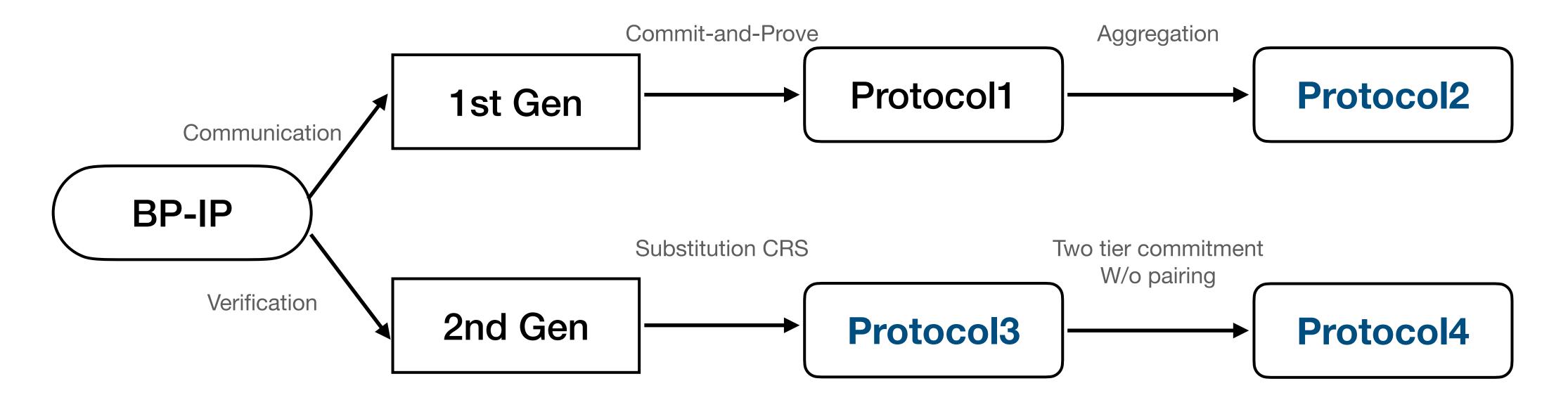
We propose three transparent IPAs:

- Protocol2: The first IPA with sublogarithmic communication.
- Protocol3: The first IPA with sublinear verifier under DL assumption.
- Protocol4: Introduce a novel method to achieve the sublinear verifier IPA w/o pairing

Contribution

We propose three transparent IPAs:

- Protocol2: The first IPA with sublogarithmic communication.
- Protocol3: The first IPA with sublinear verifier under DL assumption.
- Protocol4: Introduce a novel method to achieve the sublinear verifier IPA w/o pairing



Protocol2: Sublogarithmic Communication

- Round Reducing
- Commit-and-Prove
- Aggregation technique

Observation 1: Communication of BP-IP

- Key idea of logarithm communication: Witness Reduction
- Halve witness vectors a,b and update to \hat{a},\hat{b} recursively

•
$$\hat{\mathbf{a}} := x\mathbf{a}_L + x^{-1}\mathbf{a}_R \in \mathbb{Z}_p^{\frac{N}{2}}, \ \hat{\mathbf{b}} := x^{-1}\mathbf{b}_L + x\mathbf{b}_R \in \mathbb{Z}_p^{\frac{N}{2}}$$

P should send commitments to "cross terms" per round

 $\mathbf{a} = \mathbf{a}_{L} \parallel \mathbf{a}_{R}$ $\mathbf{b} = \mathbf{b}_{L} \parallel \mathbf{b}_{R}$ Reduction $\hat{\mathbf{a}}$ $\hat{\mathbf{a}}$

• Total communication = total rounds x each reduction cost : $log_2 N \times 2 = 2 log_2 N$

Inner Product Relation of $\hat{\mathbf{a}}, \hat{\mathbf{b}}$

$$\langle \hat{\mathbf{a}}, \hat{\mathbf{b}} \rangle = \langle \mathbf{a}, \mathbf{b} \rangle + x^2 \langle \mathbf{a}_L, \mathbf{b}_R \rangle + x^{-2} \langle \mathbf{a}_R, \mathbf{b}_L \rangle$$

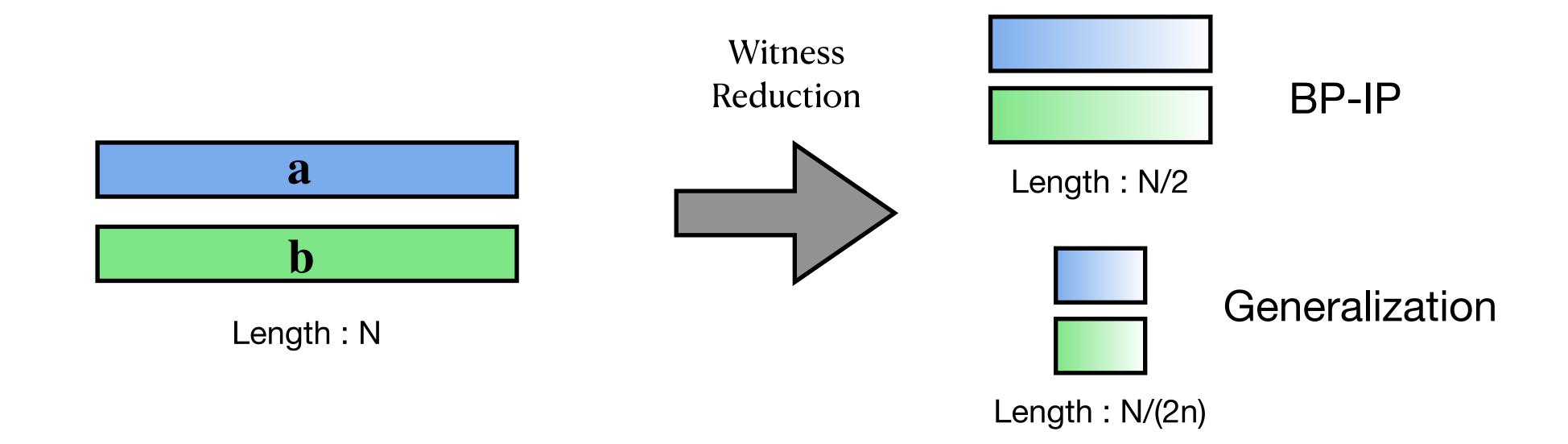
Parallel term

Cross terms

V needs commitment to these terms

Generalization of BP-IP

- How about reducing witness vectors more shortly?
- Construct generalized BP-IP : 2*n*-partition technique
- Decrease total round to $log_{2n}N$ but each reduction cost may increase



1st Generalization of BP-IP

• Parse witness vectors \mathbf{a} , \mathbf{b} to 2n subvectors \mathbf{a}_i , \mathbf{b}_i and update to $\hat{\mathbf{a}}$, $\hat{\mathbf{b}}$ respectively

$$\hat{\mathbf{a}} := \sum x^i \mathbf{a}_i \in \mathbb{Z}_p^{\frac{N}{2n}}, \hat{\mathbf{b}} := \sum x^{-i} \mathbf{b}_i \in \mathbb{Z}_p^{\frac{N}{2n}}$$

- P should send commitments to "cross terms", 2n(2n-1) group elements per round
- For constructing commitments to "cross terms", P computes O(nN) exponentiation
- Total communication : $\log_{2n} N \times 2n(2n-1)$
- n=1 is optimal value of total communication, there is no merit to use 2n-partition technique

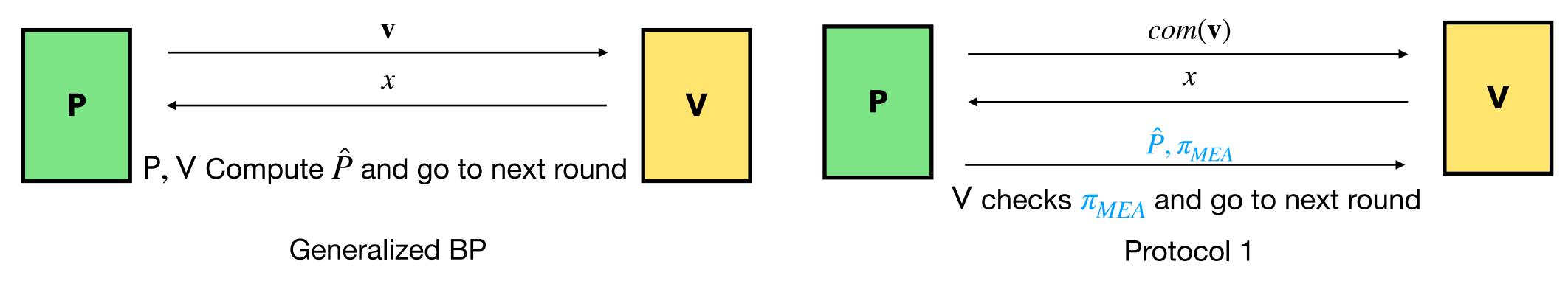
$$\langle \hat{\mathbf{a}}, \hat{\mathbf{b}} \rangle = \langle \mathbf{a}, \mathbf{b} \rangle + \sum_{i \neq j} x^{i-j} \langle \mathbf{a}_i, \mathbf{b}_j \rangle$$
Parallel term

Cross terms

V needs commitments of each terms

Protocol1: Commit-and-Prove approach

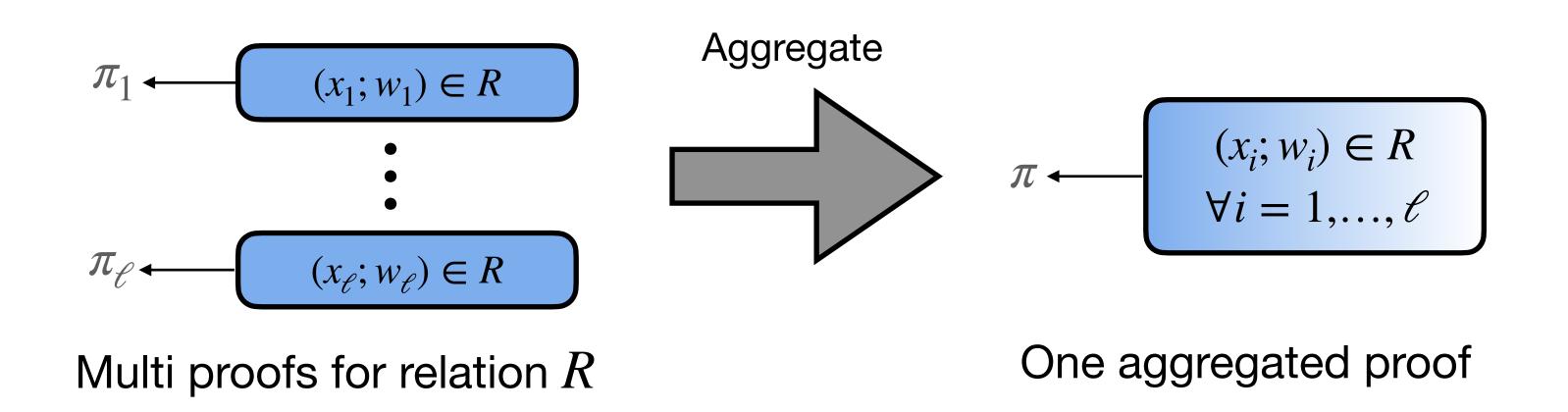
- P sends a short commitment $com(\mathbf{v})$ rather than sending 2n(2n-1) group elements \mathbf{v} ,
- Without v, V cannot update instance \hat{P} . How to construct a reduction protocol?
- Solution : P sends \hat{P} with proof π_{MEA} after receiving challenge $x \leftarrow \mathbb{Z}_p$
- π_{MEA} : Proof of knowledge ${\bf v}$ such that $\hat{P}={\bf v}^{\bf x}$ (${\bf x}$ is public)
- Multi Exponent Argument(MEA): Construct similar way to IPA, based commitment: [AFG+16]



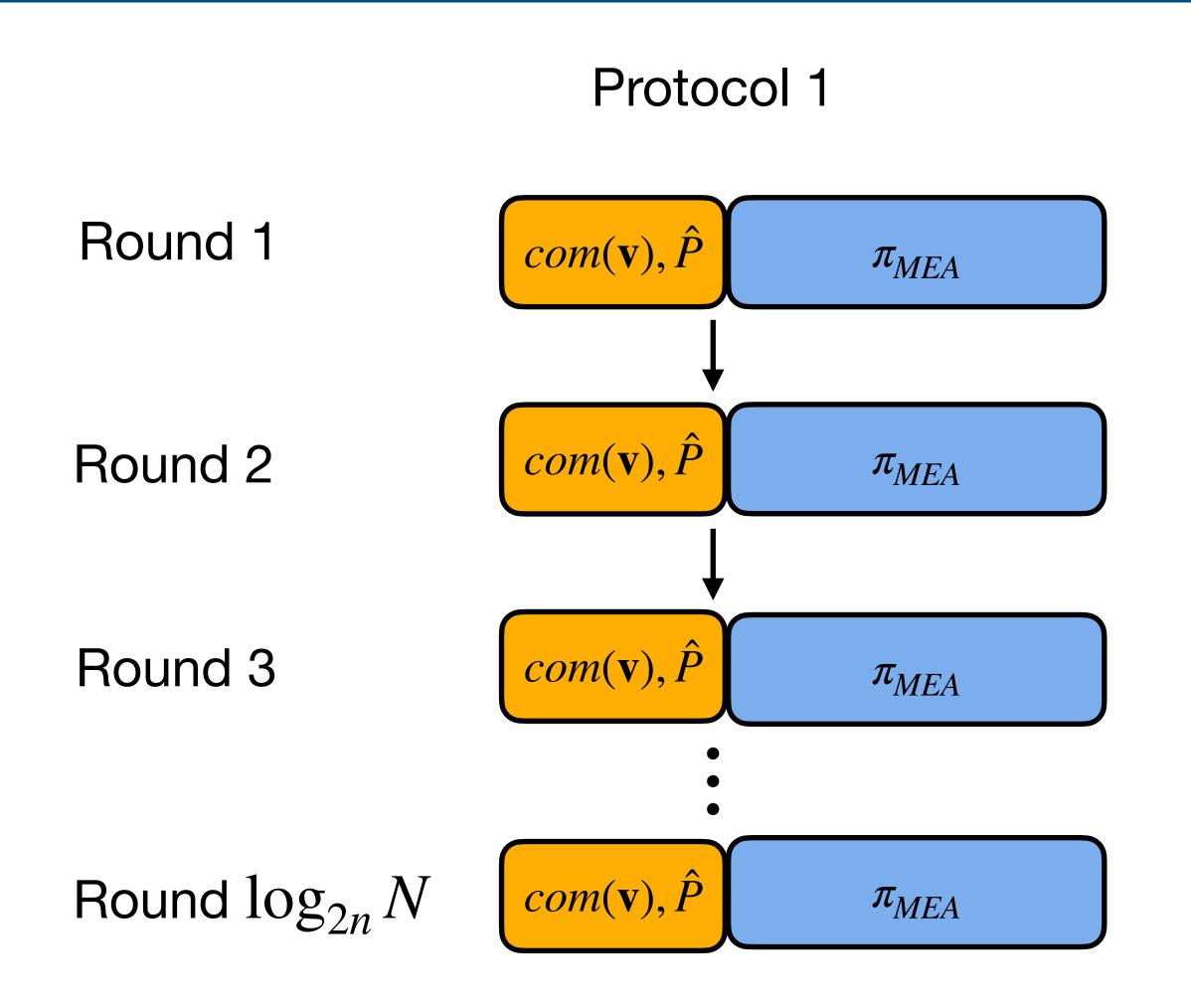
[AFG+16]: "Structure-Preserving Signatures and Commitments to Group Elements", Journal of Cryptology, 2016

Protocol2: Aggregation technique

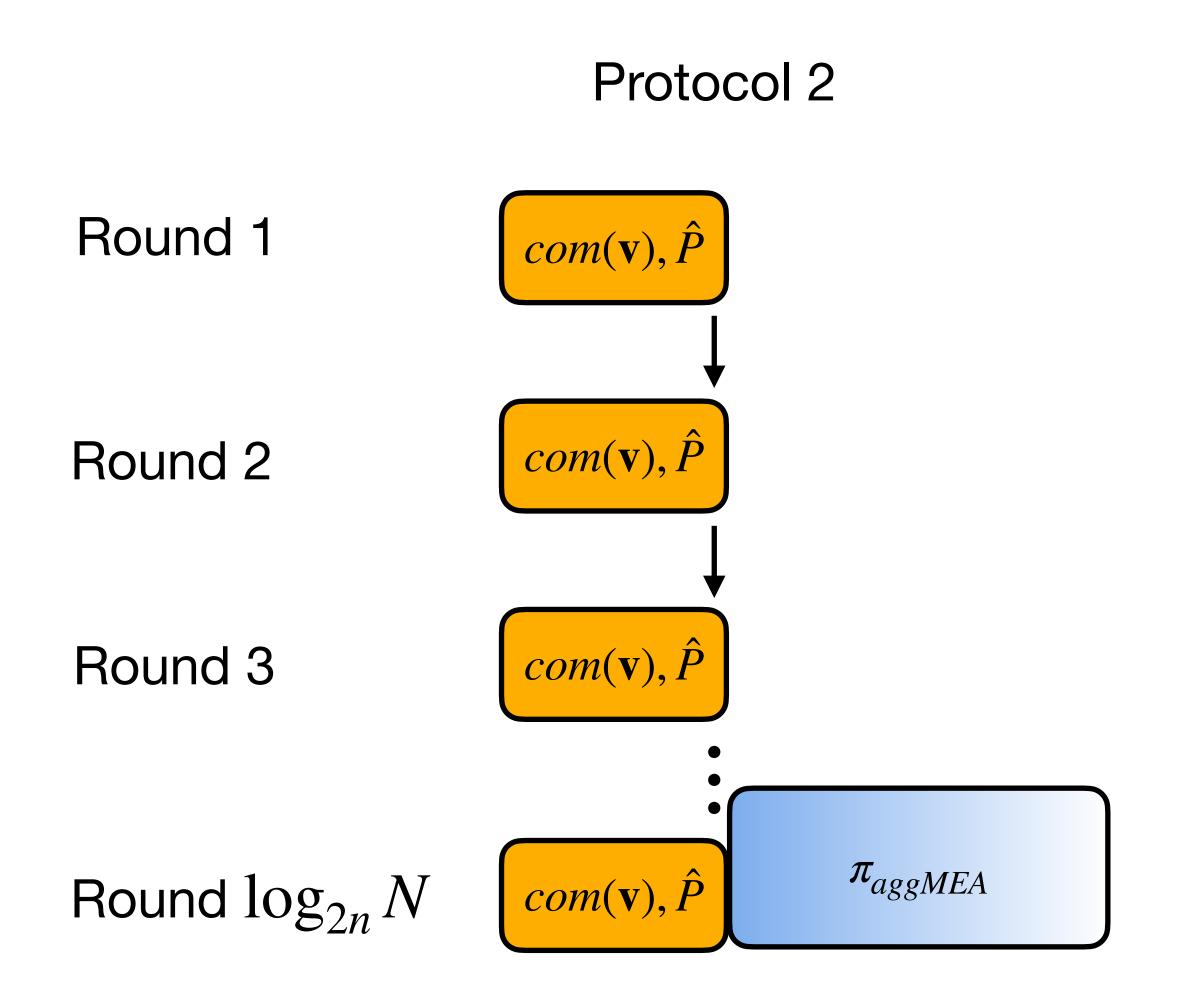
- For each rounds, P sends $com(\mathbf{v}), \hat{P}, \pi_{MEA}$ whose size is $O(\log n)$
- Total Communication : $\log_{2n} N \times O(\log n) = O(\log N)$
- In terms of communication complexity, Protocol1 is the same as BP-IP
- To reduce communication cost more, we apply Aggregation technique
- Aggregation technique: Generating one aggregated Proof for multiple relations



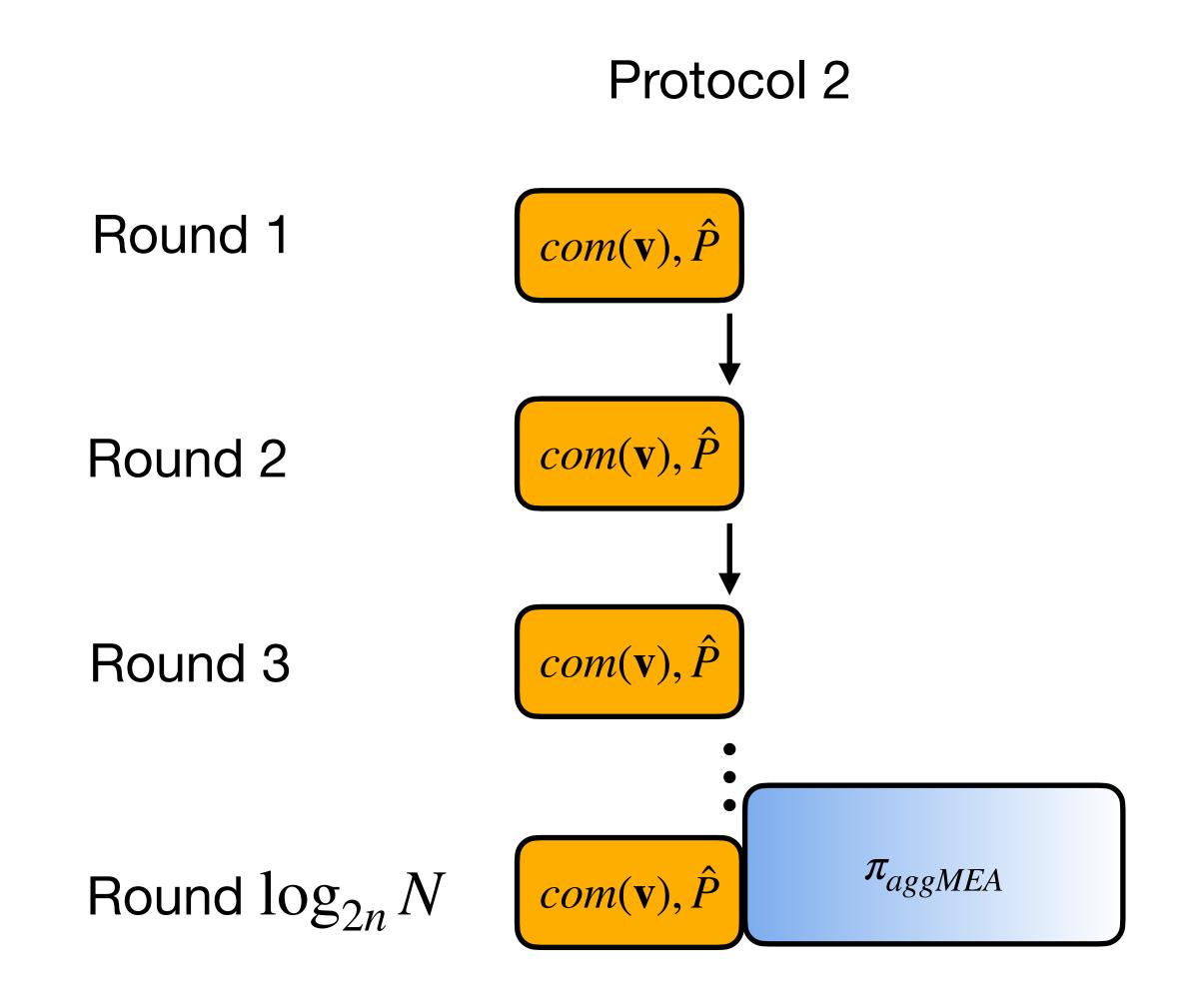
Protocol2, Sublogarithm Communication



Protocol2, Sublogarithm Communication



Protocol2, Sublogarithm Communication



Complexity

- Round Reduction
 - Communication : $O(\log_{2n} N)$
 - Verification : O(N)
- Aggregated Proof
 - Communication : $O(\log_{2n} N + \log n)$
 - Verification : O(N)
- Total
 - Communication : $O(\log_{2n} N + \log n)$
 - Verification : O(N)
- Let $n = 2^{\sqrt{\log N}}$, then we get $O(\sqrt{\log N})$ communication
- * total prover complexity increase to $O(N \cdot 2^{\sqrt{\log N}})$

Protocol3: Sublinear Verifier under DL

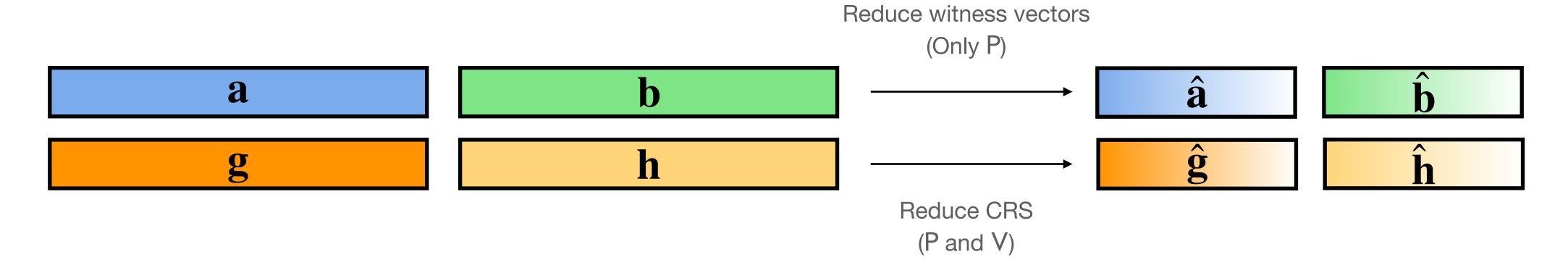
- Outer Pairing Product
- Discrete Logarithm Relation Assumption

Observation 2: Verifier of BP-IP

- In BP-IP, sample $\mathbf{g}, \mathbf{h} \leftarrow \mathbb{G}^N$ uniformly and use them as Common Reference String(CRS)
- For each round, P and V halve g,h and update to \hat{g},\hat{h}

•
$$\hat{\mathbf{g}} = \mathbf{g}_L^{x^{-1}} \circ \mathbf{g}_R^x \in \mathbb{G}^{\frac{N}{2}}, \hat{\mathbf{h}} = \mathbf{h}_L^x \circ \mathbf{h}_R^{x^{-1}} \in \mathbb{G}^{\frac{N}{2}}$$

- This update requires 2N group exponentiations
- To avoid linear verification, we consider to change CRS form



Outer-Pairing Product

- Let $(\mathbb{G}_1,\mathbb{G}_2,\mathbb{G}_t)$ be groups of prime order p with bilinear map $e:\mathbb{G}_1\times\mathbb{G}_2\to\mathbb{G}_t$
- For $\mathbf{g} \in \mathbb{G}_1^m$ and $\mathbf{H} \in \mathbb{G}_2^n$, define

$$\mathbf{g} \otimes \mathbf{H} := \begin{bmatrix} e(g_1, H_1) & \dots & e(g_1, H_n) \\ \vdots & \ddots & \vdots \\ e(g_m, H_1) & \dots & e(g_m, H_n) \end{bmatrix} \in \mathbb{G}_t^{m \times n} \quad \overset{\mathsf{m}}{\downarrow} \quad \overset{\mathsf{g}}{\downarrow} \quad \overset{\mathsf{m}}{\downarrow} \quad \overset{\mathsf{g}}{\downarrow} \quad \overset{\mathsf{m}}{\downarrow} \quad \overset{\mathsf{g}}{\downarrow} \quad \overset{\mathsf{g}}{$$

Outer-pairing product

- Let N = mn be a vector length of our IPA.
- How about using $\mathbf{g} \otimes \mathbf{H}$, $\mathbf{h} \otimes \mathbf{H} \in \mathbb{G}_t^{m \times n}$ rather than \mathbf{g} , $\mathbf{h} \in \mathbb{G}^N$ on BP-IP?

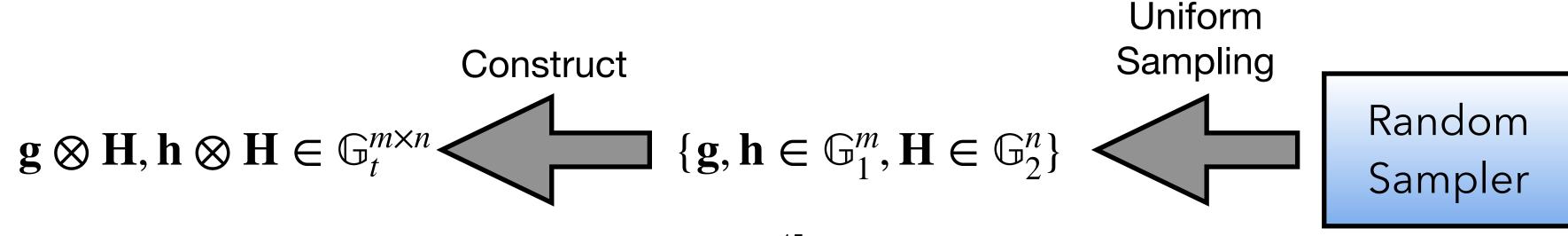
2nd Generalized BP-IP, DLR assumption

Definition (DRL assumption): Let $\mathbf{g} \in \mathbb{G}^N$ be uniformly chosen group elements. Then, it is intractable to find a non-trivial relation $\mathbf{z} \in \mathbb{Z}_p^N$ such that $\mathbf{g}^{\mathbf{z}} = 1_{\mathbb{G}}$

- BP-IP provide knowledge soundness under Discrete Logarithm Relation(DLR) assumption
- It is known that DRL assumption is equivalent to DL assumption

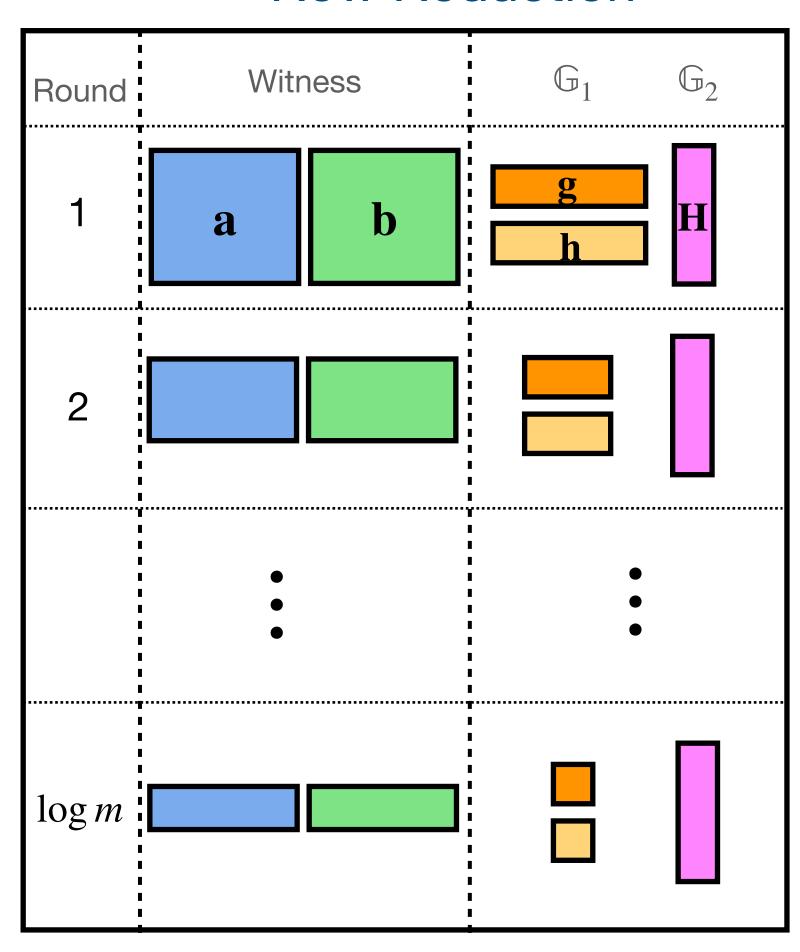
Theorem (Generalized DRL): It is intractable to find a non-trivial relation $\mathbf{z} \in \mathbb{Z}_p^{m \times n}$ of $\mathbf{g} \otimes \mathbf{H} \in \mathbb{G}_t^{m \times n}$ where $\mathbf{g} \leftarrow \mathbb{G}_1$, $\mathbf{H} \leftarrow \mathbb{G}_2$ chosen uniformly and DL assumption is hold on \mathbb{G}_1 and \mathbb{G}_2

- The theorem guarantees hardness of finding non-trivial relation of $g \otimes H$
- We use $\{\mathbf{g}, \mathbf{h} \in \mathbb{G}_1^m, \mathbf{H} \in \mathbb{G}_2^n\}$ as CRS of our IPA, Protocol3



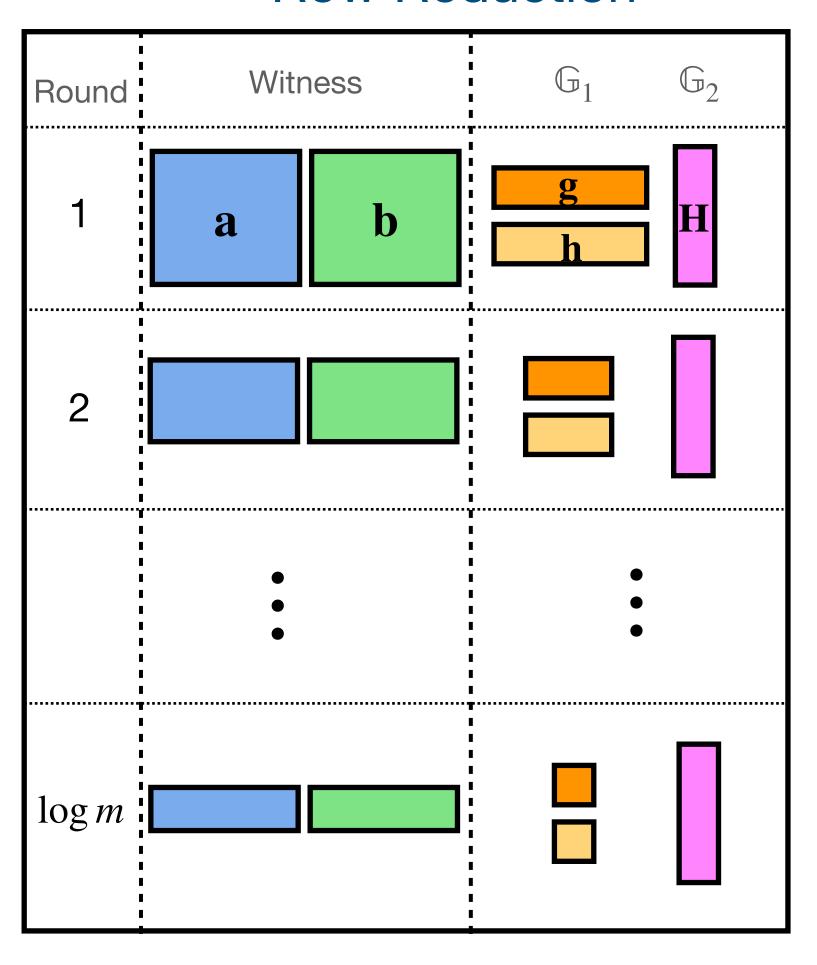
Protocol3: Sublinear Verifier

Row Reduction

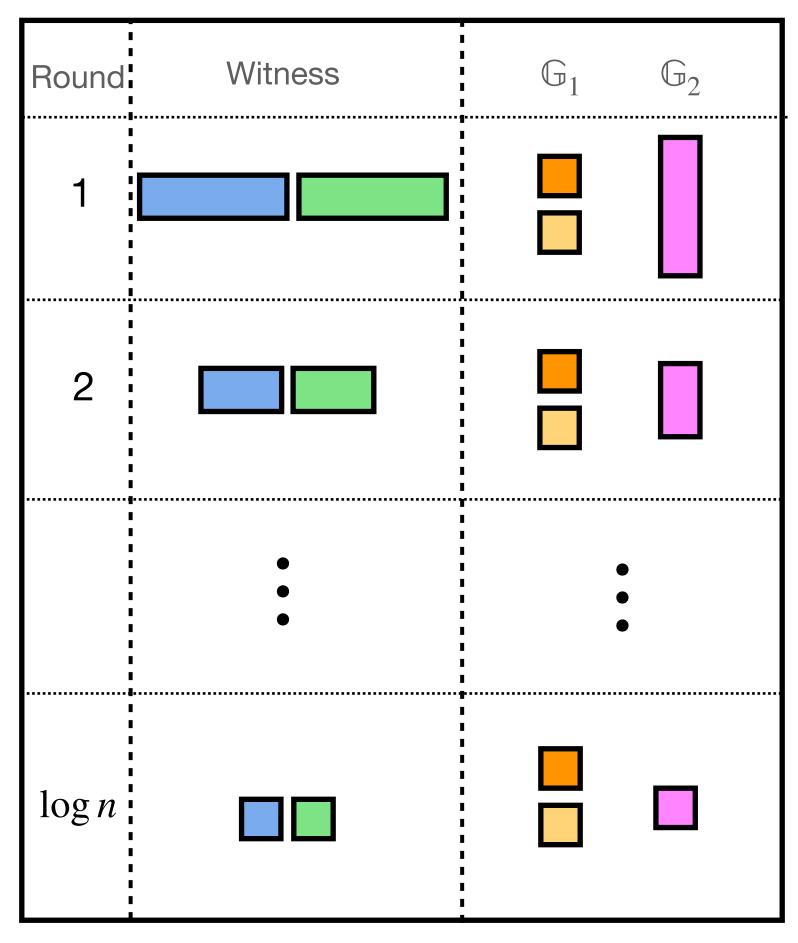


Protocol3: Sublinear Verifier

Row Reduction

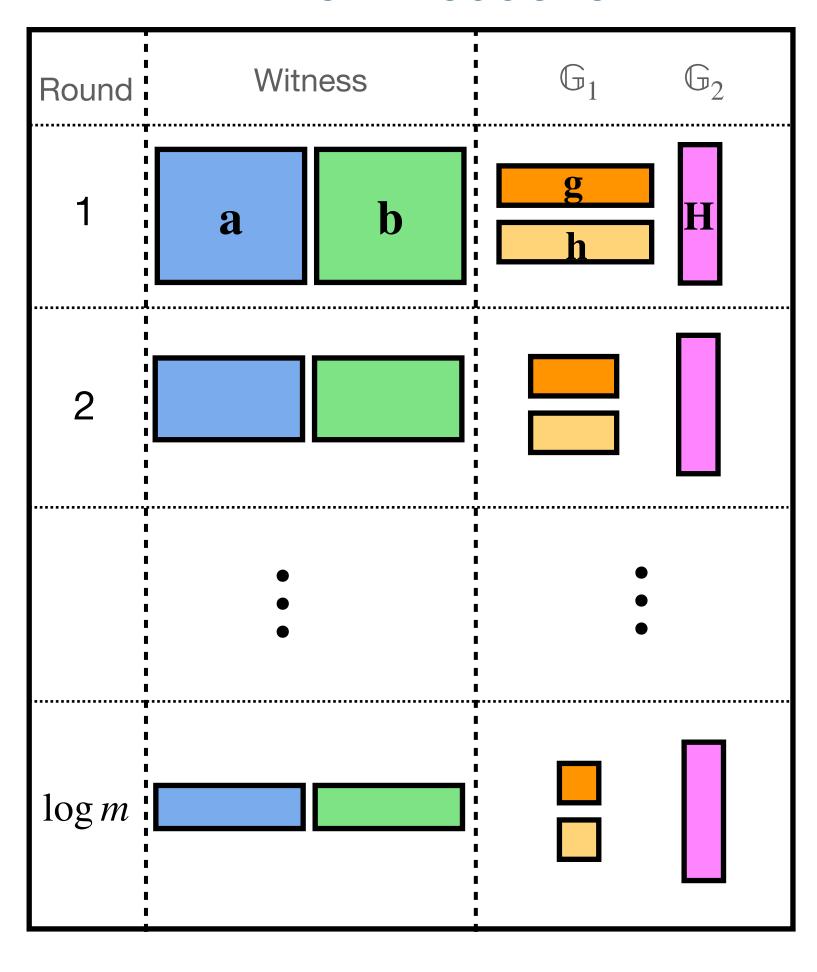


Column Reduction

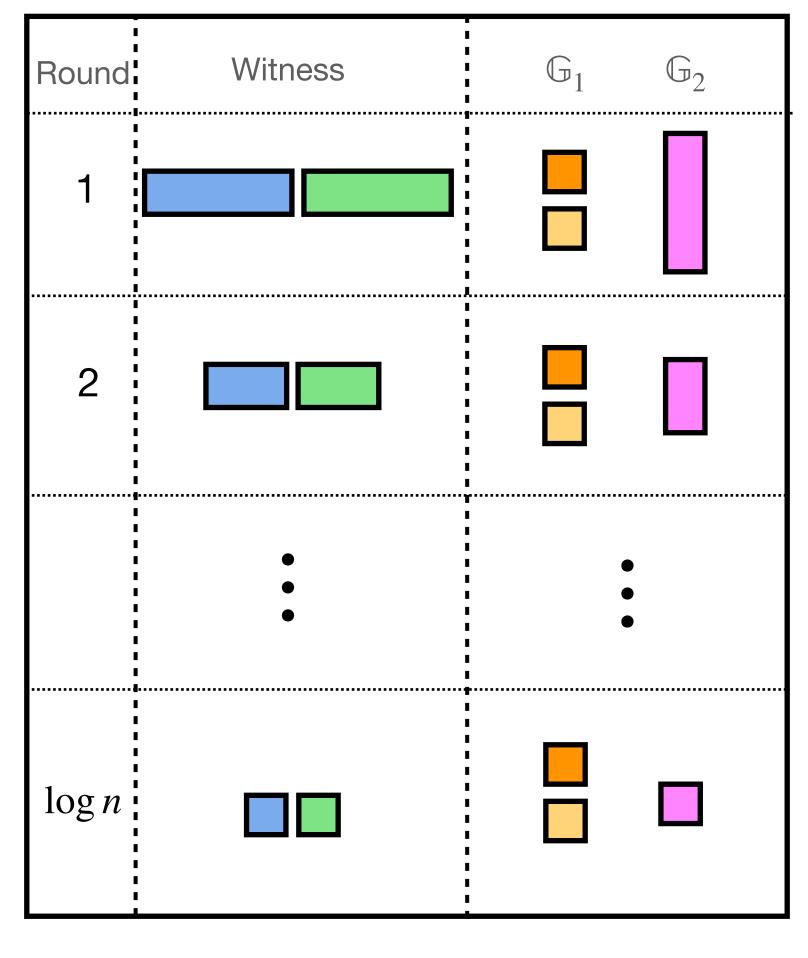


Protocol3: Sublinear Verifier

Row Reduction



Column Reduction



Complexity

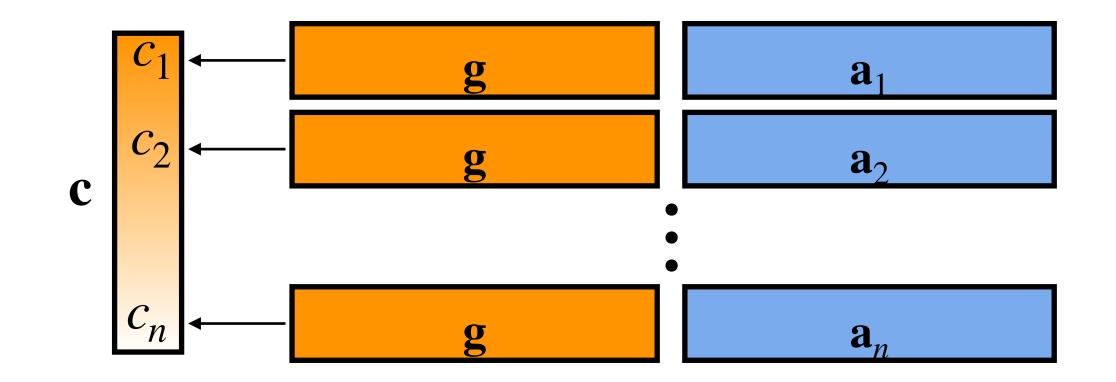
- Row Reduction
 - Communication : $O(\log m)$
 - Verification : O(m)
- Column Reduction
 - Communication : $O(\log n)$
 - Verification : O(n)
- Total
 - Communication : $O(\log mn)$
 - Verification : O(n + m)
- Let $m=n=\sqrt{N}$, then we get $O(\sqrt{N})$ Verification

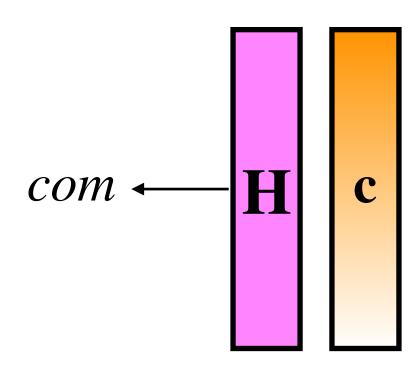
Protocol4: Sublinear Verifier w/o Pairing

- Two-tier commitment scheme
- Commitment to Elliptic curve
- Commit-and-Prove and Aggregation technique

Another view of Protocol3

- In Protocol3, We construct $\mathbf{g} \otimes \mathbf{H} \in \mathbb{G}_t^{m imes n}$ for commitment to $\mathbf{a} \in \mathbb{Z}_p^{m imes n}$
- Another view: Two-tier Commitment
 - Commitments via 2 steps
 - 1. For all j-th column vector \mathbf{a}_j of matrix \mathbf{a} , commit to \mathbf{a}_j (Pedersen Commitment)
 - 2. Commit to results of first commitments (AFGHO Commitment)





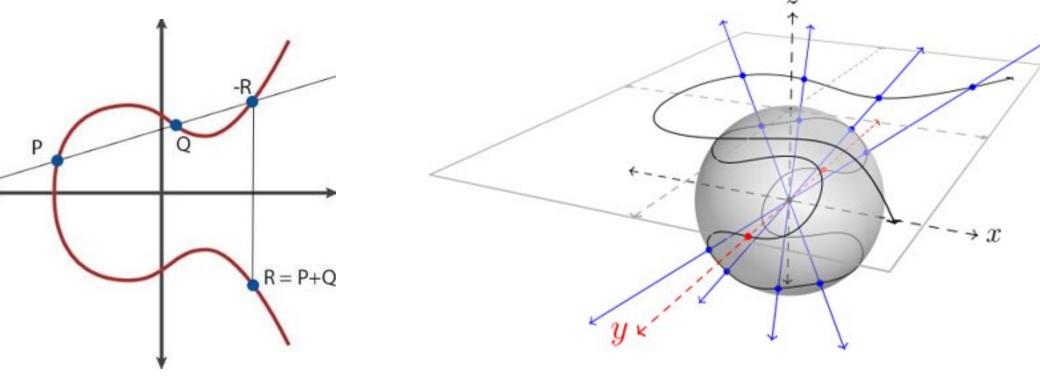
Second step: Commit to results

Commitment to Elliptic Curve

- To commitment results without pairing, consider a commitment to Elliptic Curve points
- EC representations : Affine representation on \mathbb{Z}_q^2 , Projective representation on \mathbb{Z}_q^3
- It is hard to represent "point at infinity" from Affine representation
- There is a complete addition formula from Projective representation [RCB16]

• From Projective representation, we consider a EC as a vector in \mathbb{Z}_q^3 and then apply

Pedersen commitment to the vector

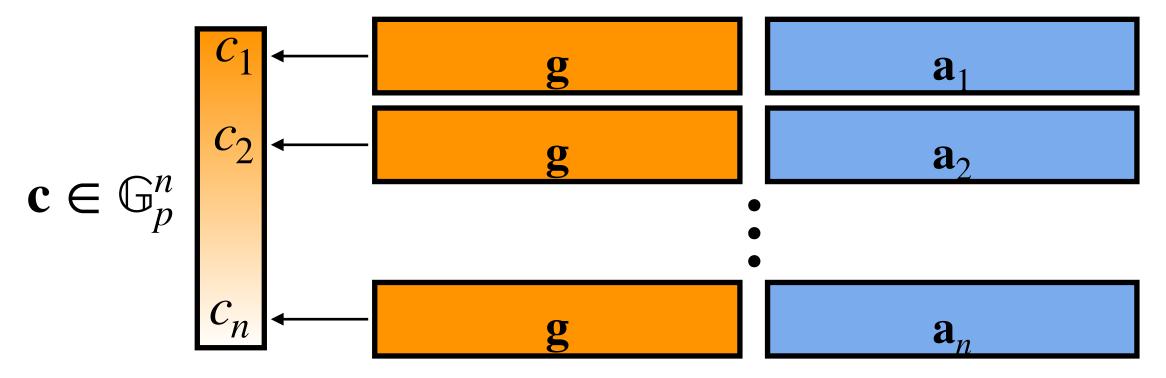


Affine Representation

Projective Representation

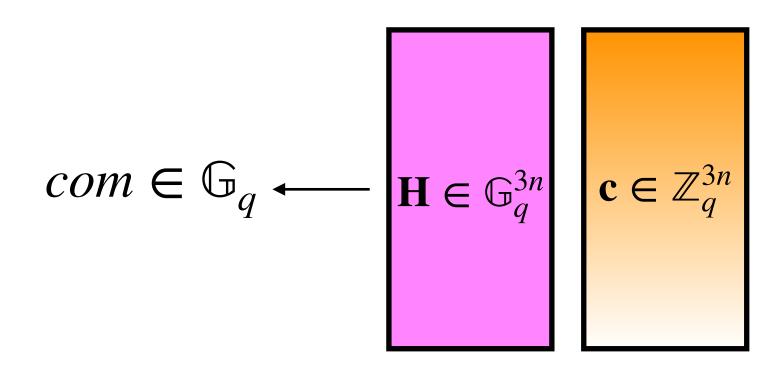
New Two-tier commitment

- Set a pair of elliptic curves : $(\mathbb{G}_p,\mathbb{G}_q)$ where $\mathbb{G}_p=E(\mathbb{Z}_q)$
- After first commitments, consider the result group elements as vectors over \mathbb{Z}_q
- Second commitment : Pedersen commitment based \mathbb{G}_q
- The commitment guarantees binding of message, but not provides homomorphic property



First step: Parallel commitments

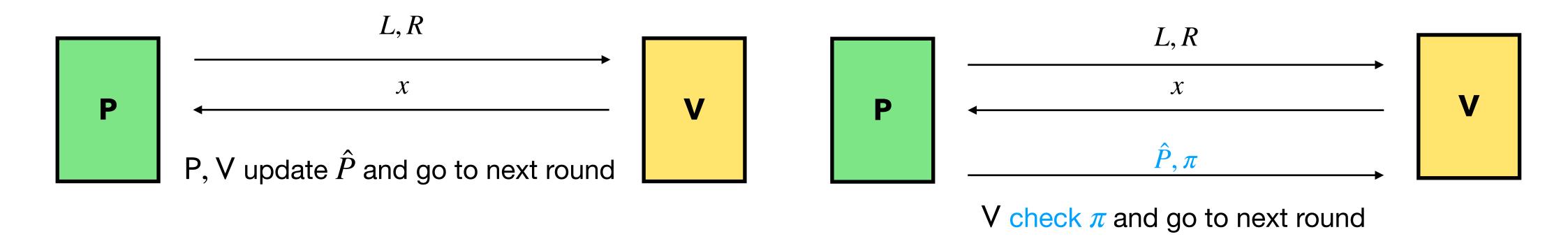
Result : *n* group elements **c**



Second step : Commit to results View ${\bf c}$ as vector over ${\mathbb Z}_a$

Commit-and-Prove, Aggregation

- Without Homomorphic property, ${\sf V}$ cannot update \hat{P} , which is similar issue in Protocol1
- Apply Commit-and-Prove approach (Protocol1)
- For each round, P sends updated instance \hat{P} with proof π to V
- After using commit-and-prove approach, total proof size is $O(\log^2 N)$
- To reduce total proof size more, apply aggregation technique (Protocol2)

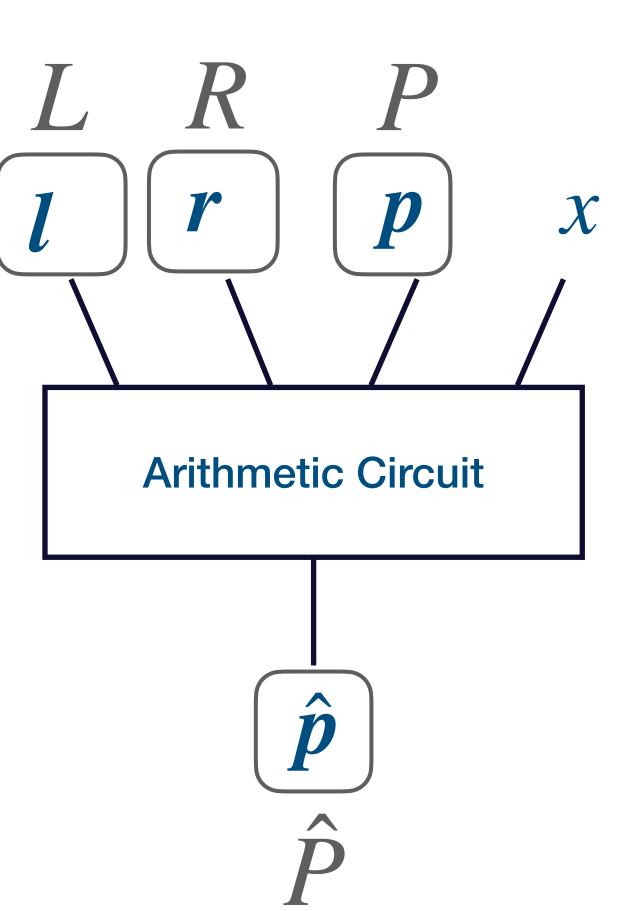


BP-IP, Protocol3 Reduction

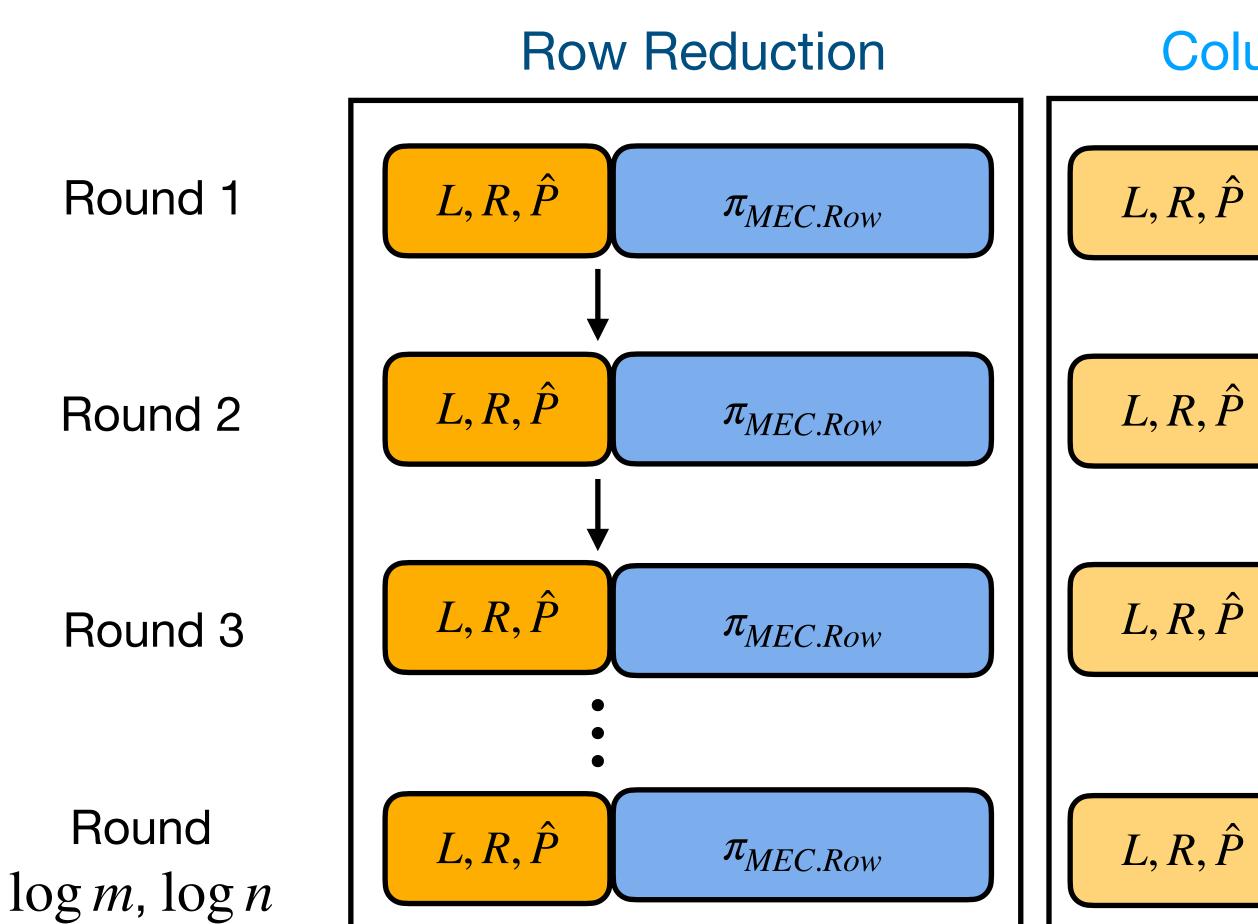
Reduction for new commitment

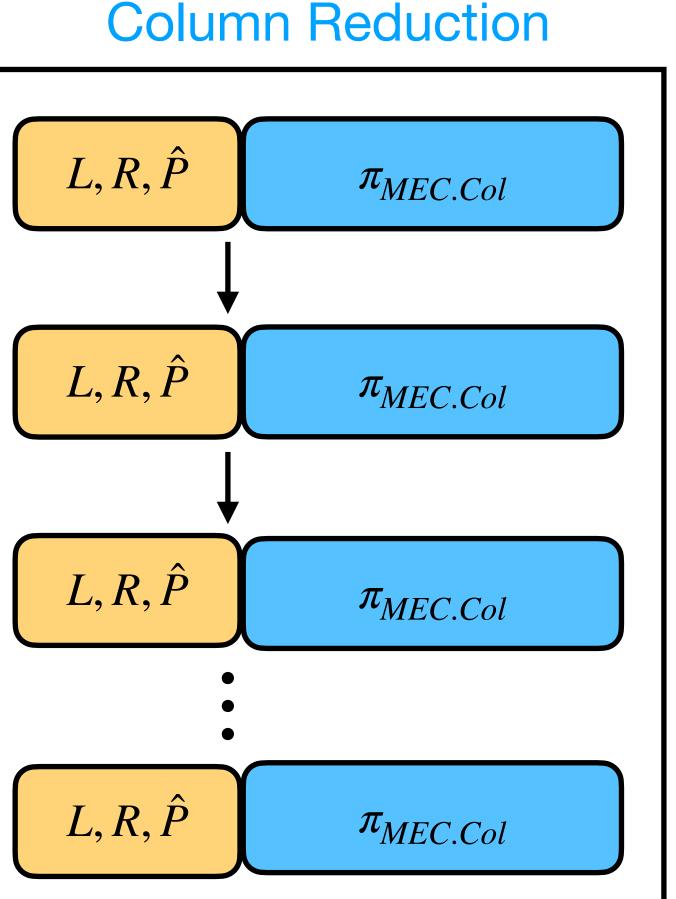
Multi Elliptic Curve argument

- What should the proof π convince?
- Knowledge of elliptic curve points satisfy elliptic curve relation
- Instance : $L, R, P, \hat{P} \in \mathbb{G}_q$, Witness : $\emph{l}, \emph{r}, \emph{p}, \hat{\emph{p}} \in \mathbb{G}_p^n$
 - Represent elliptic curve relation using Complete Addition Formula
 - Use AoK for arithmetic circuit on \mathbb{Z}_q
 - Proof size : $O(\log n)$ / Verification : O(n)
- MEC.Row: Multi Elliptic Curve argument for Row reduction
- MEC.Col: Multi Elliptic Curve argument for Column reduction

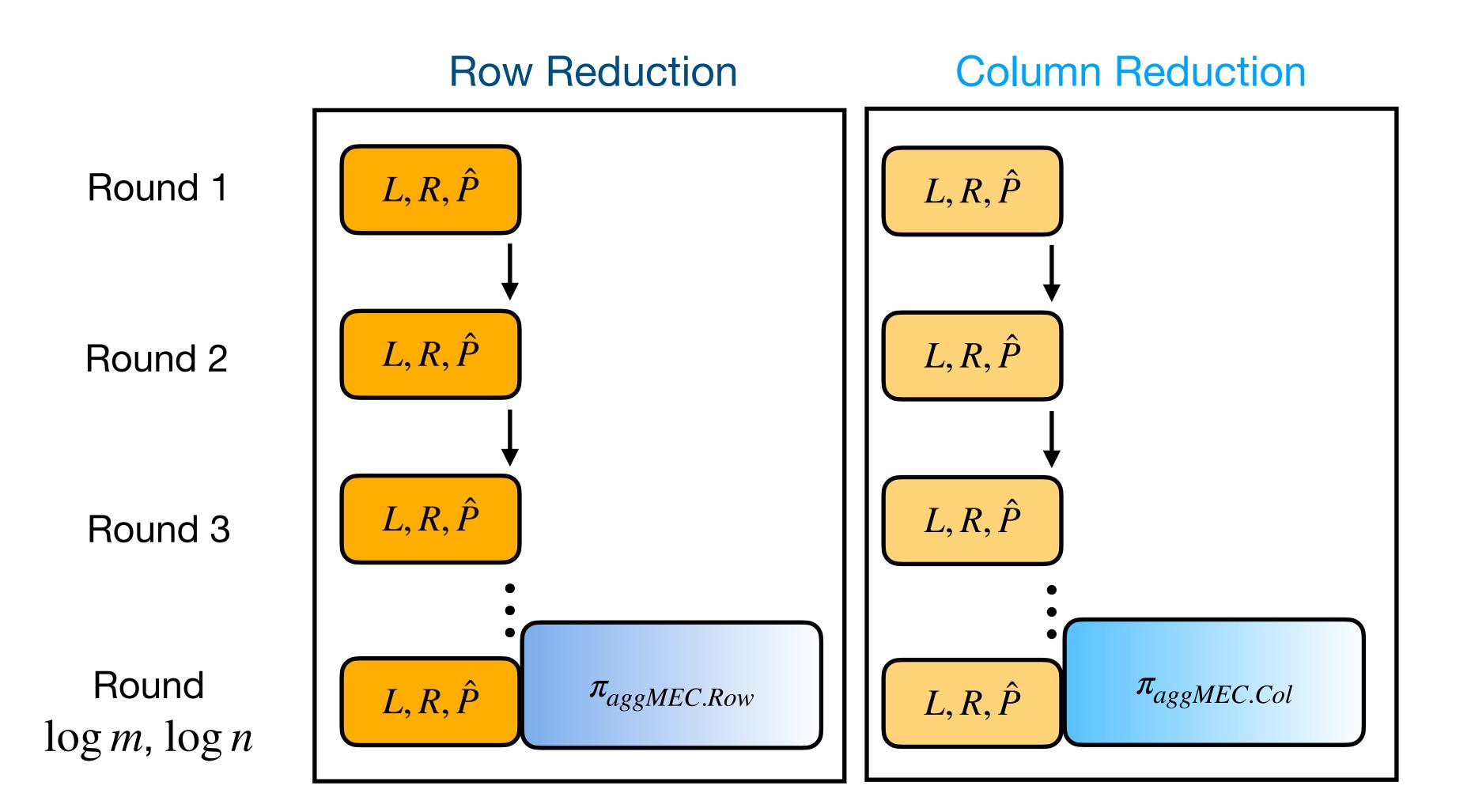


Protocol4: Sublinear Verifier w/o Pairing





Protocol4: Sublinear Verifier w/o Pairing



Protocol4: Sublinear Verifier w/o Pairing

 L, R, \hat{P}

 L, R, \hat{P}

 L, R, \hat{P}

 L, R, \hat{P}

Row Reduction

Column Reduction

 $\pi_{aggMEC.Col}$

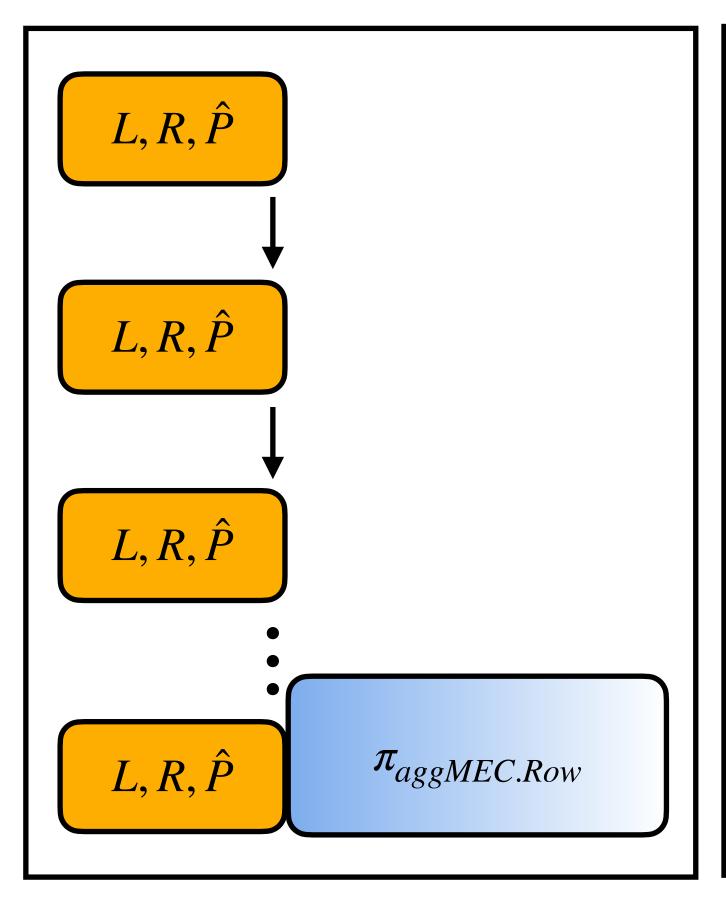
Complexity

Round 1

Round 2

Round 3

Round $\log m$, $\log n$



Row Reduction

• Communication : $O(\log mn)$

• Verification : $O(m + n \log m)$

Column Reduction

• Communication : $O(\log n)$

• Verification : O(n)

Total

• Communication : $O(\log mn)$

• Verification : $O(m + n \log m)$

• Let $m = n = \sqrt{N}$, then we get $O(\sqrt{N} \log N)$ Verification

Conclusion

We propose three transparent IPAs, which can be combined to reduction ZKA to IPA From the reduction, we construct three ZKAs

- ZKA with Sublogarithmic communication
 - As far as we know, this is the first sublogarithmic ZKA in transparent setting
- ZKA with sublinear verifier under DL assumption
 - Although the argument use pairing operation, its soundness is based on DL assumption
- ZKA with sublinear verifier without pairing
 - Without reliance of pairings, we show possibility of sublinear verifier in DL setting

Thank You

ePrint: https://eprint.iacr.org/2021/1450.pdf