TOWARDS CASE-OPTIMIZED HYBRID HOMOMORPHIC ENCRYPTION

Featuring the Elisabeth Stream Cipher

<u>Orel Cosseron</u> Clément Hoffmann Pierrick Méaux François-Xavier Standaert

INRIA • ENS de Lyon • Télécom Paris • UCLouvain • Luxembourg University

EXPANSION RATIO

Plaintext Ciphertext

Orel Cosseron

HYBRID HOMOMORPHIC ENCRYPTION 101

HYBRID HOMOMORPHIC ENCRYPTION 101

HYBRID HOMOMORPHIC ENCRYPTION 101

STATE OF THE ART

STATE OF THE ART

Current Status:

- Design of symmetric scheme for HHE.
- Optimized to be used as a stand-alone scheme.

Current Status:

- Design of symmetric scheme for HHE.
- Optimized to be used as a stand-alone scheme.

This Paper: Case Optimization

- Design of symmetric scheme for a concrete case study.
- Optimized to be used in combination with that case.

Usecase:

Usecase: Machine Learning

Usecase: Machine Learning

■ As many bits of message as possible

Usecase: Machine Learning

- As many bits of message as possible
- Fast evaluation

Usecase: Machine Learning

- As many bits of message as possible
- Fast evaluation

Constraints:

Usecase: Machine Learning

- As many bits of message as possible
- Fast evaluation

Constraints: TFHE

Usecase: Machine Learning

- As many bits of message as possible
- Fast evaluation

Constraints: TFHE

No Packing

Usecase: Machine Learning

- As many bits of message as possible
- Fast evaluation

Constraints: TFHE

- No Packing
- Modular Additions

Usecase: Machine Learning

- As many bits of message as possible
- Fast evaluation

Constraints: TFHE

- No Packing
- Modular Additions
- Negacyclic Look-Up Tables

Usecase: Machine Learning

- As many bits of message as possible → 4-bit messages
- Fast evaluation

Constraints: TFHE

- No Packing
- Modular Additions
- Negacyclic Look-Up Tables

Usecase: Machine Learning

- As many bits of message as possible → 4-bit messages
- Fast evaluation → Multithreading

Constraints: TFHE

- No Packing
- Modular Additions
- Negacyclic Look-Up Tables

Usecase: Machine Learning

- As many bits of message as possible → 4-bit messages
- Fast evaluation → Multithreading

Constraints: TFHE

- No Packing
- Modular Additions
- Negacyclic Look-Up Tables

Toolbox

ELISABETH'S FILTER

ELISABETH'S FILTER

ELISABETH'S FILTER

NEURAL NETWORK

Figure 1: Our Neural Network

FASHION-MNIST

Figure 2: Example of a 784-pixels Fashion-MNIST picture

FASHION-MNIST

(a) Original data (8-bits shades)

(b) Quantized data (3-bits shades)

Figure 2: Example of a 784-pixels Fashion-MNIST picture

Mode		Latency (ms)	Throughput (ms/b)	Key size (kB)
Stand-alone	Single KeySwitch	104	26	8
	Two KeySwitches	91	22.75	20
Usecase	Single KeySwitch	537.6	134.4	8

Orel Cosseron

12/16

^{*} For 128 bits of security on a computer equipped with an AMD Ryzen Threadripper 3990X 64-Core Processor

Mode		Latency (ms)	Throughput (ms/b)	Key size (kB)
Stand-alone	Single KeySwitch	104	26	8
	Two KeySwitches	91	22.75	20
Usecase	Single KeySwitch	537.6	134.4	8

Orel Cosseron

^{*} For 128 bits of security on a computer equipped with an AMD Ryzen Threadripper 3990X 64-Core Processor

Orel Cosseron 13/16

Inference Time

Orel Cosseron 13/16

Figure 3: Bandwith consumption

Orel Cosseron 14/16

Figure 3: Bandwith consumption

Orel Cosseron 14/16

OPEN PROBLEMS

- Bigger messages
- Better ML management in clear

More relevant usecases

Orel Cosseron 15/16

THANK YOU FOR YOUR ATTENTION

ABQ

Orel Cosseron 16/16

STAND-ALONE COMPARISONS

Cipher	Homomorphic library	Time per ciphertext (s)	Time per bit (ms)
LowMC	TFHE (C)	4283.678	16733
Kreyvium	TFHE (C)	208.255	208255
RASTA 6	TFHE (C)	2424.503	6907
FiLIP 144	Concrete	0.134	134
FiLIP 1216	Concrete	0.586	586
FiLIP 1280	Concrete	0.627	627
DASTA 6	TFHE (C)	2387.674	6802
Elisabeth-4 (two KS)	Concrete	0.091	22.75
Elisabeth-4 (single KS)	Concrete	0.104	26
LowMC	TELIB	853.302	3333.21
Kreyvium	HELib	8.222	8222
RASTA 6	HELib	163.131	464.76
DASTA 6	HELib	156.935	447.11
MASTA 5	HELib	22.096	20.31
PASTA 4	HELib	9.827	18.06
HERA	CKKS	14.747	0.01

ELISABETH'S FILTER (HOMOMORPHICALLY)

ELISABETH'S FILTER (HOMOMORPHICALLY)

ELISABETH'S FILTER (HOMOMORPHICALLY)

