Zero-Knowledge Protocols for the Subset Sum Problem from MPC-in-the-Head with Rejection

$\frac{\text{Thibauld Feneuil}^{1,2}}{\text{Matthieu Rivain}^1} \text{ Damien Vergnaud}^{3,4}$

1. CryptoExperts, Paris, France

2. Sorbonne Université, CNRS, INRIA, Institut de Mathématiques de Jussieu-Paris Rive Gauche, Ouragan, Paris, France

3. Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

4. Institut Universitaire de France

ASIACRYPT'22. December 7, 2022.

Zero-Knowledge Proofs for Subset Sum Problem

Subset Sum Problem

From (w, t), find a vector x such that

 $\langle w, x \rangle = t \mod q$ and $x \in \{0, 1\}^n$.

Zero-Knowledge Proofs for Subset Sum Problem

Subset Sum Problem

From (w, t), find a vector x such that

$$\langle w, x \rangle = t \mod q$$
 and $x \in \{0, 1\}^n$.

イロト 不得 とくき とくき とうき

3/19

MPC-in-the-Head Paradigm

MPC-in-the-Head Paradigm

- Generic technique to build *zero-knowledge protocols* using *multi-party computation*.
- Introduced in 2007 by:

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure multiparty computation. STOC 2007.

Sharing of the secret

The secret x satisfies

 $\langle w, x \rangle = t \mod q$ and $x \in \{0, 1\}^n$.

We share it in N parts:

$$x = [x]_1 + [x]_2 + \ldots + [x]_{N-1} + [x]_N + \Delta x.$$

Introduction 00000

 $\underset{000000000}{\operatorname{MPCitH}} \text{ with Rejection}$

Further Applications

MPC-in-the-Head Paradigm

The multi-party computation outputs

- Accept if x is a subset sum solution,

- Reject otherwise.

Introduction 00000

MPCitH with Rejection

Further Applications

MPC-in-the-Head Paradigm

8 = Commitment

< □ ト < □ ト < 直 ト < 直 ト < 直 ト 三 の へ () 5 / 19 Introduction 00000

MPCitH with Rejection

MPC-in-the-Head Paradigm

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ 5/19 $\substack{\text{Introduction}\\0000}$

 $\underset{000000000}{\operatorname{MPCitH}} \operatorname{with}\, \operatorname{Rejection}$

Further Applications

イロト イロト イヨト イヨト 三日

6/19

MPC-in-the-Head Paradigm - Performances

Soundness error:

 $\frac{1}{N}$

 $\frac{1}{N}$

Further Applications

MPC-in-the-Head Paradigm - Performances

Soundness error:

Proof transcript:

 $\circ~$ Inputs of N-1 parties:

	\mathcal{P}_1		\mathcal{P}_2			\mathcal{P}_{N-1}		\mathcal{P}_N			
x =	$[\![x]\!]_1$	+	$[\![x]\!]_2$	+	 +	$[\![x]\!]_{N-1}$	+	$[\![x]\!]_N$	+	Δx	
	\uparrow		\uparrow			↑		1			
	seed1		seed ₂			$seed_{N-}$		$seed_N$			

 $\frac{1}{N}$

Further Applications

MPC-in-the-Head Paradigm - Performances

Soundness error:

Proof transcript:

- Inputs of N-1 parties:
 - N-1 seeds of λ bits
 - Sharing offset: Δx

o ...

 $\frac{1}{N}$

Further Applications

MPC-in-the-Head Paradigm - Performances

Soundness error:

Proof transcript:

- Inputs of N-1 parties:
 - N-1 seeds of λ bits
 - Sharing offset: Δx

o ...

To achieve the soundness error of $2^{-\lambda}$, one needs to repeat the protocol

$$\tau := \frac{\lambda}{\log_2 N}$$
 times.

How to share a bit

How to share a bit $b \in \{0, 1\}$ such that

$$b = \llbracket b \rrbracket_1 + \llbracket b \rrbracket_2 + \ldots + \llbracket b \rrbracket_N + \Delta b ?$$

How to share a bit

How to share a bit $b \in \{0, 1\}$ such that

$$b = \llbracket b \rrbracket_1 + \llbracket b \rrbracket_2 + \ldots + \llbracket b \rrbracket_N + \Delta b$$
?

 \blacksquare Additive sharing (modulo q)

$$\begin{cases} \llbracket b \rrbracket_i & \stackrel{\$}{\leftarrow} \mathbb{Z}_q \text{ for all } i \in [N], \\ \Delta b & \leftarrow b - \sum_{i=1}^N \llbracket b \rrbracket_i \mod q. \end{cases}$$

How to share a bit

How to share a bit $b \in \{0, 1\}$ such that

$$b = \llbracket b \rrbracket_1 + \llbracket b \rrbracket_2 + \ldots + \llbracket b \rrbracket_N + \Delta b$$
?

 \blacksquare Additive sharing (modulo q)

$$\begin{cases} \llbracket b \rrbracket_i & \stackrel{\$}{\leftarrow} \mathbb{Z}_q \text{ for all } i \in [N], \\ \Delta b & \leftarrow b - \sum_{i=1}^N \llbracket b \rrbracket_i \mod q. \end{cases}$$

How to share a bit

How to share a bit $b \in \{0, 1\}$ such that

$$b = \llbracket b \rrbracket_1 + \llbracket b \rrbracket_2 + \ldots + \llbracket b \rrbracket_N + \Delta b$$
?

 \blacksquare Additive sharing (modulo q)

$$\begin{cases} \llbracket b \rrbracket_i & \stackrel{\$}{\leftarrow} \mathbb{Z}_q \text{ for all } i \in [N], \\ \Delta b & \leftarrow b - \sum_{i=1}^N \llbracket b \rrbracket_i \mod q. \end{cases}$$

 \square Additive sharing on integers

$$\begin{cases} \llbracket b \rrbracket_i & \stackrel{\$}{\leftarrow} \{0, \dots, A-1\} \text{ for all } i \in [N], \\ \Delta b & \leftarrow b - \sum_{i=1}^N \llbracket b \rrbracket_i. \end{cases}$$

 $7 \, / \, 19$

イロト イロト イヨト イヨト 二日

Sharing on integers - Information leakage

The sharing offset Δb leaks information.

Sharing on integers - Information leakage

The sharing offset Δb leaks information.

Solution: add a rejection rule.

Sharing on integers - Rejection Rule

The prover must \underline{abort} when

• we have b = 0 and $[\![b]\!]_{i^*} = A - 1$,

• we have
$$b = 1$$
 and $\llbracket b \rrbracket_{i^*} = 0$,

Sharing on integers - Rejection Rule

The prover must \underline{abort} when

- \circ we have b = 0 and $\llbracket b \rrbracket_{i^*} = A 1$,
- \circ we have b = 1 and $\llbracket b \rrbracket_{i^*} = 0$,

Rejection rate:

$\frac{1}{A}$

Sharing offset cost:

 $\log_2(A-1)$ bits

instead of $\log_2 q$ bits.

Sharing on integers - Rejection Rule

The prover must \underline{abort} when

- we have b = 0 and $[\![b]\!]_{i^*} = A 1$,
- \circ we have b = 1 and $\llbracket b \rrbracket_{i^*} = 0$,

Rejection rate:

 $\frac{1}{A}$

Aborting leaks no information about the secret.

Sharing offset cost:

 $\log_2(A-1)$ bits

instead of $\log_2 q$ bits.

We can generalize to a binary vector $x \in \{0, 1\}^n$.

We can generalize to a binary vector $x \in \{0, 1\}^n$.

Rejection rate:

$$1 - \left(1 - \frac{1}{A}\right)^n$$

Sharing offset cost:

$$n \cdot \log_2(A-1)$$
 bits

instead of $n \cdot \log_2 q$ bits.

We can generalize to a binary vector $x \in \{0, 1\}^n$.

Rejection rate:

$$1 - \left(1 - \frac{1}{A}\right)^n$$

Sharing offset cost:

$$n \cdot \log_2(A-1)$$
 bits

instead of $n \cdot \log_2 q$ bits.

128 KB

<ロト < 回 ト < 三 ト < 三 ト < 三 ト ミ の Q (~ 10 / 19

We can generalize to a binary vector $x \in \{0, 1\}^n$.

Rejection rate:

Sharing offset cost:

 $n \cdot \log_2(A-1)$ bits

instead of $n \cdot \log_2 q$ bits.

7 KB

128 KB

Rejection: 22%

MPC protocol - Subset Sum Problem

The multi-party computation must check that the vector \boldsymbol{x} satisfies

To check that $\mathbf{x} \in \{0, 1\}^n$:

- Using batch product verification [BN20],
- Using cut-and-choose strategy [KKW18].

MPC protocol - Batch Product Verification

Strategy 1:

To check that $x \in \{0, 1\}^n$, we will check using *standard* techniques ([BN20]) that

$$\boldsymbol{x} \circ (\boldsymbol{x} - 1) = 0 \mod q'$$

where

- \circ is the pointwise multiplication, and
- q' is a prime close to A.

[BN20] Carsten Baum and Ariel Nof. Concretely-efficient zero-knowledge arguments for arithmetic circuits and their application to lattice-based cryptography. PKC 2020.

MPC protocol - Cut-and-choose strategy

Strategy 2:

To check that $\mathbf{x} \in \{0, 1\}^n$, we will

- get [r] where r is a random mask which is ensured to be binary by a cut-and-choose phase [KKW18].
- compute and reveal \tilde{x} as $x \oplus r \in \{0,1\}^n$,
- deduce a sharing of x using the relation

$$\llbracket x \rrbracket = (1 - \tilde{x}) \circ \llbracket r \rrbracket + \tilde{x} \circ (1 - \llbracket r \rrbracket).$$

[KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-interactive zero knowledge with applications to post-quantum signatures. ACM CCS 2018.

Decreasing the Rejection Rate

The verifier validates the proof transcript when the prover does not abort among the τ repetitions.

Decreasing the Rejection Rate

The verifier validates the proof transcript when the prover does not abort among the τ repetitions.

The verifier validates the proof transcript when the prover aborts at most η times among the τ repetitions.

- \blacksquare Decrease a lot the rejection rate
- \blacksquare Increase a bit the soundness error

Performances

Interactive proof of knowledge for the subset sum problem.

Protocol		P	aramet	ers	Proof size	Poi rato		
1 1000001	τ	η	N	A	M		nej. rate	
Shamir [Sha86]	219	-	-	-	-	1186 KB	-	
[LNSW13]	219	-	-	-	-	2350 KB	-	
Beullens [Beu20]	14	-	1024	-	4040	122 KB	-	
Batching Strategy	17	0	256	2^{13}	-	16.6 KB	0.412	
Batching Strategy	21	3	256	2^{13}	-	17.7 KB	0.004	
C&C Strategy	19	0	256	2^{13}	954	13.0 KB	0.448	
C&C Strategy	24	3	256	2^{14}	952	15.4 KB	0.001	

with n = 256 and $q = 2^{256}$ as parameters for the subset sum problem.

<ロ> < (回) < (回) < (目) < 目) < 目) < 目) のへ(で 15/19

ZK PoK for SIS Problem

Given (A, u), prove the knowledge of a vector s such that

 $As = u \mod q$ and $||s||_{\infty} \leq \beta$.

ZK PoK for SIS Problem

Given (A, u), prove the knowledge of a vector s such that

 $As = u \mod q$ and $||s||_{\infty} \le \beta$.

Protocol	Any a	Insta	nce 1	Instance 2		
1 1000001	Ally q	Proof Size	Rej. Rate	Proof Size	Rej. Rate	
[LNSW13]	1	3600 KB	-	8988 KB	-	
[BN20]	q prime	-	-	4077 KB	-	
[Beu20]	q prime	233 KB	-	444 KB	-	
Batching Strategy	✓ <i>✓</i>	291 KB	0.04	291 KB	0.04	
C&C Strategy	✓ ✓	184 KB	0.05	184 KB	0.05	
[BLS19]	q prime + NTT	384 KB	0.92	$a \approx 2^6$	51	
[ENS20]	q prime + NTT	47 KB	0.95			
[LNS21]	q prime + NTT	33.3 KB	0.85			
Aurora	q prime + NTT	71 KB	-			
Ligero	q prime + NTT	157 KB	-]		

$$q\approx 2^{32}$$

ZK PoK for secret keys in TFHE

In TFHE, prove the knowledge of key-plaintext pair matching a given ciphertext $(q = 2^{64})$.

Protocol		Pa	ramet	ers	Proof gizo	Poi reto			
1 1000001	au	η	N	A	M	1 TOOL SIZE	nej. rate		
1 ciphertext									
Shamir [Sha86]	219	-	-	-	-	845 KB	-		
Batching Strategy	19	2	256	2^{15}	-	46.1 KB	0.007		
C&C Strategy	24	3	256	2^{15}	952	34.0 KB	0.002		
1024 ciphertexts									
Shamir [Sha86]	219	-	-	-	-	77.9 MB	-		
Batching Strategy	19	2	256	2^{22}	-	5.90 MB	0.003		
C&C Strategy	24	3	256	2^{21}	952	3.65 MB	0.006		

Signature Scheme from BHH01 PRF

Boneh-Halevi-Howgrave-Graham PRF:

$$F_x(m) = MSB_{\delta}((x+m)^{-1} \mod p)$$

Signature:

- Private key:
$$x \in \mathbb{Z}_p$$
,
- Public key: $y_1 := F_x(1), \dots, y_t := F_x(t)$

Proof of knowledge of $x, z_1, ..., z_t$ such that

for all
$$i$$
, $(x+i)(2^{(1-\delta)m}y_i+z_i) \equiv 1 \mod p$
and $z_1, \dots, z_t \in \{0, \dots, 2^{(1-\delta)m}-1\}$

Signature Scheme from BHH01 PRF

Boneh-Halevi-Howgrave-Graham PRF:

$$F_x(m) = MSB_{\delta}((x+m)^{-1} \mod p)$$

Signature:

- <u>Private key</u>: $x \in \mathbb{Z}_p$,

- Public key:
$$y_1 := F_x(1), \ldots, y_t := F_x(t)$$

	P	Sizo	<i>n</i> .				
$p \approx 2^m$	t	δ	N	au	DIZE	Prej	
$\approx 2^{229}$	3	88/229	256	16	4916 B	0.012	
$\approx 2^{186}$	4	58/186	256	16	$4860~\mathrm{B}$	0.016	
$\approx 2^{175}$	5	47/175	256	16	$5074~\mathrm{B}$	0.019	

Conclusion

Summary

- \mathbb{R} New sharing method when large modulus
- \mathbb{R} Rejection rule to avoid information leakage
- ${\tt IS}$ Efficient ZK PoK for the subset sum problem
- \blacksquare Interesting applications (FHE, signature, ...)

Perspective

- IS Other applications
- \blacksquare Quantum cryptanalysis for Boneh et~al.'s PRF

More details in https://eprint.iacr.org/2022/223.