Universal Ring Signatures in the Standard Model

Pedro Branco¹ Nico Döttling^{2,*} Stella Wohnig^{2,3}

¹ Johns Hopkins University, partially done at IST University of Lisbon

²Helmholtz Center for Information Security (CISPA)

³Universität des Saarlandes

*Funded by an ERC grant

Asiacrypt 2022

Ring signatures

Semantics

- $\mathsf{Gen}(1^\lambda) o (\mathsf{vk}, \mathsf{sk})$
- $\operatorname{Sign}(1^{\lambda}, \operatorname{sk}_{i}, m, (\underline{\mathsf{vk}_{1}, \ldots \mathsf{vk}_{\ell}})) \to \Sigma$

Ring R

• Verify $(\Sigma, m, R) \rightarrow \{0, 1\}$

Ring signatures

Semantics

- $\mathsf{Gen}(1^\lambda) o (\mathsf{vk}, \mathsf{sk})$
- $\operatorname{Sign}(1^{\lambda}, \operatorname{sk}_{i}, m, \underbrace{(\operatorname{vk}_{1}, \ldots \operatorname{vk}_{\ell})}) \to \Sigma$
- Verify $(\Sigma, m, R) \rightarrow \{0, 1\}$

Anonymity

Does not reveal who exactly created a signature ...

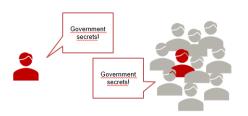
Unforgeability

... only that it was someone from the ring

Ring signatures

Semantics

- $\mathsf{Gen}(1^\lambda) o (\mathsf{vk}, \mathsf{sk})$
- $\operatorname{Sign}(1^{\lambda}, \operatorname{sk}_{i}, m, \underbrace{(\operatorname{vk}_{1}, \ldots \operatorname{vk}_{\ell})}) \to \Sigma$
- Verify $(\Sigma, m, R) \rightarrow \{0, 1\}$



Anonymity

Does not reveal who exactly created a signature ...

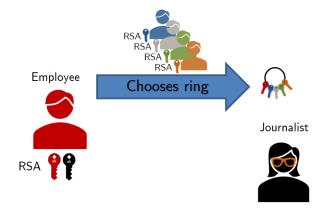
Unforgeability

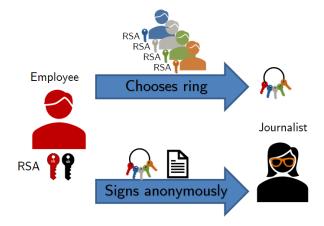
... only that it was someone from the ring

The situation:

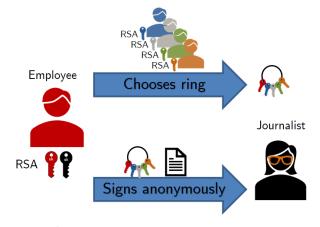
Journalist

Journalist

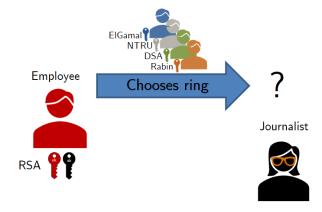


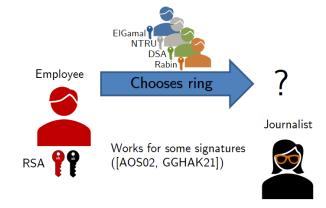


The situation:

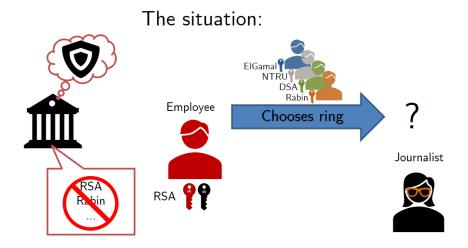


Things are never so easy...

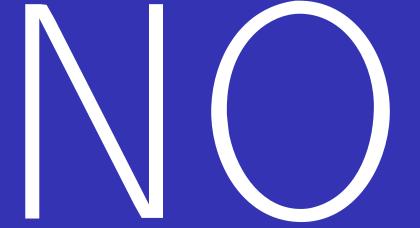




The situation: **ElGamal** NTRU Rabin **Employee** Chooses ring **Journalist**



Is there protection from being used in anonymity ring?



*terms and conditions apply

Universal Ring Signatures

Ring signatures for rings of keys from ANY set of signing schemes.

Universal Ring Signatures

Ring signatures for rings of keys from ANY set of signing schemes.

Semantics

- ullet Gen $(1^{\lambda}) o (vk, sk) \setminus vk$ same as in underlying signature
- $\mathsf{Sign}(1^{\lambda},\mathsf{sk}_i,m,R=(\mathsf{vk}_1,\ldots\mathsf{vk}_{\ell}),\underbrace{(\mathsf{Sig}_1,\ldots,\mathsf{Sig}_{M})}_{\mathsf{List\ of\ schemes\ }S}) o \Sigma$
- Verify(Σ, m, R, S) $\rightarrow \{0, 1\}$

We could use a CRS or the ROM. NIZKPoK construction exists.

We could use a CRS or the ROM. NIZKPoK construction exists. No! Why?

We could use a CRS or the ROM. NIZKPoK construction exists. No! Why?

• Who chooses CRS? No trusted setting.

We could use a CRS or the ROM. NIZKPoK construction exists. No! Why?

- Who chooses CRS? No trusted setting.
- RO must be instantiated. Soundness issues.

We could use a CRS or the ROM. NIZKPoK construction exists.

No! Why?

- Who chooses CRS? No trusted setting.
- RO must be instantiated. Soundness issues.

Standard model it is - why is this hard?

For any secure schemes $Ls = \{Sig_i\}_i$ we need:

Unforgeability

Experiment

Adversary
$$\mathcal{A}$$

$$\xrightarrow{\begin{cases} [\mathsf{ind}_i\}_{i\in[\ell]} \\ + \\ \mathsf{R}=(\mathsf{v}k_i)_i, (\mathsf{v}k_i, \mathsf{s}k_i) \leftarrow \mathsf{Sig}.\mathsf{Key}\mathsf{Gen}_{\mathsf{ind}_i}(1^{\lambda}; r_i) \\ + \\ \mathsf{Sig}.\mathsf{Key}\mathsf{Gen}_{\mathsf{ind}_i}(1^{\lambda}; r_i) \end{cases}}$$

Repeatedly:

may ask to corrupt honest keys

or ask for (universal ring) signatures

When done: $(\Sigma^*, m^*, R^*, S^*)$

Wins if all schemes/keys are honest, m^* not queried to sign and signature verifies.

For any secure schemes $Ls = \{Sig_i\}_i$ we need:

Unforgeability

Experiment

Adversary A

$$\xrightarrow{\substack{k = (vk_i)_i, (vk_i, sk_i) \leftarrow \text{Sig.KeyGen}_{\text{ind}_i}(1^{\lambda}; r_i) \\ \longrightarrow}}$$

Repeatedly:

may ask to corrupt honest keys

or ask for (universal ring) signatures

When done: $(\Sigma^*, m^*, R^*, S^*)$

Wins if all schemes/keys are honest, m^* not queried to sign and signature verifies.

Must reduce to unforgeability of Sig.

For any secure schemes $Ls = \{Sig_i\}_i$ we need:

${\sf Unforgeability}$

Experiment Adversary A

$$\xrightarrow{\{\mathsf{ind}_i\}_{i\in[\ell]}}
\xrightarrow{R=(\mathsf{vk}_i)_i,(\mathsf{vk}_i,\mathsf{sk}_i)\leftarrow\mathsf{Sig}.\mathsf{KeyGen}_{\mathsf{ind}_i}(1^\lambda;r_i)}$$

Repeatedly:

may ask to corrupt honest keys

or ask for (universal ring) signatures

When done: $(\Sigma^*, m^*, R^*, S^*)$

Wins if all schemes/keys are honest, m^* not queried to sign and signature verifies.

Must reduce to unforgeability of Sig.

 \Rightarrow Reduction must extract a signature from Σ^* , that is forge for some Sig.

For any secure schemes $Ls = \{Sig_i\}_i$ we need:

Unforgeability

Experiment Adversary \mathcal{A} $\stackrel{\{\operatorname{ind}_i\}_{i\in[\ell]}}{\underset{R=(vk_i)_i,(\mathsf{vk}_i,\mathsf{sk}_i)}{\longleftarrow}} \overset{\operatorname{Repeatedly:}}{\underset{\operatorname{or ask for (universal ring) signatures}}{\underset{\operatorname{or ask for (universal ring) signatures}}{\underbrace{(\Sigma^*,m^*,R^*,S^*)}}$ When done: $\overset{(\Sigma^*,m^*,R^*,S^*)}{\underset{\operatorname{or ask for (universal ring) signatures}}{\underbrace{(\Sigma^*,m^*,R^*,S^*)}}}$

queried to sign and signature verifies.

Must reduce to unforgeability of Sig.

 \Rightarrow Reduction must extract a signature from Σ^* , that is forge for some Sig_i.

Anonymity

Experiment Adversary \mathcal{A} $\stackrel{\{ind_i\}_{i\in[\ell]}}{\longleftarrow}$ $\xrightarrow{R=(vk_i)_i,(vk_i,sk_i)\leftarrow Sig.KeyGen_{ind_i}(1^{\lambda};r_i)}$ $\xrightarrow{Additionally outputs randomness(r_i)_i}$ $\stackrel{(m^*,R^*,S^*,(ind_0,ind_1)),vk_{ind_0/1}^*\in R}{\longleftarrow}$ $\xrightarrow{\Sigma^*=URS.Sign(1^{\lambda},sk_{ind_b}^*,m^*,R^*,S^*) \text{ for } b\leftarrow_{\S}\{0,1\}}$ $\stackrel{Guess b'.}{\longleftarrow}$ Wins if b=b'.

For any secure schemes $Ls = {Sig_i}_i$ we need:

Unforgeability

queried to sign and signature verifies.

Must reduce to unforgeability of Sig.

 \Rightarrow Reduction must extract a signature from Σ^* , that is forge for some Sig_i.

Anonymity

Experiment Adversary A $\{\operatorname{ind}_i\}_{i\in[\ell]}$ $R = (vk_i)_i, (vk_i, sk_i) \leftarrow Sig. KeyGen_{ind_i}(1^{\lambda}; r_i)$ Additionally outputs randomness $(r_i)_{i}$ $\begin{aligned} & \underbrace{(m^*, R^*, S^*, (\mathsf{ind_0}, \mathsf{ind_1})), \mathsf{vk}^*_{\mathsf{ind_0}/\mathbf{1}} \!\in\! R}_{\mathsf{\Sigma}^* = \mathsf{URS}.\mathsf{Sign}(\mathbf{1}^\lambda, \mathsf{sk}^*_{\mathsf{ind_0}}, m^*, R^*, S^*) \text{ for } b \leftarrow_{\mathsf{S}} \{0, 1\} \end{aligned}$ Guess b'. Wins if b = b'.

 $\label{eq:local_local_problem} \mathcal{A} \text{ may NOT extract a forge for any} \\ \text{Sig}_i \text{ from } \Sigma^*.$

For any secure schemes $Ls = \{Sig_i\}_i$ we need:

When done: $(\Sigma^*, m^*, R^*, S^*)$

Wins if all schemes/keys are honest, m^* not queried to sign and signature verifies.

Anonymity Experiment Adversary A $\{\operatorname{ind}_i\}_{i\in[\ell]}$ $R = (vk_i)_i, (vk_i, sk_i) \leftarrow Sig. KeyGen_{ind_i}(1^{\lambda}; r_i)$ Additionally outputs randomness $(r_i)_{i}$ $\begin{aligned} & \underbrace{(m^*, R^*, S^*, (ind_{\mathbf{0}}, ind_{\mathbf{1}})), \mathsf{vk}^*_{ind_{\mathbf{0}/\mathbf{1}}} \in R}_{} \\ & \longleftarrow \\ & \Sigma^* = \mathsf{URS.Sign}(\mathbf{1}^{\lambda}, \mathsf{sk}^*_{ind_b}, m^*, R^*, S^*) \text{ for } b \leftarrow_{\mathbf{5}} \{0, 1\} \end{aligned}$ Guess b'. Wins if b = b'.

How can the reduction get an edge over the adversary?

For any secure schemes $Ls = \{Sig_i\}_i$ we need:

Unforgeability Experiment Adversary \mathcal{A} $\stackrel{\{\operatorname{ind}_i\}_{i\in[\ell]}}{\longleftarrow} \\ R=(vk_i)_i, (vk_i, \operatorname{sk}_i) \leftarrow \operatorname{Sig.KeyGen}_{\operatorname{ind}_i}(1^{\lambda}; r_i) \\ \longrightarrow \\ Repeatedly: \\ \operatorname{may ask to corrupt honest keys} \\ \operatorname{or ask for (universal ring) signatures} \\ \longrightarrow \\ \text{When done: } \stackrel{(\Sigma^*, m^*, R^*, S^*)}{\longleftarrow}$

Wins if all schemes/keys are honest, m^* not queried to sign and signature verifies.

Anonymity

Experiment

Adversary
$$\mathcal{A}$$

$$\xrightarrow{\{ind_i\}_{i\in[\ell]}}$$

$$\xrightarrow{R=(vk_i)_i,(vk_i,sk_i)} \leftarrow \text{Sig.KeyGen}_{ind_i}(1^{\lambda};r_i) \rightarrow \rightarrow$$

Additionally outputs randomness $(r_i)_i$

$$\xrightarrow{(m^*,R^*,S^*,(ind_0,ind_1)),vk_{ind_0/1}^* \in R}$$

$$\xrightarrow{\Sigma^*=\text{URS.Sign}(1^{\lambda},sk_{ind_b}^*,m^*,R^*,S^*) \text{ for } b\leftarrow \S\{0,1\}}$$

$$\xrightarrow{\text{Guess } b'}.$$
Wins if $b=b'$.

How can the reduction get an edge over the adversary WITHOUT changing the key structure?

Overview

Need to hide a signature, where only the reduction can find it...

Overview

Need to hide a signature, where only the reduction can find it...

Allow the reduction more run-time: Complexity leveraging

Overview

Need to hide a signature, where only the reduction can find it...

- Allow the reduction more run-time: Complexity leveraging
- Allow the reduction more information: Witness encryption

The terms and conditions

Construction	Size in R	Model	Assumptions/Caveats
[AOS02]	Linear	ROM	structured signatures ¹
[GGHAK21]	Log	ROM, CRS	structured signatures ²
[BDW22] 1	Log	Standard	signatures are superpoly secure
[BDW22] 2	Linear	Standard	Witness Encryption, t-anonymity
[BDW22] 2b	Log	Standard	iO, t-anonymity

¹hash-then-trapdoor-sign or three-move

 $^{^2\}Sigma$ -protocols

The terms and conditions

Construction	Size in R	Model	Assumptions/Caveats
[AOS02]	Linear	ROM	structured signatures ¹
[GGHAK21]	Log	ROM, CRS	structured signatures ²
[BDW22] 1	Log	Standard	signatures are superpoly secure
[BDW22] 2	Linear	Standard	Witness Encryption, t-anonymity
[BDW22] 2b	Log	Standard	iO, t-anonymity

t-anonymity: Anonymity holds if $\geq t$ honest keys in R; commonly (t=3,4)

¹hash-then-trapdoor-sign or three-move

 $^{^{2}\}Sigma$ -protocols

P. Branco, N. Döttling, S. Wohnig

The solution

Complexity Leveraging

$$\mathsf{Sign}(1^{\lambda},\mathsf{sk}_i,m,R=(\mathsf{vk}_1,\ldots,\mathsf{vk}_{\ell}),\mathcal{S}=\{\mathsf{Sig}_i\}_{i\in[M]})$$

• Let vk_i, Sig_{ind} be corresponding to sk_i.

Complexity Leveraging

$$\mathsf{Sign}(1^{\lambda},\mathsf{sk}_i,m,R=(\mathsf{vk}_1,\ldots,\mathsf{vk}_{\ell}),\mathcal{S}=\{\mathsf{Sig}_i\}_{i\in[M]})$$

- Let vk_i, Sig_{ind} be corresponding to sk_i.
- $\sigma \leftarrow \text{Sig.Sign}_{\text{ind}}(\text{sk}_i, m)$.

Complexity Leveraging

$$\mathsf{Sign}(1^{\lambda},\mathsf{sk}_i,m,R=(\mathsf{vk}_1,\ldots,\mathsf{vk}_{\ell}),\mathcal{S}=\{\mathsf{Sig}_i\}_{i\in[M]})$$

- Let vk_i, Sig_{ind} be corresponding to sk_i.
- $\sigma \leftarrow \text{Sig.Sign}_{\text{ind}}(\text{sk}_i, m)$.
- $(com_0, \gamma_0) \leftarrow CS.Commit(1^{\lambda}, \sigma)$

Complexity Leveraging

$$\mathsf{Sign}(1^{\lambda},\mathsf{sk}_i,m,R=(\mathsf{vk}_1,\ldots,\mathsf{vk}_{\ell}),\mathcal{S}=\{\mathsf{Sig}_i\}_{i\in[M]})$$

- Let vk_i, Sig_{ind} be corresponding to sk_i.
- $\sigma \leftarrow \text{Sig.Sign}_{\text{ind}}(\text{sk}_i, m)$.

- Secure for superpoly T Adversary
- $(com_0, \gamma_0) \leftarrow CS.Commit(1^{\lambda}, \sigma)$

Keyless, broken in T

Complexity Leveraging

$\mathsf{Sign}(1^{\lambda},\mathsf{sk}_i,m,R=(\mathsf{vk}_1,\ldots,\mathsf{vk}_{\ell}),\mathcal{S}=\{\mathsf{Sig}_i\}_{i\in[M]})$

- Let vk_i, Sig_{ind} be corresponding to sk_i.
- $\sigma \leftarrow \text{Sig.Sign}_{\text{ind}}(\text{sk}_i, m)$. Secure for superpoly T Adversary
- $(com_0, \gamma_0) \leftarrow CS.Commit(1^{\lambda}, \sigma)$

Keyless, broken in T

- Compute a NIWI proof $\pi \leftarrow \text{NIWI.Prove}(\cdot, \cdot)$ that the above was done correctly for one $\text{vk}_i \in R$ and $\text{Sig}_{\text{ind}} \in S$.
- Output $\Sigma = (com_0, \pi)$.

Complexity Leveraging

$\mathsf{Sign}(1^{\lambda},\mathsf{sk}_i,m,R=(\mathsf{vk}_1,\ldots,\mathsf{vk}_{\ell}),\mathcal{S}=\{\mathsf{Sig}_i\}_{i\in[M]})$

- Let vk_i, Sig_{ind} be corresponding to sk_i.
- $\sigma \leftarrow \text{Sig.Sign}_{\text{ind}}(\text{sk}_i, m)$. Secure for superpoly T Adversary
- $(com_0, \gamma_0) \leftarrow CS.Commit(1^{\lambda}, \sigma)$

Keyless, broken in T

- Compute a NIWI proof $\pi \leftarrow \text{NIWI.Prove}(\cdot, \cdot)$ that the above was done correctly for one $\text{vk}_i \in R$ and $\text{Sig}_{\text{ind}} \in S$.
- Output $\Sigma = (com_0, \pi)$.

Unforgeable ✓

$\mathsf{Sign}(1^{\lambda},\mathsf{sk}_i,m,R=(\mathsf{vk}_1,\ldots,\mathsf{vk}_{\ell}),\mathcal{S}=\{\mathsf{Sig}_i\}_{i\in[M]})$

- Let vk_i, Sig_{ind} be corresponding to sk_i.
- $\sigma \leftarrow \text{Sig.Sign}_{\text{ind}}(\text{sk}_i, m)$.
- $(com_0, \gamma_0) \leftarrow CS.Commit(1^{\lambda}, \sigma)$ and $(com_1, \gamma_1) \leftarrow CS.Commit(1^{\lambda}, 0)$.
- Compute a NIWI proof $\pi \leftarrow \text{NIWI.Prove}(\cdot, \cdot)$ that (com_0, σ) OR (com_1, σ) are correct for one $\text{vk}_i \in R$ and $\text{Sig}_{\text{ind}} \in S$.
- Output $\Sigma = (\text{com}_0, \frac{\text{com}_1, \pi}{\pi})$.

Unforgeable ✓

Complexity Leveraging

$\mathsf{Sign}(1^{\lambda},\mathsf{sk}_i,m,R=(\mathsf{vk}_1,\ldots,\mathsf{vk}_{\ell}),\mathcal{S}=\{\mathsf{Sig}_i\}_{i\in[M]})$

- Let vk_i, Sig_{ind} be corresponding to sk_i.
- $\sigma \leftarrow \text{Sig.Sign}_{\text{ind}}(\text{sk}_i, m)$.
- $(com_0, \gamma_0) \leftarrow CS.Commit(1^{\lambda}, \sigma)$ and $(com_1, \gamma_1) \leftarrow CS.Commit(1^{\lambda}, 0)$.
- Compute a NIWI proof $\pi \leftarrow \text{NIWI.Prove}(\cdot, \cdot)$ that (com_0, σ) OR (com_1, σ) are correct for one $\text{vk}_i \in R$ and $\text{Sig}_{\text{ind}} \in S$.
- Output $\Sigma = (com_0, com_1, \pi)$.

Unforgeable ✓ 2-Anonymous ✓

Complexity Leveraging

$\mathsf{Sign}(1^{\lambda},\mathsf{sk}_i,m,R=(\mathsf{vk}_1,\ldots,\mathsf{vk}_{\ell}),\mathcal{S}=\{\mathsf{Sig}_i\}_{i\in[M]})$

- Let vk_i, Sig_{ind} be corresponding to sk_i.
- $\sigma \leftarrow \text{Sig.Sign}_{\text{ind}}(\text{sk}_i, m)$.
- $(com_0, \gamma_0) \leftarrow CS.Commit(1^{\lambda}, \sigma)$ and $(com_1, \gamma_1) \leftarrow CS.Commit(1^{\lambda}, 0)$.
- Compute a NIWI proof $\pi \leftarrow \text{NIWI.Prove}(\cdot, \cdot)$ that (com_0, σ) OR (com_1, σ) are correct for one $\text{vk}_i \in R$ and $\text{Sig}_{\text{ind}} \in S$.
- Output $\Sigma = (com_0, com_1, \pi)$.

Unforgeable ✓ 2-Anonymous ✓ Size?

$\mathsf{Sign}(1^{\lambda},\mathsf{sk}_i,m,R=(\mathsf{vk}_1,\ldots,\mathsf{vk}_{\ell}),\mathcal{S}=\{\mathsf{Sig}_i\}_{i\in[M]})$

- Let vk_i, Sig_{ind} be corresponding to sk_i.
- $\sigma \leftarrow \text{Sig.Sign}_{\text{ind}}(\text{sk}_i, m)$.
- $(com_0, \gamma_0) \leftarrow CS.Commit(1^{\lambda}, \sigma)$ and $(com_1, \gamma_1) \leftarrow CS.Commit(1^{\lambda}, 0)$.
- Compute a NIWI proof $\pi \leftarrow \text{NIWI.Prove}(\cdot, \cdot)$ that (com_0, σ) OR (com_1, σ) are correct for one $\text{vk}_i \in R$ and $\text{Sig}_{\text{ind}} \in S$.
- Output $\Sigma = (com_0, com_1, \pi)$.

Unforgeable ✓ 2-Anonymous ✓
Size? Standard trick: SPB digest ([BDH+19])

$\mathsf{Sign}(1^{\lambda},\mathsf{sk}_i,m,R=(\mathsf{vk}_1,\ldots,\mathsf{vk}_{\ell}),\mathcal{S}=\{\mathsf{Sig}_i\}_{i\in[M]})$

- Let vk_i, Sig_{ind} be corresponding to sk_i.
- $\sigma \leftarrow \text{Sig.Sign}_{\text{ind}}(\text{sk}_i, m)$.
- $(com_0, \gamma_0) \leftarrow CS.Commit(1^{\lambda}, \sigma)$ and $(com_1, \gamma_1) \leftarrow CS.Commit(1^{\lambda}, 0)$.
- Compute a NIWI proof $\pi \leftarrow \text{NIWI.Prove}(\cdot, \cdot)$ that (com_0, σ) OR (com_1, σ) are correct for one $\text{vk}_i \in R$ and $\text{Sig}_{\text{ind}} \in S$.
- Output $\Sigma = (com_0, com_1, \pi)$.

Unforgeable ✓ 2-Anonymous ✓

Size? Standard trick: SPB digest ([BDH+19])

Superpoly-Assumption!

Want: Commitment $\xrightarrow{replace}$ WE

Want: Commitment $\xrightarrow{replace}$ WE

Witness Encryption

Let \mathcal{L} be an NP language defined by $x \in \mathcal{L} \Leftrightarrow \exists w : (x, w) \in \mathcal{R}$. A witness encryption WE has the following algorithms:

- ct \leftarrow WE.Enc $(1^{\lambda}, x, m)$
- $m \leftarrow WE.Dec(w, ct)$

It is correct & soundness secure.

The challenge - Recall

Unforgeability

Experiment

Adversary
$$A$$

$$\stackrel{\left\{\inf_{i\right\}_{i\in[\ell]}}{\leftarrow}}{R=(vk_{i})_{i},(vk_{i},sk_{i})\leftarrow\operatorname{Sig.KeyGen}_{\operatorname{ind}_{i}}(1^{\lambda};r_{i})}$$

Repeatedly:

may ask to corrupt honest keys

When done: $(\Sigma^*, m^*, R^*, S^*)$

Wins if all schemes/keys are honest, m^* not queried to sign and signature verifies.

t-Anonymity

Experiment

Adversary A

$$\frac{\langle \operatorname{ind}_{i} \rangle_{i \in [\ell]}}{\langle \operatorname{End}_{i} \rangle_{i, (\operatorname{vk}_{i}, \operatorname{sk}_{i})} \leftarrow \operatorname{Sig.KeyGen}_{\operatorname{ind}_{i}} (1^{\lambda}; r_{i})}$$

Additionally outputs randomness
$$(r_i)_i$$

$$(m^*, R^*, S^*, (ind_1, ..., ind_t)), vk_{ind_k}^* \in R$$

$$= \mathsf{URS.Sign}(1^{\lambda}, \mathsf{sk}_{ind_k}^*, m^*, R^*, S^*) \text{ for } k \leftarrow_{\S}[t]$$

 \leftarrow Guess k'.

Wins if k = k'.

The challenge - Recall

Unforgeability

Experiment

Adversary
$$\mathcal{A}$$

$$\xrightarrow{\{\mathsf{ind}_i\}_{i\in[\ell]}} \underbrace{\{\mathsf{ind}_i\}_{i\in[\ell]}}_{R=(\mathsf{v}k_i)_i,(\mathsf{v}k_i,\mathsf{sk}_i)\leftarrow\mathsf{Sig}.\mathsf{KeyGen}_{\mathsf{ind}_i}(1^\lambda;r_i)}_{\to\to}$$

Repeatedly: may ask to corrupt honest keys

or ask for (universal ring) signatures

When done: $(\Sigma^*, m^*, R^*, S^*)$

Wins if all schemes/keys are honest, m^* not queried to sign and signature verifies.

t-Anonymity

Experiment

Adversary A

$$\frac{\langle \mathsf{ind}_i \rangle_{i \in [\ell]}}{\langle \mathsf{ind}_i \rangle_{i \in [\ell]}} \xrightarrow{\mathsf{R} = (\mathsf{v}k_i)_i, (\mathsf{v}\mathsf{k}_i, \mathsf{sk}_i) \leftarrow \mathsf{Sig.KeyGen}_{\mathsf{ind}_i} (1^\lambda; r_i)} \xrightarrow{\mathsf{Additionally outputs randomness}(r_i)_i}$$

$$(m^*, R^*, S^*, (ind_1, ..., ind_t)), \forall k_{ind_k}^* \in R$$

$$\Sigma^* = \mathsf{URS.Sign}(1^{\lambda}, \mathsf{sk}_{ind_k}^*, m^*, R^*, S^*) \text{ for } k \leftarrow_{\S}[t]$$

$$Course k'.$$

Wins if k = k'.

Cannot change Gen, only degree of freedom is choice of randomness r_i !

Want: Commitment $\xrightarrow{replace}$ WE

Independently chosen keys

Want: Commitment $\xrightarrow{replace}$ WE

Independently chosen keys

Malformed, correlated keys

Want: Commitment $\xrightarrow{replace}$ WE

Independently chosen keys

Malformed, correlated keys

Want: Commitment $\xrightarrow{replace}$ WE

Independently chosen keys

Malformed, correlated keys

Malformed keys are a much more sparse key distribution.

Want: Commitment $\xrightarrow{replace}$ WE

Independently chosen keys

Malformed, correlated keys

Malformed keys are a much more sparse key distribution. Indistinguishable, but far.

Want: Commitment $\xrightarrow{replace}$ WE

Independently chosen keys



Malformed, correlated keys

Malformed keys are a much more sparse key distribution. Indistinguishable, but far. PRF key = witness of malformedness

Standard keys

 $(vk_i, sk_i) \leftarrow Sig.KeyGen_{ind_i}(1^{\lambda}; r_i)$ All $r_i \leftarrow_{\$} \{0, 1\}^{\lambda}$ are freshly random.

Standard keys

$$(vk_i, sk_i) \leftarrow Sig.KeyGen_{ind_i}(1^{\lambda}; r_i)$$

All $r_i \leftarrow_{\$} \{0, 1\}^{\lambda}$ are freshly random.

Malformed keys

$$(\mathsf{vk}_i, \mathsf{sk}_i) \leftarrow \mathsf{Sig}.\mathsf{KeyGen}_{\mathsf{ind}_i}(1^\lambda; r_i)$$

Choose random $K \leftarrow_{\$} \{0, 1\}^\lambda$, $r_i = \mathsf{PRF}(K, i)$.

Indistinguishable by pseudorandomness. PRF key K is witness!

Standard keys

$$(vk_i, sk_i) \leftarrow Sig.KeyGen_{ind_i}(1^{\lambda}; r_i)$$

All $r_i \leftarrow_{\$} \{0, 1\}^{\lambda}$ are freshly random.

Malformed keys

$$(\mathsf{vk}_i, \mathsf{sk}_i) \leftarrow \mathsf{Sig}.\mathsf{KeyGen}_{\mathsf{ind}_i}(1^\lambda; r_i)$$

Choose random $K \leftarrow_{\$} \{0, 1\}^\lambda$, $r_i = \mathsf{PRF}(K, i)$.

Indistinguishable by pseudorandomness. PRF key K is witness!

Standard keys

$$(vk_i, sk_i) \leftarrow Sig.KeyGen_{ind_i}(1^{\lambda}; r_i)$$

All $r_i \leftarrow_{\$} \{0, 1\}^{\lambda}$ are freshly random.

Malformed keys

$$(\mathsf{vk}_i, \mathsf{sk}_i) \leftarrow \mathsf{Sig}.\mathsf{KeyGen}_{\mathsf{ind}_i}(1^\lambda; r_i)$$

Choose random $K \leftarrow_{\$} \{0, 1\}^\lambda$, $r_i = \mathsf{PRF}(K, i)$.

Indistinguishable by pseudorandomness. PRF key K is witness! What WE statement to pick?

Standard keys

 $(vk_i, sk_i) \leftarrow Sig.KeyGen_{ind_i}(1^{\lambda}; r_i)$ All $r_i \leftarrow_{\$} \{0, 1\}^{\lambda}$ are freshly random.

Malformed keys

$$(\mathsf{vk}_i, \mathsf{sk}_i) \leftarrow \mathsf{Sig}.\mathsf{KeyGen}_{\mathsf{ind}_i}(1^\lambda; r_i)$$

Choose random $K \leftarrow_{\$} \{0, 1\}^\lambda$, $r_i = \mathsf{PRF}(K, i)$.

Indistinguishable by pseudorandomness. PRF key K is witness! What WE statement to pick?

Malformed in unforgeability, reduction can control all but one honest key

Standard keys

 $(vk_i, sk_i) \leftarrow Sig.KeyGen_{ind_i}(1^{\lambda}; r_i)$ All $r_i \leftarrow_{\$} \{0, 1\}^{\lambda}$ are freshly random.

Malformed keys

 $(\mathsf{vk}_i, \mathsf{sk}_i) \leftarrow \mathsf{Sig}.\mathsf{KeyGen}_{\mathsf{ind}_i}(1^\lambda; r_i)$ Choose random $K \leftarrow_{\$} \{0, 1\}^\lambda$, $r_i = \mathsf{PRF}(K, i)$.

Indistinguishable by pseudorandomness. PRF key K is witness! What WE statement to pick?

Malformed in unforgeability, reduction can control all but one honest key

 $x=R=(\mathsf{vk}_i)_i\in\mathcal{L}\Leftrightarrow\exists$ randomness K s.t. all but one key are malformed

Standard keys

 $(vk_i, sk_i) \leftarrow Sig.KeyGen_{ind_i}(1^{\lambda}; r_i)$ All $r_i \leftarrow_{\$} \{0, 1\}^{\lambda}$ are freshly random.

Malformed keys

 $(\mathsf{vk}_i, \mathsf{sk}_i) \leftarrow \mathsf{Sig}.\mathsf{KeyGen}_{\mathsf{ind}_i}(1^\lambda; r_i)$ Choose random $K \leftarrow_{\$} \{0, 1\}^\lambda$, $r_i = \mathsf{PRF}(K, i)$.

Indistinguishable by pseudorandomness. PRF key K is witness! What WE statement to pick?

Malformed in unforgeability, reduction can control all but one honest key

 $x=R=(\mathsf{vk}_i)_i\in\mathcal{L}\Leftrightarrow\exists$ randomness K s.t. all but one key are malformed

In anonymity: Adversary must use t honest keys, chance of t-1 of them being malformed?

Standard keys

$$(vk_i, sk_i) \leftarrow Sig.KeyGen_{ind_i}(1^{\lambda}; r_i)$$

All $r_i \leftarrow_{\$} \{0, 1\}^{\lambda}$ are freshly random.
Min-Entropy of $t - 1$ keys:

 $\geq (t-1)\kappa$ (κ lowest key entropy)

Malformed keys

$$\begin{array}{l} (\mathsf{vk}_i,\mathsf{sk}_i) \leftarrow \mathsf{Sig}.\mathsf{KeyGen}_{\mathsf{ind}_i}(1^\lambda;r_i) \\ \mathsf{Choose} \ \mathsf{random} \ \mathcal{K} \leftarrow_{\$} \{0,1\}^\lambda, \\ r_i = \mathsf{PRF}(\mathcal{K},i). \\ \mathsf{Min-Entropy} \ \mathsf{of} \ t-1 \ \mathsf{keys}: \\ \lambda, \ \mathsf{as} \ \mathsf{we} \ \mathsf{only} \ \mathsf{choose} \ \mathcal{K} \end{array}$$

Indistinguishable by pseudorandomness. PRF key K is witness! What WE statement to pick?

Malformed in unforgeability, reduction can control all but one honest key

$$x=R=(\mathsf{vk}_i)_i\in\mathcal{L}\Leftrightarrow\exists$$
 randomness K s.t. all but one key are malformed

In anonymity: Adversary must use t honest keys, chance of t-1 of them being malformed?

Standard keys

$$(\mathsf{vk}_i, \mathsf{sk}_i) \leftarrow \mathsf{Sig}.\mathsf{KeyGen}_{\mathsf{ind}_i}(1^\lambda; r_i)$$

All $r_i \leftarrow_{\$} \{0, 1\}^\lambda$ are freshly random.
Min-Entropy of $t-1$ keys:

 $\geq (t-1)\kappa$ (κ lowest key entropy)

Malformed keys

$$\begin{array}{l} (\mathsf{vk}_i,\mathsf{sk}_i) \leftarrow \mathsf{Sig}.\mathsf{KeyGen}_{\mathsf{ind}_i}(1^\lambda;r_i) \\ \mathsf{Choose} \ \mathsf{random} \ \mathcal{K} \leftarrow_{\$} \{0,1\}^\lambda, \\ r_i = \mathsf{PRF}(\mathcal{K},i). \\ \mathsf{Min-Entropy} \ \mathsf{of} \ t-1 \ \mathsf{keys}: \\ \lambda, \ \mathsf{as} \ \mathsf{we} \ \mathsf{only} \ \mathsf{choose} \ \mathcal{K} \end{array}$$

Indistinguishable by pseudorandomness. PRF key K is witness! What WE statement to pick?

Malformed in unforgeability, reduction can control all but one honest key

$$x=R=(\mathsf{vk}_i)_i\in\mathcal{L}\Leftrightarrow\exists$$
 randomness K s.t. all but one key are malformed

In anonymity: Adversary must use t honest keys, chance of t-1 of them being malformed? Information theoretically negligible, if $(t-1)\kappa > \lambda$.

Standard keys

$$(\mathsf{vk}_i, \mathsf{sk}_i) \leftarrow \mathsf{Sig}.\mathsf{KeyGen}_{\mathsf{ind}_i}(1^\lambda; r_i)$$

All $r_i \leftarrow_{\$} \{0, 1\}^\lambda$ are freshly random.
Min-Entropy of $t-1$ keys:

 $\geq (t-1)\kappa$ (κ lowest key entropy)

Malformed keys

$$\begin{split} (\mathsf{vk}_i, \mathsf{sk}_i) &\leftarrow \mathsf{Sig}.\mathsf{KeyGen}_{\mathsf{ind}_i}(1^\lambda; r_i) \\ \mathsf{Choose} \ \mathsf{random} \ \mathcal{K} &\leftarrow_{\$} \{0, 1\}^\lambda, \\ r_i &= \mathsf{PRF}(\mathcal{K}, i). \\ \mathsf{Min-Entropy} \ \mathsf{of} \ t - 1 \ \mathsf{keys}: \\ \lambda, \ \mathsf{as} \ \mathsf{we} \ \mathsf{only} \ \mathsf{choose} \ \mathcal{K} \end{split}$$

Indistinguishable by pseudorandomness. PRF key K is witness! What WE statement to pick?

Malformed in unforgeability, reduction can control all but one honest key

$$x=R=(\mathsf{vk}_i)_i\in\mathcal{L}\Leftrightarrow\exists$$
 randomness K s.t. all but one key are malformed

In anonymity: Adversary must use t honest keys, chance of t-1 of them being malformed? Information theoretically negligible, if $(t-1)\kappa > \lambda$. Assume $\kappa = \Theta(\lambda)$ e.g. if $\kappa = \lambda/2$, t=4 sufficient

Sign

- $\sigma \leftarrow \text{Sig.Sign}(\text{sk}_i, m)$.
- $(com_0, \gamma_0) \leftarrow CS.Commit(1^{\lambda}, \sigma)$ and $(com_1, \gamma_1) \leftarrow CS.Commit(1^{\lambda}, 0)$.
- Compute a NIWI proof of correctness
- Output $\Sigma = (com_0, com_1, \pi)$.

Sign

- $\sigma \leftarrow \text{Sig.Sign}(\text{sk}_i, m)$.
- $com_0 \leftarrow WE.Enc(1^{\lambda}, R, \sigma)$ and $com_1 \leftarrow WE.Enc(1^{\lambda}, R, 0)$.
- Compute a NIWI proof of correctness
- Output $\Sigma = (com_0, com_1, \pi)$.

Sign

- $\sigma \leftarrow \text{Sig.Sign}(\text{sk}_i, m)$.
- $com_0 \leftarrow WE.Enc(1^{\lambda}, R, \sigma)$ and $com_1 \leftarrow WE.Enc(1^{\lambda}, R, 0)$.
- Compute a NIWI proof of correctness
- Output $\Sigma = (com_0, com_1, \pi)$.

Unforgeability:

challenge vk from Sig-unforgeability, rest malformed.

Sign

- $\sigma \leftarrow \text{Sig.Sign}(\text{sk}_i, m)$.
- $com_0 \leftarrow WE.Enc(1^{\lambda}, R, \sigma)$ and $com_1 \leftarrow WE.Enc(1^{\lambda}, R, 0)$.
- Compute a NIWI proof of correctness
- Output $\Sigma = (com_0, com_1, \pi)$.

Unforgeability:

```
challenge vk from Sig-unforgeability, rest malformed.
```

 \Rightarrow can extract σ .

Sign

- $\sigma \leftarrow \text{Sig.Sign}(\text{sk}_i, m)$.
- $com_0 \leftarrow WE.Enc(1^{\lambda}, R, \sigma)$ and $com_1 \leftarrow WE.Enc(1^{\lambda}, R, 0)$.
- Compute a NIWI proof of correctness
- Output $\Sigma = (\mathsf{com}_0, \mathsf{com}_1, \pi)$.

Unforgeability:

challenge vk from Sig-unforgeability, rest malformed.

 \Rightarrow can extract σ .

t-Anonymity: Honest keys.

 \mathcal{A} must include t, needs $\geq t-1$ of them technically malformed.

Sign

- $\sigma \leftarrow \text{Sig.Sign}(\text{sk}_i, m)$.
- $com_0 \leftarrow WE.Enc(1^{\lambda}, R, \sigma)$ and $com_1 \leftarrow WE.Enc(1^{\lambda}, R, 0)$.
- Compute a NIWI proof of correctness
- Output $\Sigma = (\mathsf{com}_0, \mathsf{com}_1, \pi)$.

Unforgeability:

challenge vk from Sig-unforgeability, rest malformed.

 \Rightarrow can extract σ .

t-Anonymity: Honest keys.

 \mathcal{A} must include t, needs $\geq t-1$ of them technically malformed. Negligible extraction chance

Sign

- $\sigma \leftarrow \text{Sig.Sign}(\text{sk}_i, m)$.
- $com_0 \leftarrow WE.Enc(1^{\lambda}, R, \sigma)$ and $com_1 \leftarrow WE.Enc(1^{\lambda}, R, 0)$.
- Compute a NIWI proof of correctness
- Output $\Sigma = (\mathsf{com}_0, \mathsf{com}_1, \pi)$.

Unforgeability:

challenge vk from Sig-unforgeability, rest malformed.

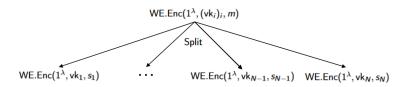
 \Rightarrow can extract σ .

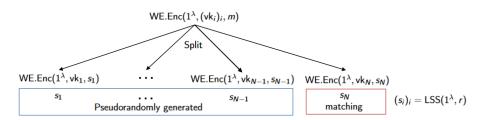
t-Anonymity: Honest keys.

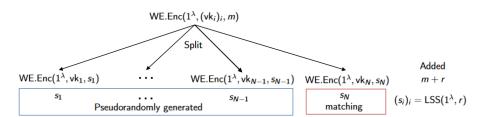
 ${\cal A}$ must include t, needs $\geq t-1$ of them technically malformed. Negligible extraction chance

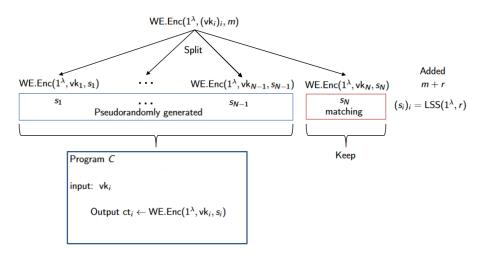
WE Size!

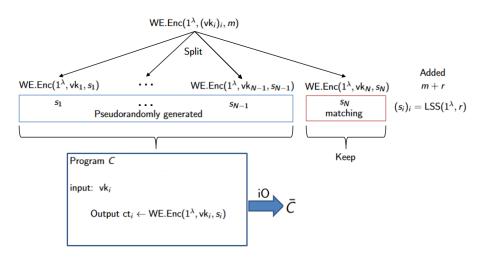
 $\mathsf{WE}.\mathsf{Enc}(1^\lambda,(\mathsf{vk}_i)_i,m)$











Recap

Result

We have shown, that we can always generate a ring signature for any ad hoc ring, without collaboration and regardless of the signing schemes used.

Constructions

- Complexity leveraging, superpoly secure schemes (log size)
- Orrelated keys, Witness encryption (linear size in ring)
- 3 Correlated keys, special WE from iO (log size)

THANKS

