
Additive-Homomorphic Functional Commitments
and Applications to Homomorphic Signatures

Dario Fiore

Asiacrypt 2022

IMDEA Software Institute

Madrid, Spain

Ida Tucker
University of Catania

Italy

Dario Catalano
Zondax AG

2

Functional Commitments [Libert-Ramanna-Yung16]

x1
x2
⋮
⋮
xn

• Generalization of vector commitments and polynomial commitments

2

Functional Commitments [Libert-Ramanna-Yung16]

𝖢x𝖢𝗈𝗆(x) →x1
x2
⋮
⋮
xn

• Generalization of vector commitments and polynomial commitments

2

Functional Commitments [Libert-Ramanna-Yung16]

𝖢x

y = f(x)

𝖢𝗈𝗆(x) →x1
x2
⋮
⋮
xn

f
y1
⋮
ym

• Generalization of vector commitments and polynomial commitments

2

Functional Commitments [Libert-Ramanna-Yung16]

𝖢x

πf y = f(x)

𝖢𝗈𝗆(x) →

𝖮𝗉𝖾𝗇(f, x) →
𝖵𝖾𝗋(𝖢x, f, y, πf)

?= 1

x1
x2
⋮
⋮
xn

f
y1
⋮
ym

• Generalization of vector commitments and polynomial commitments

• Succinctness: commitments and openings “short” w.r.t. |x|: |Cx | ≤ p(λ) and |πf | ≤ m ⋅ p(λ)

2

Functional Commitments [Libert-Ramanna-Yung16]

𝖢x

πf y = f(x)

𝖢𝗈𝗆(x) →

𝖮𝗉𝖾𝗇(f, x) →
𝖵𝖾𝗋(𝖢x, f, y, πf)

?= 1

x1
x2
⋮
⋮
xn

f
y1
⋮
ym

• Generalization of vector commitments and polynomial commitments

• Succinctness: commitments and openings “short” w.r.t. |x|: |Cx | ≤ p(λ) and |πf | ≤ m ⋅ p(λ)

• Compactness [LM19]: openings “short” w.r.t. |x| and |y| |Cx | , |πf | ≤ p(λ)

2

Functional Commitments [Libert-Ramanna-Yung16]

𝖢x

πf y = f(x)

𝖢𝗈𝗆(x) →

𝖮𝗉𝖾𝗇(f, x) →
𝖵𝖾𝗋(𝖢x, f, y, πf)

?= 1

x1
x2
⋮
⋮
xn

f
y1
⋮
ym

• Generalization of vector commitments and polynomial commitments

3

Evaluation binding

𝖢x f, πf, y, π′￼f, y′￼👹
y ≠ y′￼

Open to two different outputs for the same function

𝖵𝖾𝗋(𝖢x, f, y, πf) = 1
𝖵𝖾𝗋(𝖢x, f, y′￼, π′￼f) = 1

3

Evaluation binding

𝖢x f, πf, y, π′￼f, y′￼👹
y ≠ y′￼

Open to two different outputs for the same function

𝖵𝖾𝗋(𝖢x, f, y, πf) = 1
𝖵𝖾𝗋(𝖢x, f, y′￼, π′￼f) = 1

• FCs can be seen as weaker version of (commit-and-prove) SNARGs (Eval. binding vs. Soundness)

Potentially, a replacement for SNARGs in some applications

• Other properties: hiding, zero-knowledge openings (see paper, not focus in this talk)

State of the art (prior to our work)

4

non-falsifiable SNARKs for NP
+ succinct Com

(folklore)

class P

assumptions

supported functions

State of the art (prior to our work)

4

non-falsifiable

falsifiable

SNARKs for NP
+ succinct Com

(folklore)

class P

assumptions

supported functions

State of the art (prior to our work)

4

non-falsifiable

falsifiable

SNARKs for NP
+ succinct Com

(folklore)

class P

LRY16

LM19

linear

assumptions

supported functions

State of the art (prior to our work)

4

non-falsifiable

falsifiable

SNARKs for NP
+ succinct Com

(folklore)

class P

LRY16

LM19

linear semi-sparse
polynomials

LP20

assumptions

supported functions

This work
• In which applications evaluation-binding is sufficient?

5

This work
• In which applications evaluation-binding is sufficient?

➡ Motivating Result:

5

FC Homomorphic

Signatures

Verifiable
Databases

additive
homomorphic

multi-input
Homomorphic

Signatures
+LHS

FC
+Sig

This work
• In which applications evaluation-binding is sufficient?

➡ Motivating Result:

• Can we construct additive-homomorphic FCs for expressive functions?

5

FC Homomorphic

Signatures

Verifiable
Databases

additive
homomorphic

multi-input
Homomorphic

Signatures
+LHS

FC

semi-sparse
polynomials

non-falsifi

falsifiable

SNARKs for NP
+ succinct Com

(folklore)

class P

LRY16

LM19

linear

LP20

AH

AH AH×

assumptions

supported functions

+Sig

This work
• In which applications evaluation-binding is sufficient?

➡ Motivating Result:

• Can we construct additive-homomorphic FCs for expressive functions?

➡ Main results:

5

FC Homomorphic

Signatures

Verifiable
Databases

additive
homomorphic

multi-input
Homomorphic

Signatures
+LHS

FC

const-deg
polynomials

NC1

Ours1
AH

Ours2*
AH

Weaker ev. binding,
yet sufficient for HS

semi-sparse
polynomials

non-falsifi

falsifiable

SNARKs for NP
+ succinct Com

(folklore)

class P

LRY16

LM19

linear

LP20

AH

AH AH×

assumptions

supported functions

+Sig

This work
• In which applications evaluation-binding is sufficient?

➡ Motivating Result:

• Can we construct additive-homomorphic FCs for expressive functions?

➡ Main results:

➡ Implications: new pairing-based homomorphic signatures

5

FC Homomorphic

Signatures

Verifiable
Databases

additive
homomorphic

multi-input
Homomorphic

Signatures
+LHS

FC

const-deg
polynomials

NC1

Ours1
AH

Ours2*
AH

Weaker ev. binding,
yet sufficient for HS

semi-sparse
polynomials

non-falsifi

falsifiable

SNARKs for NP
+ succinct Com

(folklore)

class P

LRY16

LM19

linear

LP20

AH

AH AH×

assumptions

supported functions

+Sig

Roadmap of the talk

6

Functional
commitments?

State of

the Art

Overview of

our results

Our FC for

constant degree

polynomials

Conclusions

Our FC

for NC1

Warmup: FC for O(1)-deg polynomials via linearization

• Homogeneous polynomials of degree d

7

Warmup: FC for O(1)-deg polynomials via linearization

• Homogeneous polynomials of degree d

 f : 𝔽n → 𝔽 f(x) = ∑
ℓ

fℓ ⋅ xdℓ,1
1 ⋯xdℓ,n

n s.t. ∑
j

dℓ,j = d

7

Warmup: FC for O(1)-deg polynomials via linearization

• Homogeneous polynomials of degree d

 f : 𝔽n → 𝔽 f(x) = ∑
ℓ

fℓ ⋅ xdℓ,1
1 ⋯xdℓ,n

n s.t. ∑
j

dℓ,j = d

∃ ̂f ∈ 𝔽nd : f(x) = ⟨ ̂f, x(δ)⟩ where, for δ = log d, x(δ) = {x δ = 0
x(δ−1) ⊗ x(δ−1) δ ≥ 1

7

Warmup: FC for O(1)-deg polynomials via linearization

• Homogeneous polynomials of degree d

 f : 𝔽n → 𝔽 f(x) = ∑
ℓ

fℓ ⋅ xdℓ,1
1 ⋯xdℓ,n

n s.t. ∑
j

dℓ,j = d

∃ ̂f ∈ 𝔽nd : f(x) = ⟨ ̂f, x(δ)⟩ where, for δ = log d, x(δ) = {x δ = 0
x(δ−1) ⊗ x(δ−1) δ ≥ 1

• for linear forms ⇒ FC for deg-d polynomials, d=O(1)𝖥𝖢

7

𝖢𝗈𝗆(x) = 𝖢𝗈𝗆(x(δ)) πf = π ̂f = 𝖮𝗉𝖾𝗇(̂f, x(δ))

Warmup: FC for O(1)-deg polynomials via linearization

• Homogeneous polynomials of degree d

 f : 𝔽n → 𝔽 f(x) = ∑
ℓ

fℓ ⋅ xdℓ,1
1 ⋯xdℓ,n

n s.t. ∑
j

dℓ,j = d

∃ ̂f ∈ 𝔽nd : f(x) = ⟨ ̂f, x(δ)⟩ where, for δ = log d, x(δ) = {x δ = 0
x(δ−1) ⊗ x(δ−1) δ ≥ 1

• for linear forms ⇒ FC for deg-d polynomials, d=O(1)𝖥𝖢

7

𝖢𝗈𝗆(x) = 𝖢𝗈𝗆(x(δ)) πf = π ̂f = 𝖮𝗉𝖾𝗇(̂f, x(δ))

not homomorphic
(even if so is)𝖢𝗈𝗆!

Warmup: FC for O(1)-deg polynomials via linearization

• Homogeneous polynomials of degree d

 f : 𝔽n → 𝔽 f(x) = ∑
ℓ

fℓ ⋅ xdℓ,1
1 ⋯xdℓ,n

n s.t. ∑
j

dℓ,j = d

∃ ̂f ∈ 𝔽nd : f(x) = ⟨ ̂f, x(δ)⟩ where, for δ = log d, x(δ) = {x δ = 0
x(δ−1) ⊗ x(δ−1) δ ≥ 1

• for linear forms ⇒ FC for deg-d polynomials, d=O(1)𝖥𝖢

7

𝖢𝗈𝗆(x) = 𝖢𝗈𝗆(x(δ)) πf = π ̂f = 𝖮𝗉𝖾𝗇(̂f, x(δ))

e.g., 𝖢𝗈𝗆(⋯, xi ⋅ xj, xi ⋅ xj+1, ⋯)not homomorphic
(even if so is)𝖢𝗈𝗆!

Our FC for polynomials …seen from the space

8

𝖢𝗈𝗆(x) = 𝖢𝗈𝗆(x)

• Our approach

Additive-homomorphic for linear maps over 𝖥𝖢 = (𝖢𝗈𝗆, 𝖮𝗉𝖾𝗇, 𝖵𝖾𝗋) 𝔽nd

 hom. ⇒ Com hom.𝖢𝗈𝗆✔︎

Our FC for polynomials …seen from the space

8

𝖢𝗈𝗆(x) = 𝖢𝗈𝗆(x) π ̂f = 𝖮𝗉𝖾𝗇(̂f, x(δ)) w.r.t. Xδ

• Our approach

Additive-homomorphic for linear maps over 𝖥𝖢 = (𝖢𝗈𝗆, 𝖮𝗉𝖾𝗇, 𝖵𝖾𝗋) 𝔽nd

 hom. ⇒ Com hom.𝖢𝗈𝗆✔︎

Xδ = 𝖢𝗈𝗆(x(δ))

πf = 𝖮𝗉𝖾𝗇(f, x)

Our FC for polynomials …seen from the space

8

𝖢𝗈𝗆(x) = 𝖢𝗈𝗆(x) π ̂f = 𝖮𝗉𝖾𝗇(̂f, x(δ)) w.r.t. Xδ

• Our approach

Additive-homomorphic for linear maps over 𝖥𝖢 = (𝖢𝗈𝗆, 𝖮𝗉𝖾𝗇, 𝖵𝖾𝗋) 𝔽nd

 hom. ⇒ Com hom.𝖢𝗈𝗆✔︎

Xδ = 𝖢𝗈𝗆(x(δ))

 = proof that πδ Xδ = 𝖢𝗈𝗆(x ⊗ ⋯ ⊗ x) w.r.t. x in 𝖢x

πf = 𝖮𝗉𝖾𝗇(f, x)

Our FC for polynomials …seen from the space

• Our construction: we “open the box” of the FC for linear maps of [Lai-Malavolta19]

8

𝖢𝗈𝗆(x) = 𝖢𝗈𝗆(x) π ̂f = 𝖮𝗉𝖾𝗇(̂f, x(δ)) w.r.t. Xδ

• Our approach

Additive-homomorphic for linear maps over 𝖥𝖢 = (𝖢𝗈𝗆, 𝖮𝗉𝖾𝗇, 𝖵𝖾𝗋) 𝔽nd

 hom. ⇒ Com hom.𝖢𝗈𝗆✔︎

Xδ = 𝖢𝗈𝗆(x(δ))

 = proof that πδ Xδ = 𝖢𝗈𝗆(x ⊗ ⋯ ⊗ x) w.r.t. x in 𝖢x

πf = 𝖮𝗉𝖾𝗇(f, x)

Our FC for polynomials …from 10Km

9

• Bilinear pairings

ck = …and more elements

e : 𝔾1 × 𝔾2 → 𝔾T, Notation: [α]i = gα
1 ∈ 𝔾i

𝖲𝖾𝗍𝗎𝗉(1λ) → [α1, …, αnd]1,2

Let’s start with f of degree 2

Verification:

Our FC for polynomials …from 10Km

9

• Bilinear pairings

ck = …and more elements

e : 𝔾1 × 𝔾2 → 𝔾T, Notation: [α]i = gα
1 ∈ 𝔾i

𝖲𝖾𝗍𝗎𝗉(1λ) → [α1, …, αnd]1,2

X0 = [
n

∑
j=1

xj ⋅ αj] = [p(0)
x (α)]1

𝖢𝗈𝗆(x) → 𝖢x =

Let’s start with f of degree 2

Verification:

Our FC for polynomials …from 10Km

9

• Bilinear pairings

ck = …and more elements

e : 𝔾1 × 𝔾2 → 𝔾T, Notation: [α]i = gα
1 ∈ 𝔾i

𝖲𝖾𝗍𝗎𝗉(1λ) → [α1, …, αnd]1,2

X0 = [
n

∑
j=1

xj ⋅ αj] = [p(0)
x (α)]1

𝖢𝗈𝗆(x) → 𝖢x =

𝖮𝗉𝖾𝗇(f, x) → πf =

Let’s start with f of degree 2

X1 = 𝖢𝗈𝗆(x ⊗ x) = [
n2

∑
k=1

x(1)
k ⋅ αk]1 = [p(1)

x (α)]1

π ̂f = 𝖮𝗉𝖾𝗇(̂f, x(1)) w.r.t. X1

Verification:

•
 𝖵𝖾𝗋(X1, ̂f, y, π ̂f)

?= 1

⇒ y=⟨ ̂f,x(1)⟩

Our FC for polynomials …from 10Km

9

• Bilinear pairings

ck = …and more elements

e : 𝔾1 × 𝔾2 → 𝔾T, Notation: [α]i = gα
1 ∈ 𝔾i

𝖲𝖾𝗍𝗎𝗉(1λ) → [α1, …, αnd]1,2

X0 = [
n

∑
j=1

xj ⋅ αj] = [p(0)
x (α)]1

𝖢𝗈𝗆(x) → 𝖢x =

𝖮𝗉𝖾𝗇(f, x) → πf =

Let’s start with f of degree 2

X1 = 𝖢𝗈𝗆(x ⊗ x) = [
n2

∑
k=1

x(1)
k ⋅ αk]1 = [p(1)

x (α)]1

π ̂f = 𝖮𝗉𝖾𝗇(̂f, x(1)) w.r.t. X1

Verification:

•
 𝖵𝖾𝗋(X1, ̂f, y, π ̂f)

?= 1

⇒ y=⟨ ̂f,x(1)⟩

How do I check validity of
 w.r.t. ?X1 X0

Our FC for polynomials …from 10Km

9

• Bilinear pairings

ck = …and more elements

e : 𝔾1 × 𝔾2 → 𝔾T, Notation: [α]i = gα
1 ∈ 𝔾i

𝖲𝖾𝗍𝗎𝗉(1λ) → [α1, …, αnd]1,2

X0 = [
n

∑
j=1

xj ⋅ αj] = [p(0)
x (α)]1

𝖢𝗈𝗆(x) → 𝖢x =

𝖮𝗉𝖾𝗇(f, x) → πf =

Let’s start with f of degree 2

X1 = 𝖢𝗈𝗆(x ⊗ x) = [
n2

∑
k=1

x(1)
k ⋅ αk]1 = [p(1)

x (α)]1

π ̂f = 𝖮𝗉𝖾𝗇(̂f, x(1)) w.r.t. X1

p(1)
x (α) =

n2

∑
k=1

x(1)
k ⋅ αk =

n

∑
i,j=1

x(0)
i x(0)

j ⋅ αi+n(j−1) = (
n

∑
i=1

x(0)
i ⋅ αi)(

n

∑
j=1

x(0)
j ⋅ αn(j−1)) = p(0)

x (α) ⋅ (p(0)
x (αn)/αn)

Verification:

•
 𝖵𝖾𝗋(X1, ̂f, y, π ̂f)

?= 1

⇒ y=⟨ ̂f,x(1)⟩

How do I check validity of
 w.r.t. ?X1 X0

 factors in two polynomials linear in .p(1)
x (α) x

⇒ Cx additive homomorphic

Our FC for polynomials …from 10Km

9

• Bilinear pairings

ck = …and more elements

e : 𝔾1 × 𝔾2 → 𝔾T, Notation: [α]i = gα
1 ∈ 𝔾i

𝖲𝖾𝗍𝗎𝗉(1λ) → [α1, …, αnd]1,2

X0 = [
n

∑
j=1

xj ⋅ αj] = [p(0)
x (α)]1

𝖢𝗈𝗆(x) → 𝖢x =
X̂0 = [

n

∑
j=1

xj ⋅ αn(j−1))]2 = [p(0)
x (αn)/αn]2 = [̂p(0)

x (α)]2

𝖮𝗉𝖾𝗇(f, x) → πf =

Let’s start with f of degree 2

X1 = 𝖢𝗈𝗆(x ⊗ x) = [
n2

∑
k=1

x(1)
k ⋅ αk]1 = [p(1)

x (α)]1

π ̂f = 𝖮𝗉𝖾𝗇(̂f, x(1)) w.r.t. X1

p(1)
x (α) =

n2

∑
k=1

x(1)
k ⋅ αk =

n

∑
i,j=1

x(0)
i x(0)

j ⋅ αi+n(j−1) = (
n

∑
i=1

x(0)
i ⋅ αi)(

n

∑
j=1

x(0)
j ⋅ αn(j−1)) = p(0)

x (α) ⋅ (p(0)
x (αn)/αn)

Verification:

•
 𝖵𝖾𝗋(X1, ̂f, y, π ̂f)

?= 1

⇒ y=⟨ ̂f,x(1)⟩

How do I check validity of
 w.r.t. ?X1 X0

 factors in two polynomials linear in .p(1)
x (α) x

⇒ Cx additive homomorphic

Let me help you…

Our FC for polynomials …from 10Km

9

• Bilinear pairings

ck = …and more elements

e : 𝔾1 × 𝔾2 → 𝔾T, Notation: [α]i = gα
1 ∈ 𝔾i

𝖲𝖾𝗍𝗎𝗉(1λ) → [α1, …, αnd]1,2

X0 = [
n

∑
j=1

xj ⋅ αj] = [p(0)
x (α)]1

𝖢𝗈𝗆(x) → 𝖢x =
X̂0 = [

n

∑
j=1

xj ⋅ αn(j−1))]2 = [p(0)
x (αn)/αn]2 = [̂p(0)

x (α)]2

𝖮𝗉𝖾𝗇(f, x) → πf =

Let’s start with f of degree 2

X1 = 𝖢𝗈𝗆(x ⊗ x) = [
n2

∑
k=1

x(1)
k ⋅ αk]1 = [p(1)

x (α)]1

π ̂f = 𝖮𝗉𝖾𝗇(̂f, x(1)) w.r.t. X1

p(1)
x (α) =

n2

∑
k=1

x(1)
k ⋅ αk =

n

∑
i,j=1

x(0)
i x(0)

j ⋅ αi+n(j−1) = (
n

∑
i=1

x(0)
i ⋅ αi)(

n

∑
j=1

x(0)
j ⋅ αn(j−1)) = p(0)

x (α) ⋅ (p(0)
x (αn)/αn)

Verification:

•
 𝖵𝖾𝗋(X1, ̂f, y, π ̂f)

?= 1

⇒ y=⟨ ̂f,x(1)⟩

•
 e(X0, X̂0)

?= e(X1, [1]2)

⇒ X1=Com(x(1)=x(0)⊗x(0))

How do I check validity of
 w.r.t. ?X1 X0

 factors in two polynomials linear in .p(1)
x (α) x

⇒ Cx additive homomorphic

Let me help you…

Our FC for polynomials ..almost down to earth

10

How do I check validity of
 w.r.t. ?X̂k 𝖢x

Xδ = [p(δ)
x (α)]1 π ̂f = 𝖮𝗉𝖾𝗇(̂f, x(δ)) w.r.t. Xδ

{ Xk = [p(k)
x (α)]1, X̂k = [̂p(k)

x (α)]2 }δ−1
k=1

X0 = [
n

∑
j=1

xj ⋅ α j] = [p(0)
x (α)]1 X̂0 = [̂p(0)

x (α)]2 = [p(0)
x (αn)/αn]2

𝖢𝗈𝗆(x) → 𝖢x =

𝖮𝗉𝖾𝗇(f, x) → πf =

10

f of degree d = 2δ

Verification:

•

•

•

𝖵𝖾𝗋(Xδ, ̂f, y, π ̂f)
?= 1

⇒ y=⟨ ̂f,x(δ)⟩

e(X0, X̂0)
?= e(X1, [1]2)

⇒ X1=Com(x(1)=x(0)⊗x(0))

∀k ≥ 1 : e(Xk, X̂k)
?= e(Xk+1, [1]2)

⇒ ? Xk+1=Com(x(k)⊗x(k))

Our FC for polynomials ..almost down to earth

10

How do I check validity of
 w.r.t. ?X̂k 𝖢x

Generalization: factors in polynomials linear in :̂p(k)
x (α) 2k x

Xδ = [p(δ)
x (α)]1 π ̂f = 𝖮𝗉𝖾𝗇(̂f, x(δ)) w.r.t. Xδ

{ Xk = [p(k)
x (α)]1, X̂k = [̂p(k)

x (α)]2 }δ−1
k=1

̂p(k)
x (α) =

2k+1−1

∏
ℓ=2k

ϕ(ℓ)
x (α)

X0 = [
n

∑
j=1

xj ⋅ α j] = [p(0)
x (α)]1 X̂0 = [̂p(0)

x (α)]2 = [p(0)
x (αn)/αn]2

𝖢𝗈𝗆(x) → 𝖢x =

𝖮𝗉𝖾𝗇(f, x) → πf =

10

f of degree d = 2δ

Verification:

•

•

•

𝖵𝖾𝗋(Xδ, ̂f, y, π ̂f)
?= 1

⇒ y=⟨ ̂f,x(δ)⟩

e(X0, X̂0)
?= e(X1, [1]2)

⇒ X1=Com(x(1)=x(0)⊗x(0))

∀k ≥ 1 : e(Xk, X̂k)
?= e(Xk+1, [1]2)

⇒ ? Xk+1=Com(x(k)⊗x(k))

Our FC for polynomials ..almost down to earth

10

How do I check validity of
 w.r.t. ?X̂k 𝖢x

Generalization: factors in polynomials linear in :̂p(k)
x (α) 2k x

Xδ = [p(δ)
x (α)]1 π ̂f = 𝖮𝗉𝖾𝗇(̂f, x(δ)) w.r.t. Xδ

{ Xk = [p(k)
x (α)]1, X̂k = [̂p(k)

x (α)]2 }δ−1
k=1

̂p(k)
x (α) =

2k+1−1

∏
ℓ=2k

ϕ(ℓ)
x (α)

X0 = [
n

∑
j=1

xj ⋅ α j] = [p(0)
x (α)]1 X̂0 = [̂p(0)

x (α)]2 = [p(0)
x (αn)/αn]2

Φℓ = [
n

∑
j=1

xj ⋅ αnℓ(j−1))]b = [ϕ(ℓ)
x (α)]b, l = 2,…, d − 1

𝖢𝗈𝗆(x) → 𝖢x =

𝖮𝗉𝖾𝗇(f, x) → πf =

10

f of degree d = 2δ

Verification:

•

•

•

𝖵𝖾𝗋(Xδ, ̂f, y, π ̂f)
?= 1

⇒ y=⟨ ̂f,x(δ)⟩

e(X0, X̂0)
?= e(X1, [1]2)

⇒ X1=Com(x(1)=x(0)⊗x(0))

∀k ≥ 1 : e(Xk, X̂k)
?= e(Xk+1, [1]2)

⇒ ? Xk+1=Com(x(k)⊗x(k))

Our FC for polynomials ..almost down to earth

10

How do I check validity of
 w.r.t. ?X̂k 𝖢x

Generalization: factors in polynomials linear in :̂p(k)
x (α) 2k x

Xδ = [p(δ)
x (α)]1 π ̂f = 𝖮𝗉𝖾𝗇(̂f, x(δ)) w.r.t. Xδ

{ Xk = [p(k)
x (α)]1, X̂k = [̂p(k)

x (α)]2 }δ−1
k=1

̂p(k)
x (α) =

2k+1−1

∏
ℓ=2k

ϕ(ℓ)
x (α)

ϕ(2)
x (α) ϕ(3)

x (α) ϕ(4)
x (α) ϕ(5)

x (α) ϕ(d−2)
x (α) ϕ(d−1)

x (α)ϕ(6)
x (α) ϕ(7)

x (α) ϕ(d/2)
x (α) …………

{Ψk,μ = [ψk,μ(α)]}2k+1−1
μ=2k

Main ideas
• Prover gives all the internal nodes

of the tree

• Verifier checks their consistency
bottom-up via quadratic checks
(using a pairing)

•Cost O(2δ) = O(d) = O(1)

X0 = [
n

∑
j=1

xj ⋅ α j] = [p(0)
x (α)]1 X̂0 = [̂p(0)

x (α)]2 = [p(0)
x (αn)/αn]2

Φℓ = [
n

∑
j=1

xj ⋅ αnℓ(j−1))]b = [ϕ(ℓ)
x (α)]b, l = 2,…, d − 1

𝖢𝗈𝗆(x) → 𝖢x =

𝖮𝗉𝖾𝗇(f, x) → πf =

̂p(1)
x (α)
×

10

̂p(δ−1)
x (α)

ψδ−1,2(α) ψδ−1,3(α)

× ×

×

× ×̂p(2)
x (α)

ψ2,2(α) ψ2,3(α)
× ×

×

f of degree d = 2δ

Roadmap of the talk

11

Functional
commitments?

State of

the Art

Overview of

our results

Our FC for

constant degree

polynomials

Conclusions

Our FC

for NC1

Our FC for NC1

12

FC
semi-Quadratic

Arithmetic Programs

FC
Monotone Span

Programs

FC
NC1 circuits

Our FC for NC1

sQAP: semi-Quadratic Arithmetic Programs

 defined by matrix f : 𝔽n × 𝔽m → {𝗍𝗋𝗎𝖾, 𝖿𝖺𝗅𝗌𝖾} F ∈ 𝔽n×m

f(z, y) = 𝗍𝗋𝗎𝖾 ⟺ ∃w : F ⋅ (w ∘ z) = y

12

FC
semi-Quadratic

Arithmetic Programs

FC
Monotone Span

Programs

FC
NC1 circuits

Our FC for NC1

sQAP: semi-Quadratic Arithmetic Programs

 defined by matrix f : 𝔽n × 𝔽m → {𝗍𝗋𝗎𝖾, 𝖿𝖺𝗅𝗌𝖾} F ∈ 𝔽n×m

f(z, y) = 𝗍𝗋𝗎𝖾 ⟺ ∃w : F ⋅ (w ∘ z) = y

High-level ideas of our approach

(1) linearize the system of equations F ⋅ (w ∘ z) = F ∘
z⊤

⋮
z⊤

Fz

⋅ w = y

12

FC
semi-Quadratic

Arithmetic Programs

FC
Monotone Span

Programs

FC
NC1 circuits

Our FC for NC1

sQAP: semi-Quadratic Arithmetic Programs

 defined by matrix f : 𝔽n × 𝔽m → {𝗍𝗋𝗎𝖾, 𝖿𝖺𝗅𝗌𝖾} F ∈ 𝔽n×m

f(z, y) = 𝗍𝗋𝗎𝖾 ⟺ ∃w : F ⋅ (w ∘ z) = y

High-level ideas of our approach

(1) linearize the system of equations F ⋅ (w ∘ z) = F ∘
z⊤

⋮
z⊤

Fz

⋅ w = y

(2) Adapt the linear-map FC of LM19 to prove satisfiability of for committed (Fz |y) z and y

12

FC
semi-Quadratic

Arithmetic Programs

FC
Monotone Span

Programs

FC
NC1 circuits

Our FC for NC1

sQAP: semi-Quadratic Arithmetic Programs

 defined by matrix f : 𝔽n × 𝔽m → {𝗍𝗋𝗎𝖾, 𝖿𝖺𝗅𝗌𝖾} F ∈ 𝔽n×m

f(z, y) = 𝗍𝗋𝗎𝖾 ⟺ ∃w : F ⋅ (w ∘ z) = y

High-level ideas of our approach

(1) linearize the system of equations F ⋅ (w ∘ z) = F ∘
z⊤

⋮
z⊤

Fz

⋅ w = y

(2) Adapt the linear-map FC of LM19 to prove satisfiability of for committed (Fz |y) z and y

(*) Prove strong evaluation binding of LM19 from a falsifiable assumption (LM19 proved it in the
GGM); this implies a falsifiable SNARG for linear systems (of independent interest).

12

FC
semi-Quadratic

Arithmetic Programs

FC
Monotone Span

Programs

FC
NC1 circuits

Summary of our results

13

FC scheme
Functions

|pp| |C| |𝛑| Add Hom Assumption

[LM19] linear maps O(mn) 1 |𝔾| 1 |𝔾| yes n-DHE

[LP20] semi-sparse polynomials O(𝜇) O(m) O(1) no

Ours (FCpoly) polynomials of deg d=O(1) O(mnd) d/2|𝔾1|+d/2|𝔾2| d/2|𝔾1|+d/2|𝔾2| yes nd-DHE

Ours (FCsQAP) sQAP O(mn2) 2 |𝔾1| 2|𝔾1|+ 1|𝔾2 | yes (n,m)-DP-BDHE

f : ℤn
q → ℤm

q

Weak ev. binding,
yet sufficient to build HS

Homomorphic Signatures highlights:

First HS with compact signatures (size constant in number of outputs)

First multi-input HS for NC1 based on pairings (prior HS for NC1 [KNYY19] only single-input)

Conclusions
First additive-homomorphic FCs for functions beyond linear

New pairing-based homomorphic signatures

14

non-falsifi

falsifiable

SNARKs for NP
+ succinct Com

(folklore)

class P

LRY16

LM19

linear semi-sparse
polynomials

LP20Ours1 Ours2*

const-deg
polynomials

NC1

AH

AH AH AH× AH

assumptions

supported functions

ACL+22
AH

Main results:

Conclusions
First additive-homomorphic FCs for functions beyond linear

New pairing-based homomorphic signatures

First FC for circuits from falsifiable assumptions!

14

non-falsifi

falsifiable

SNARKs for NP
+ succinct Com

(folklore)

class P

LRY16

LM19

linear semi-sparse
polynomials

LP20Ours1 Ours2*

const-deg
polynomials

NC1

AH

AH AH AH× AH

assumptions

supported functions

arbitrary circuits

BCFL22 dCP22
WW22

ACL+22
AH

Main results:

Recent works:

Conclusions
First additive-homomorphic FCs for functions beyond linear

New pairing-based homomorphic signatures

First FC for circuits from falsifiable assumptions!

Compact&constant-size FC for NC1? FC for circuits with shorter openings?
More applications?

14

non-falsifi

falsifiable

SNARKs for NP
+ succinct Com

(folklore)

class P

LRY16

LM19

linear semi-sparse
polynomials

LP20Ours1 Ours2*

const-deg
polynomials

NC1

AH

AH AH AH× AH

assumptions

supported functions

arbitrary circuits

BCFL22 dCP22
WW22

ACL+22
AH

Main results:

Recent works:

Open problems:

