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𝖢x f, πf, y, π′￼f, y′￼👹
y ≠ y′￼

Open to two different outputs for the same function

𝖵𝖾𝗋(𝖢x, f, y, πf) = 1
𝖵𝖾𝗋(𝖢x, f, y′￼, π′￼f) = 1

• FCs can be seen as weaker version of (commit-and-prove) SNARGs (Eval. binding vs. Soundness)

Potentially, a replacement for SNARGs in some applications

• Other properties: hiding, zero-knowledge openings (see paper, not focus in this talk) 
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➡ Motivating Result:

• Can we construct additive-homomorphic FCs for expressive functions?

➡ Main results:

➡ Implications: new pairing-based homomorphic signatures
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How do I check validity of 
 w.r.t.  ?X̂k 𝖢x

Xδ = [p(δ)
x (α)]1 π ̂f = 𝖮𝗉𝖾𝗇( ̂f, x(δ)) w.r.t. Xδ

{ Xk = [p(k)
x (α)]1, X̂k = [ ̂p(k)

x (α)]2 }δ−1
k=1

X0 = [
n

∑
j=1

xj ⋅ α j] = [p(0)
x (α)]1 X̂0 = [ ̂p(0)

x (α)]2 = [p(0)
x (αn)/αn]2

𝖢𝗈𝗆(x) → 𝖢x =

𝖮𝗉𝖾𝗇( f, x) → πf =

10

f of degree d = 2δ

Verification:

•
   

•
 

•

𝖵𝖾𝗋(Xδ, ̂f, y, π ̂f)
?= 1

⇒ y=⟨ ̂f,x(δ)⟩

e(X0, X̂0)
?= e(X1, [1]2)

⇒ X1=Com(x(1)=x(0)⊗x(0))

∀k ≥ 1 : e(Xk, X̂k)
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How do I check validity of 
 w.r.t.  ?X̂k 𝖢x

Generalization:  factors in  polynomials linear in :̂p(k)
x (α) 2k x

Xδ = [p(δ)
x (α)]1 π ̂f = 𝖮𝗉𝖾𝗇( ̂f, x(δ)) w.r.t. Xδ

{ Xk = [p(k)
x (α)]1, X̂k = [ ̂p(k)

x (α)]2 }δ−1
k=1

̂p(k)
x (α) =

2k+1−1

∏
ℓ=2k

ϕ(ℓ)
x (α)

ϕ(2)
x (α) ϕ(3)

x (α) ϕ(4)
x (α) ϕ(5)

x (α) ϕ(d−2)
x (α) ϕ(d−1)

x (α)ϕ(6)
x (α) ϕ(7)

x (α) ϕ(d/2)
x (α) …………

{Ψk,μ = [ψk,μ(α)]}2k+1−1
μ=2k

Main ideas
• Prover gives all the internal nodes 

of the tree

• Verifier checks their consistency 
bottom-up via quadratic checks 
(using a pairing)

•Cost O(2δ) = O(d) = O(1)

X0 = [
n

∑
j=1

xj ⋅ α j] = [p(0)
x (α)]1 X̂0 = [ ̂p(0)

x (α)]2 = [p(0)
x (αn)/αn]2

Φℓ = [
n

∑
j=1

xj ⋅ αnℓ( j−1))]b = [ϕ(ℓ)
x (α)]b, l = 2,…, d − 1

𝖢𝗈𝗆(x) → 𝖢x =

𝖮𝗉𝖾𝗇( f, x) → πf =

̂p(1)
x (α)
×

10

̂p(δ−1)
x (α)

ψδ−1,2(α) ψδ−1,3(α)

× ×

×

× ×̂p(2)
x (α)

ψ2,2(α) ψ2,3(α)
× ×

×

f of degree d = 2δ
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Our FC for NC1

sQAP: semi-Quadratic Arithmetic Programs

 defined by matrix f : 𝔽n × 𝔽m → {𝗍𝗋𝗎𝖾, 𝖿𝖺𝗅𝗌𝖾} F ∈ 𝔽n×m

f(z, y) = 𝗍𝗋𝗎𝖾 ⟺ ∃w : F ⋅ (w ∘ z) = y

High-level ideas of our approach

(1) linearize the system of equations F ⋅ (w ∘ z) = F ∘
z⊤

⋮
z⊤

Fz

⋅ w = y

(2) Adapt the linear-map FC of LM19 to prove satisfiability of  for committed (Fz |y) z and y

(*) Prove strong evaluation binding of LM19 from a falsifiable assumption (LM19 proved it in the 
GGM); this implies a falsifiable SNARG for linear systems (of independent interest).
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Summary of our results

13

FC scheme
Functions


|pp| |C| |𝛑| Add Hom Assumption

[LM19] linear maps O(mn) 1 |𝔾| 1 |𝔾| yes n-DHE

[LP20] semi-sparse polynomials O(𝜇) O(m) O(1) no

Ours (FCpoly) polynomials of deg d=O(1) O(mnd) d/2|𝔾1|+d/2|𝔾2| d/2|𝔾1|+d/2|𝔾2| yes nd-DHE

Ours (FCsQAP) sQAP O(mn2) 2 |𝔾1| 2|𝔾1|+ 1|𝔾2 | yes (n,m)-DP-BDHE

f : ℤn
q → ℤm

q

Weak ev. binding,
yet sufficient to build HS

Homomorphic Signatures highlights:


First HS with compact signatures (size constant in number of outputs)

First multi-input HS for NC1 based on pairings (prior HS for NC1 [KNYY19] only single-input)
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Compact&constant-size FC for NC1? FC for circuits with shorter openings?
More applications?
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Open problems:


