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* Generalization of vector commitments and polynomial commitments
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» Succinctness: commitments and openings “short”w.rt.[x|: || < p(4) and || < m - p(4)

» Compactness [LMI19]: openings “short” w.r.t. |x| and |y| | Gl | 7| < p(4)
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Evaluation binding
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Ver(CX,f, y/, JZ'JZ) =1
y#FY

CX ]Ca ﬂfa ya 7[];9 y/

Open to two different outputs for the same function

* FCs can be seen as weaker version of (commit-and-prove) SNARGs (Eval. binding vs. Soundness)

Potentially, a replacement for SNARGs In some applications

* Other properties: hiding, zero-knowledge openings (see paper, not focus In this talk)
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= Implications: new pairing-based homomorphic signatures
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f e : f(X) = (f', x9)  where, for 6 =logd, x© = {

» FC for linear forms = FC for deg-d polynomials, d=O(|)

Com(x) = Com(x'?) e = g = Open(f', x())
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 Our approach

Additive-homomorphic FC = (Com, Open, Ver) for linear maps over e

-----------------------------------------------------------------------------

Com(x) = Com(x) e, = Open(f, X)-- 'nf Open(f, x9) w.rt. X

Com hom. = Com hom.

-----------------------------------------------------------------------------

* Our construction: we “open the box™ of the FC for linear maps of [Lai-Malavoltal 9]
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sQAP: semi-Quadratic Arithmetic Programs
f: "X [F" — {true, false} defined by matrix F &€ [F"**"

f(z,y) =true < dw:F-(Woz)=Yy

High-level ideas of our approach

(1) linearize the system of equations - (Wez) = |Fo | : ‘W

1
<

(2) Adapt the linear-map FC of LM19 to prove satisfiability of (F,|y) for committed z and y

(*) Prove strong evaluation binding of LM |9 from a falsifiable assumption (LM19 proved it in the
GGM); this implies a falsifiable SNARG for linear systems (of independent interest).
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Summary of our results

FC scheme fruzr:;ct_i)or;gl lpp| |IC] |m| Add Hom  Assumption
[LM19] inear maps O(mn) 1 |Gl 1 |G| yes n-DHE
[LP20] semi-sparse polynomials O(u) O(m) O(l) no

Ours (FCpoly)  polynomials of deg d=O(I) O(mnd) d2|Gi|+d2|Go|  dI2|Gi|+d/2| G yes nd-DHE
Ours (FCsoar) QAP O(mn?) 2 |G| 2|Gi|t+ 1|Ga | yes (n,m)-DP-BDHE

Weak ev. binding,
yet sufficient to build HS

Homomorphic Signatures highlights:
Q First HS with compact signatures (size constant in number of outputs)

Q First multi-input HS for NC! based on pairings (prior H5 for NCI [KNYY 2] only single-input)
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