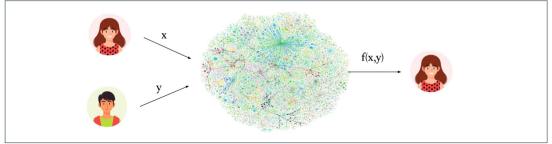
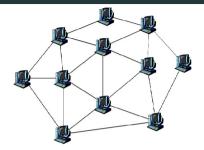
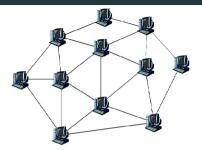

A Paradigm for Sending Secret Messages to Future (Anonymous) Committees


Matteo Campanelli, Bernardo David, Hamidreza Khoshakhlagh, Anders Konring, Jesper Buus Nielsen

December 8, 2022

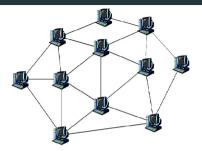
1



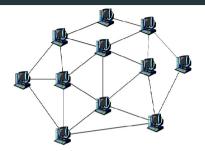


2

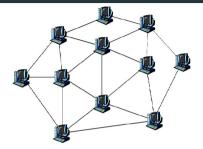
- High-level: (incentivized) coordination platform for miners/stakeholders.
- Blockchains are large public, dynamic P2P networks.
- Built-in consensus layer



- High-level: (incentivized) coordination platform for miners/stakeholders.
- Blockchains are large public, dynamic P2P networks.
- Built-in consensus layer
 - implements a "lottery" mechanism



- High-level: (incentivized) coordination platform for miners/stakeholders.
- Blockchains are large public, dynamic P2P networks.
- Built-in consensus layer
 - implements a "lottery" mechanism
 - implements total-ordered broadcast



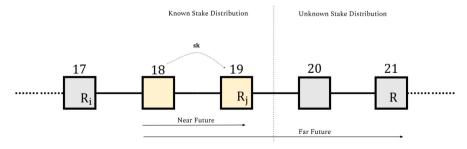
- High-level: (incentivized) coordination platform for miners/stakeholders.
- Blockchains are large public, dynamic P2P networks.
- Built-in consensus layer
 - implements a "lottery" mechanism
 - implements total-ordered broadcast
- Can we repurpose the blockchain infrastructure to orchestrate MPC?

- High-level: (incentivized) coordination platform for miners/stakeholders.
- Blockchains are large public, dynamic P2P networks.
- Built-in consensus layer
 - implements a "lottery" mechanism
 - implements total-ordered broadcast
- Can we repurpose the blockchain infrastructure to orchestrate MPC?
- YES! [BGG⁺20, GHK⁺21, CGG⁺21]

- Mobile Adversary imposes requirements on the protocol
 - Limited Interaction Pattern (Only Speak Once)
 - Protocol parties are selected at random and are anonymous until they speak

- Mobile Adversary imposes requirements on the protocol
 - Limited Interaction Pattern (Only Speak Once)
 - Protocol parties are selected at random and are anonymous until they speak
- Attractive Side-effects
 - Support dynamic network (tolerate node churn)
 - Scalability:
 - Large networks allows for sampling small committees with the right distribution (whp.)
 - Sub-linear size committees can carry out the computation on behalf of the network

- Role Execution
 - Execute the steps according to the protocol specification
 - Send messages to future roles (Only Speak Once)
- Role Assignment
 - Associates a machine in the network with a role in the protocol
 - Establishes a receiver-anonymous channel to the machine
 - Cannot rely on "full" WE or Time-Lock puzzles

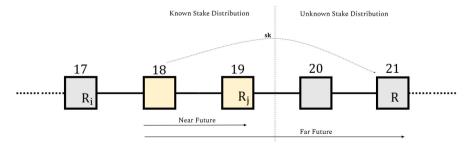

- Role Execution
 - Execute the steps according to the protocol specification
 - Send messages to future roles (Only Speak Once)
- Role Assignment
 - Associates a machine in the network with a role in the protocol
 - Establishes a receiver-anonymous channel to the machine
 - Cannot rely on "full" WE or Time-Lock puzzles

Motivation: Transferring secret state to future committees

- Consider anonymous vs. transparent committee selection.
- Consider secret state to the "near" vs. "far" future.
- Investigate the need for auxiliary committees for carrying state into the future.

Encryption to the near Future.

- 1. Instantiate YOSO using EtF with an anonymous lottery.
- 2. Introduce a relaxed version of WE called "WE over Commitments" (cWE).
- 3. Construction using cWE based on standard assumptions (OT + GC).

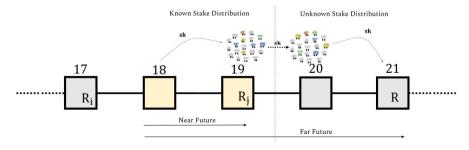


Encryption to the near Future.

- 1. Instantiate YOSO using EtF with an anonymous lottery.
- 2. Introduce a relaxed version of WE called "WE over Commitments" (cWE).
- Construction using cWE based on standard assumptions (OT + GC).

Encryption to the far Future.

1. No auxiliary committees \implies BWE (Blockchain Witness Encryption).

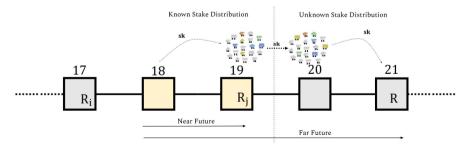


Encryption to the near Future.

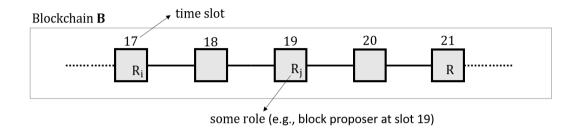
- 1. Instantiate YOSO using EtF with an anonymous lottery.
- 2. Introduce a relaxed version of WE called "WE over Commitments" (cWE).
- Construction using cWE based on standard assumptions (OT + GC).

Encryption to the far Future.

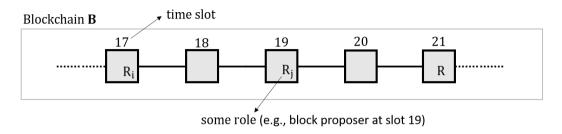
- 1. No auxiliary committees \implies BWE (Blockchain Witness Encryption).
- Construction using EtF (near) + TIBE. With minimal use of auxiliary committees (indep. of size/number of messages)



Encryption to the near Future.

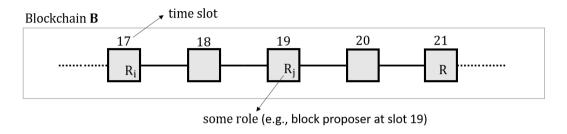

- 1. Instantiate YOSO using EtF with an anonymous lottery.
- 2. Introduce a relaxed version of WE called "WE over Commitments" (cWE).
- Construction using cWE based on standard assumptions (OT + GC).

Encryption to the far Future.


- 1. No auxiliary committees \implies BWE (Blockchain Witness Encryption).
- 2. Construction using EtF (near) + TIBE. With minimal use of auxiliary committees (indep. of size/number of messages)

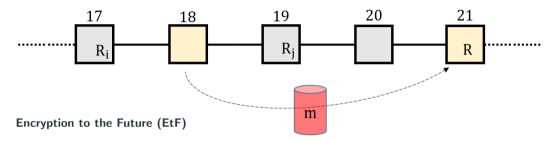
Blockchain Lotteries

Blockchain Lotteries

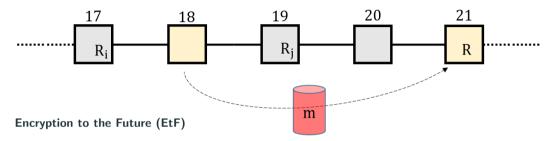


Blockchain Lotteries. A self-selection mechanism that gives the winner the right to play a role R, e.g.,

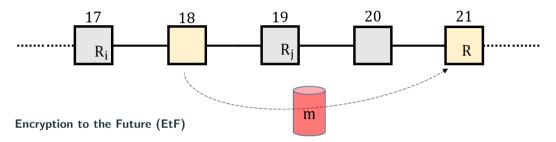
- propose a new block for the chain
- introduce new randomness
- become a member of a committee


Blockchain Lotteries

Lottery Predicate. $lottery(\mathbf{B}, slot, R, sk_i) \in \{0, 1\}$

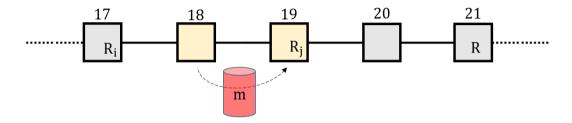

- Anonymous Lotteries (e.g. Cryptographic Sortition, Nakamoto PoW)
- Transparent Lotteries (e.g. "Follow-the-Satoshi")

• Encryption w.r.t. lottery(**B**, slot, R, sk).


 $\begin{array}{ll} \textbf{Encryption.} & \mathsf{ct} \leftarrow \mathsf{Enc}(\hat{\mathbf{B}},\mathsf{slot},\mathsf{R},m) \\ \textbf{Decryption.} & m/\bot \leftarrow \mathsf{Dec}(\tilde{\mathbf{B}},\mathsf{ct},\mathsf{sk}) \\ & & \mathsf{Outputs} \ m \ \text{iff lottery}(\tilde{\mathbf{B}},\mathsf{slot},\mathsf{R},\mathsf{sk}) = 1 \end{array}$

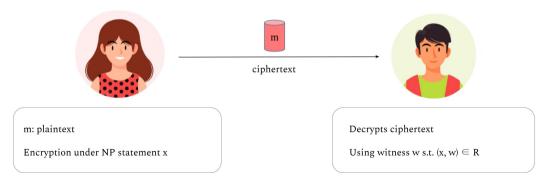
• Encryption w.r.t. lottery(**B**, slot, R, sk).

Encryption. $ct \leftarrow Enc(\hat{\mathbf{B}}, \text{slot}, \text{R}, m)$ **Decryption.** $m/\perp \leftarrow Dec(\tilde{\mathbf{B}}, ct, sk)$ Outputs m iff lottery $(\tilde{\mathbf{B}}, \text{slot}, \text{R}, sk) = 1$


• $\hat{B}=\tilde{B}$ (near future) blockchain state is unchanged. Known stake distribution.

• Encryption w.r.t. lottery(**B**, slot, R, sk).

Encryption. $ct \leftarrow Enc(\hat{\mathbf{B}}, \text{slot}, \text{R}, m)$ **Decryption.** $m/\perp \leftarrow Dec(\tilde{\mathbf{B}}, ct, sk)$ Outputs m iff lottery $(\tilde{\mathbf{B}}, \text{slot}, \text{R}, sk) = 1$

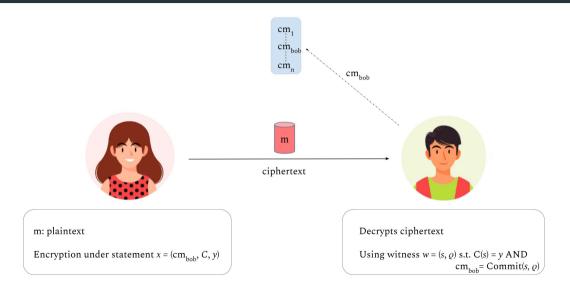

- + $\hat{B}=\tilde{B}$ (near future) blockchain state is unchanged. Known stake distribution.
- $\hat{\mathbf{B}} \neq \tilde{\mathbf{B}}$ (but $\hat{\mathbf{B}}^{\lceil \kappa} \preceq \tilde{\mathbf{B}}$) (far future) stake distribution is unknown at encryption time. Harder to realize (implies Blockchain WE, similar to [GKM⁺20])

Weaker Notion: Encryption to the Near Future

- Encryption w.r.t. lottery(**B**, slot, R_j, sk)
- The state of blockchain when the lottery winner is decided is known at the time of encryption: $\hat{B}=\tilde{B}$
- Can be constructed from "Witness Encryption over Commitments"

Witness Encryption [GGSW13]

A Witness Encryption scheme for NP language \mathcal{L} (and witness relation $\mathbf{R}_{\mathcal{L}}$).


- Encrypt: $ct \leftarrow Enc(x, m)$,
- Decrypt: $m/\perp \leftarrow Dec(ct, w)$
- Correctness: For any $x \in \mathcal{L}$ such that $(x,w) \in \textbf{R}_{\mathcal{L}}$

 $\Pr\left[\mathsf{Dec}(\mathsf{Enc}(x,m),\mathsf{w})=m\right]=1$

• Security: For any PPT A, if $x \notin \mathcal{L}$ then

 $\Pr[A(Enc(x,0)) = 1] - \Pr[A(Enc(x,1)) = 1] \le \operatorname{negl}(\lambda)$

Witness Encryption over Commitments (cWE)

Setup Phase. Bob publishes a re-usable commitment $cm_{bob} \leftarrow Commit(ck, s; \rho)$

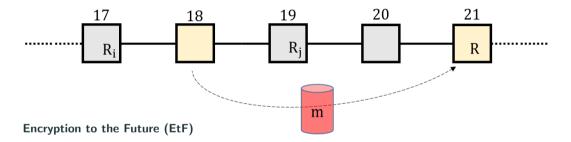
Encrypt Phase. Define a language of statements x = (cm, C, y) and witnesses $w = (s, \rho)$.

Let $(x, w) \in \mathbf{R}$ iff "cm commits to s using randomness ρ such that C(s) = y"

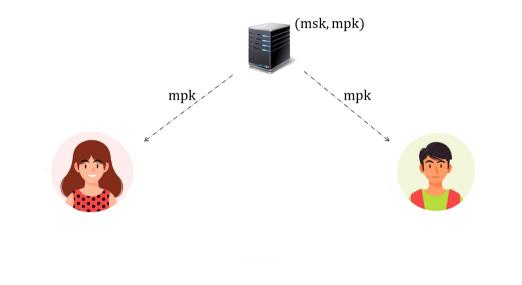
• Correctness: For any $x \in \mathcal{L}$ such that $(x, w) \in \mathbf{R}$

 $\Pr[\operatorname{Dec}(\operatorname{Enc}(x, m), w) = m] = 1$

- Strong Semantic Security:
 - Adversary receives ct \leftarrow Enc(ck, (cm, C, y), m) but does not know satisfying witness
 - Adversary sees other $ct_i \leftarrow Enc(ck, (cm_i, C, y), m)$ but without knowing the opening to cm_i
 - Adversary should still not have an advantage in guessing *m*.


Encryption to the (near) Future

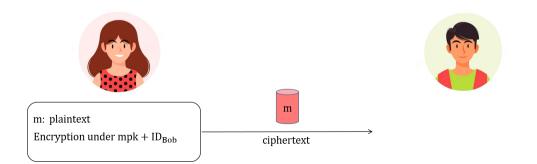
Obtain Encryption to the (near) Future from Witness Encryption over Commitments

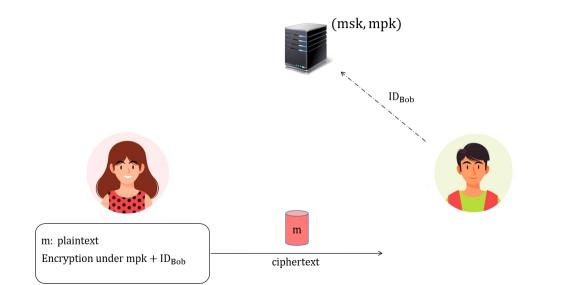

- Setup: Let each party publish a commitment $cm_i \leftarrow Commit(sk_i; \rho)$ of the their lottery key
- Encrypt: Let the circuit C encode the predicate lottery(B, slot, R, ·). Use the statement x_i = (cm_i, C, 1) for encryption.
- Decrypt: The lottery-winning party with sk_i successfully decrypts since $C(sk_i) = 1$.

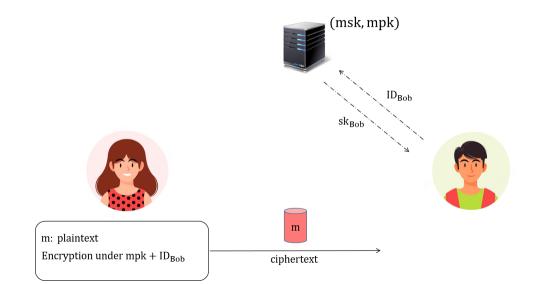
Result:

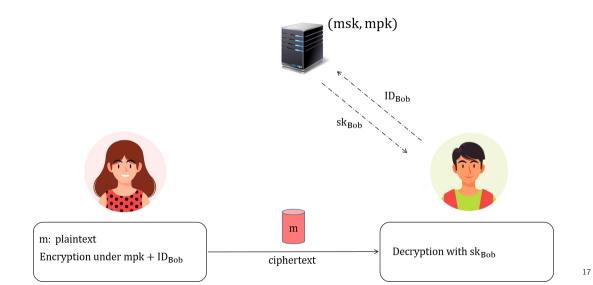
- The first non-interactive (using no auxiliary committees) Role Assignment protocol.
- Downside: The ciphertext size grows linearly with the number of participants in the network (potential lottery winners)
- For additional candidate constructions read the paper.

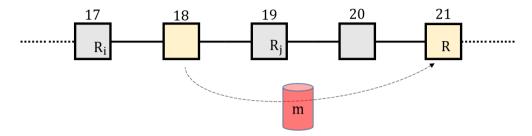
- $\hat{B}=\tilde{B}$ (near future) blockchain state is unchanged. Known stake distribution.
- $\hat{B} \neq \tilde{B}$ (but $\hat{B}^{\lceil \kappa} \leq \tilde{B}$) (far future) stake distribution is unknown at encryption time. Hard Easy to realize using EtF (near future) + TIBE scheme and use of auxiliary committees

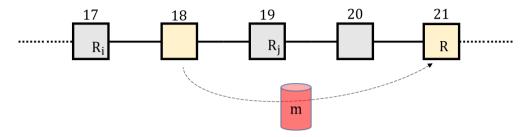


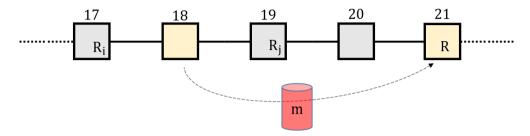


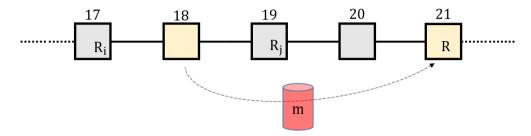

m: plaintext Encryption under mpk + ID_{Bob}

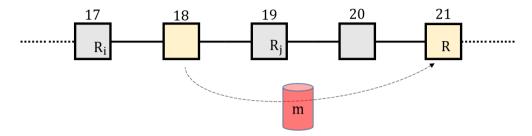


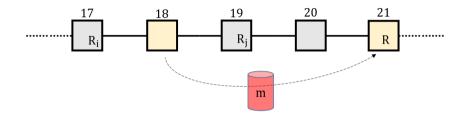


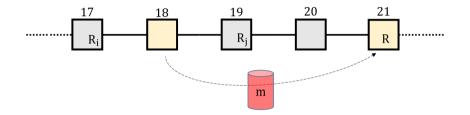



Encryption to the Future with Committee

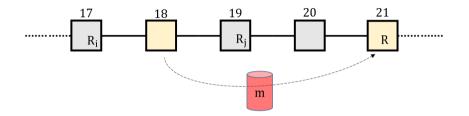

• Setup: (YOSO MPC) constructs the TIBE setup (mpk, $\vec{msk} = (msk_1, \dots, msk_n)$).


- Setup: (YOSO MPC) constructs the TIBE setup (mpk, $\vec{msk} = (msk_1, ..., msk_n)$).
 - 1. $\vec{msk} = (msk_1, \dots, msk_n)$ is proactively reshared through the slots in blockchain execution.

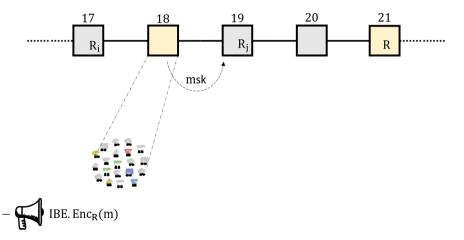

- Setup: (YOSO MPC) constructs the TIBE setup (mpk, $\vec{msk} = (msk_1, ..., msk_n)$).
 - 1. $\vec{msk} = (msk_1, \dots, msk_n)$ is proactively reshared through the slots in blockchain execution.
 - 2. Check if any EtF ciphertexts have a receiving (slot, R) that has been decided. If true, then:
 - Sample share of the IBE key for (slot, R) $sk_{(slot,R)}^{i} \leftarrow \Pi_{TIBE}$.IDKeygen(msk_i, (slot, R))
 - Send shares of ID-key by EtF (near) $ct_{(slot,R)}^{sk,i} \leftarrow \Pi_{EtF}.Enc(\mathbf{B}, slot, R, sk_{(slot,R)}^{i})$

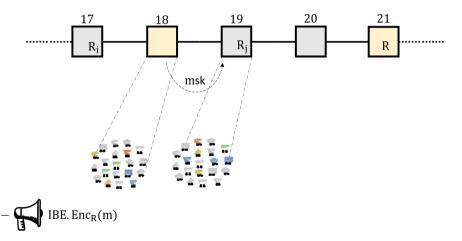


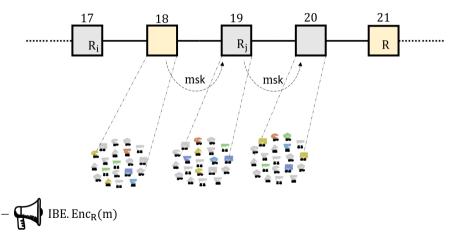
- Setup: (YOSO MPC) constructs the TIBE setup (mpk, $\vec{msk} = (msk_1, ..., msk_n)$).
 - 1. $\vec{msk} = (msk_1, \dots, msk_n)$ is proactively reshared through the slots in blockchain execution.
 - 2. Check if any EtF ciphertexts have a receiving (slot, R) that has been decided. If true, then:
 - Sample share of the IBE key for (slot, R) $sk_{(slot,R)}^{i} \leftarrow \Pi_{TIBE}$.IDKeygen(msk_i, (slot, R))
 - Send shares of ID-key by EtF (near) $ct^{sk,i}_{(slot,R)} \leftarrow \Pi_{EtF}.Enc(\mathbf{B}, slot, R, sk^i_{(slot,R)})$
- Encrypt: Party publishes $ct \leftarrow \Pi_{TIBE}$. Enc(mpk, ID = (slot, R), m).



- Setup: (YOSO MPC) constructs the TIBE setup (mpk, $msk = (msk_1, ..., msk_n)$).
 - 1. $\vec{msk} = (msk_1, \dots, msk_n)$ is proactively reshared through the slots in blockchain execution.
 - 2. Check if any EtF ciphertexts have a receiving (slot, R) that has been decided. If true, then:
 - Sample share of the IBE key for (slot, R) $sk_{(slot, R)}^{i} \leftarrow \Pi_{TIBE}$.IDKeygen(msk_i, (slot, R))
 - Send shares of ID-key by EtF (near) $ct_{(slot,R)}^{sk,i} \leftarrow \Pi_{EtF}.Enc(\mathbf{B}, slot, R, sk_{(slot,R)}^{i})$
- Encrypt: Party publishes ct ← Π_{TIBE}.Enc(mpk, ID = (slot, R), m).
- Decrypt: The lottery-winner for (slot, R) decrypts EtF (near) ciphertexts and combine shares $\{sk_{(slot,R)}^i\}$ to obtain $sk_{(slot,R)}$. Finally outputs $m \leftarrow \Pi_{TIBE}$.Dec $(sk_{(slot,R)}, ct)$.







$$-$$
 IBE. Enc_R(m)

- Secret share msk to the next comittees
- Committee at slot 20 generates sk_R for R, and encrypt it using encrypion to the near future

Туре	Scheme	Communication	Committee?	Interaction?
	CaBKaS [BGG ⁺ 20]	O(1)	yes	yes
EtF (near)	RPIR [GHK ⁺ 21]	O(1)	yes	yes
	cWE(GC+OT) (Sec. 4.2)	O(N)	no	no*
EtF (far)	IBE (Sec. 7)	O(1)	yes	yes
	WEB [GKM ⁺ 20]	O(M)	yes	yes
	Full-fledged WE	O(1)	no	no

- "Committee?" indicates whether a committee is required.
- "Communication" refers to the communication complexity in the number of all parties *N*, or the number of plaintexts (called deposited secrets in [GKM⁺20]) *M* of a given fixed length.
- Asterisk* means non-interactive solutions that require sending a first reusable message

Thank you!

https://eprint.iacr.org/2021/1423

F. Benhamouda, C. Gentry, S. Gorbunov, S. Halevi, H. Krawczyk, C. Lin, T. Rabin, and L. Reyzin.

Can a public blockchain keep a secret?

In TCC 2020, Part I, LNCS 12550, pages 260–290. Springer, Heidelberg, November 2020.

🔋 A. R. Choudhuri, A. Goel, M. Green, A. Jain, and G. Kaptchuk.

Fluid MPC: Secure multiparty computation with dynamic participants.

In <u>CRYPTO 2021, Part II</u>, <u>LNCS</u> 12826, pages 94–123, Virtual Event, August 2021. Springer, Heidelberg.

🔋 S. Garg, C. Gentry, A. Sahai, and B. Waters.

Witness encryption and its applications.

In Proceedings of the forty-fifth annual ACM symposium on Theory of computing, pages 467–476, 2013.

C. Gentry, S. Halevi, H. Krawczyk, B. Magri, J. B. Nielsen, T. Rabin, and S. Yakoubov. YOSO: You only speak once - secure MPC with stateless ephemeral roles. In <u>CRYPTO 2021, Part II</u>, <u>LNCS</u> 12826, pages 64–93, Virtual Event, August 2021. Springer, Heidelberg.

V. Goyal, A. Kothapalli, E. Masserova, B. Parno, and Y. Song.

Storing and retrieving secrets on a blockchain.

Cryptology ePrint Archive, Report 2020/504, 2020.

https://eprint.iacr.org/2020/504.