On the Field-Based Division Property:

Applications to MiMC, Feistel MiMC and GMiMC

Jiamin Cui¹, Kai Hu², Meiqin Wang¹, Puwen Wei¹

Shandong University, China

2. Nanyang Technological University, Singapore

ASIACRYPT 2022

Contents

- Background
- 2 Field-Based Division Property
- 3 Detect the Upper Bound of the Algebraic Degree
- 4 Application

Symmetric-Key Primitives with New Cost Metrics

Algebraically simple symmetric-key primitives over large finite fields are efficient in MPC/FHE/ZK protocols.

- Optimized for a specific cost metric like low number of multiplications, low multiplicative depth, ...
- Described over \mathbb{F}_{2^n} or \mathbb{F}_p for large n and p.
- Non-linear layer with a simple algebraic description (e.g., power maps $x \mapsto x^d$ or $x \mapsto x^{-1}$).

Examples : MiMC&Feistel MiMC [Alb+16], GMiMC [Alb+19a], HadesMiMC [Gra+20], Vision&Rescue [Aly+20], Ciminion [Dob+21] ...

Motivation

Algebraic cryptanalysis most often determines the overall security of these novel symmetric-key designs with simple algebraic representation.

- Gröbner-basis attack on Jarvis and Friday [Alb+19b]
- Higher-order attack on full-round MiMC [Eic+20]
- Higher-order attack on full-round GMiMC [Bey+20]

A natural question

How to study the algebraic representation of the cipher?

Our Results

- I Propose general monomial prediction, a way of studying the polynomial representation for ciphers over \mathbb{F}_{2^n} .
- 2 Give a new framework of degree evaluation with general monomial prediction.
- Analyze the security of MiMC, Feistel MiMC and GMiMC and present more accurate number of rounds necessary to guarantee the security level.

Polynomial Representation

Definition (Polynomial Representation)

Any function $F\colon \mathbb{F}_{2^n}^t \to \mathbb{F}_{2^n}$ can be uniquely expressed by a polynomial over \mathbb{F}_{2^n} , as

$$F(x_0, \dots, x_{t-1}) = \sum_{\boldsymbol{u} = (u_0, \dots, u_{t-1}) \in \{0, 1, \dots, 2^n - 1\}^t} \varphi(\boldsymbol{u}) \cdot \pi_{\boldsymbol{u}}(\boldsymbol{x}), \varphi(\boldsymbol{u}) \in \mathbb{F}_{2^n}.$$

- $\pi_{\boldsymbol{u}}(\boldsymbol{x}) = x_0^{u_0} x_1^{u_1} \cdots x_{t-1}^{u_{t-1}}$
- If $\varphi(u) \neq 0$, monomial $\pi_u(x)$ is contained by $F(\pi_u(x) \to F)$. Else, $\pi_u(x) \nrightarrow F$.
- **Example:** $F(x_0, x_1) = x_0^{13}x_1 + 2x_0^7x_1^{10} + 1$

$$\leadsto x_0^7 x_1^{10} \to F$$
, $x_0^{11} x_1 \nrightarrow F$

Question: How to judge if $x^u o y^v$ or not ?

General Monomial Prediction

Definition (General Monomial Trail)

Let $F^{(i)}$ be a sequence of polynomials over \mathbb{F}_{2^n} , $\boldsymbol{x}^{(i+1)} = F^{(i)}(\boldsymbol{x}^{(i)})$, $0 \leq i < r$. The transition $\pi_{\boldsymbol{u}^{(0)}}(\boldsymbol{x}^{(0)}) \to \pi_{\boldsymbol{u}^{(1)}}(\boldsymbol{x}^{(1)}) \to \cdots \to \pi_{\boldsymbol{u}^{(r)}}(\boldsymbol{x}^{(r)})$ is called an r-round general monomial trail, denoted by $\pi_{\boldsymbol{u}^{(0)}}(\boldsymbol{x}^{(0)}) \leadsto \pi_{\boldsymbol{u}^{(r)}}(\boldsymbol{x}^{(r)})$.

Example

Let $x_0, x_1, y, z \in \mathbb{F}_{2^3}$ with the irreducible polynomial $f(x) = x^3 + x + 1$. $z = 2y^3$, $y = x_0^3 \oplus 2x_0 \oplus x_1^2$. Considering the monomial x_0^5 , we can calculate

$$y^{3} \equiv 2x_{0}^{7} \oplus x_{0}^{6}x_{1}^{2} \oplus 4x_{0}^{5} \oplus x_{0}^{3}x_{1}^{4} \oplus 3x_{0}^{3} \oplus 4x_{0}^{2}x_{1}^{2} \oplus x_{0}^{2} \oplus 2x_{0}x_{1}^{4} \oplus x_{1}^{6},$$

$$y^{4} \equiv x_{0}^{5} \oplus 6x_{0}^{4} \oplus x_{1},$$

$$y^{5} \equiv 6x_{0}^{7} \oplus 2x_{0}^{6} \oplus x_{0}^{5}x_{1}^{2} \oplus 7x_{0}^{5} \oplus 6x_{0}^{4}x_{1}^{2} \oplus x_{0}^{3}x_{1} \oplus 2x_{0}x_{1} \oplus x_{0} \oplus x_{1}^{3},$$

$$y^{7} \equiv 6x_{0}^{7}x_{1}^{4} \oplus 4x_{0}^{7}x_{1}^{2} \oplus 2x_{0}^{7}x_{1} \oplus 2x_{0}^{6}x_{1}^{4} \oplus x_{0}^{6}x_{1}^{3} \oplus 6x_{0}^{6}x_{1}^{2} \oplus 6x_{0}^{6} \oplus x_{0}^{5}x_{1}^{6} \oplus 7x_{0}^{5}x_{1}^{4},$$

$$\oplus 4x_{0}^{5}x_{1} \oplus 2x_{0}^{5} \oplus 6x_{0}^{4}x_{1}^{6} \oplus x_{0}^{4}x_{1}^{2} \oplus 7x_{0}^{4} \oplus x_{0}^{3}x_{1}^{5} \oplus 6x_{0}^{3}x_{1}^{2} \oplus 3x_{0}^{3}x_{1} \oplus 4x_{0}^{3}$$

$$\oplus 4x_{0}^{2}x_{1}^{3} \oplus x_{0}^{2}x_{1} \oplus 6x_{0}^{2} \oplus 2x_{0}x_{0}^{5} \oplus x_{0}x_{1}^{4} \oplus 3x_{0} \oplus x_{1}^{7}.$$

Example

Similarly, we can compute the monomial of z as

$$z^{1} \equiv \underline{2y^{3}}, z^{4} \equiv 6y^{12} \equiv \underline{6y^{5}}, z^{6} \equiv 5y^{18} \equiv \underline{5y^{4}}, z^{7} \equiv y^{21} \equiv \underline{y^{7}}.$$

There are four monomial trails connecting x_0^5 and monomials of z:

$$x_0^5 \to y^3 \to z^1, \quad x_0^5 \to y^4 \to z^6, \quad x_0^5 \to y^5 \to z^4, \quad x_0^5 \to y^7 \to z^7.$$

Propagation Rules for Field-Based Operations

lacksquare Propagation rules : $m{u} \stackrel{f}{ o} m{v}$ if and only if $m{x^u} o m{y^v}, m{u}, m{v} \in \mathbb{F}_{2^n}^t$

Operation	Propagation	Rule		
$x_0 \oplus x_1 = y$	$(u_0, u_1) \xrightarrow{XOR} (v)$	$v = u_0 + u_1$ $v \succeq u_0$		
$x_0 \cdot x_1 = y$	$(u_0, u_1) \xrightarrow{AND} (v)$	$v = u_0 = u_1$		
$x = y_0 = y_1$	$(u) \xrightarrow{COPY} (v_0, v_1)$	$u = Mn(v_0 + v_1, n)$		
$x^d = y$	$(u) \xrightarrow{POWER} (v)$	$u = Mn(d \cdot v, n)$		

$$\mathsf{Mn}(u,n) = \begin{cases} 2^n - 1, & \text{if } 2^n - 1 | u, u \ge 2^n - 1 \\ u \% 2^n - 1, & \text{else.} \end{cases}$$

ASIACRYPT 2022

Comparison with Word/Bit-Based Division Property

	Word-Based Division Property	Bit-Based Division Property	General Monomial Prediction	
Variable	$\boldsymbol{X} = (x_0, \cdots, x_t)$ $x_i \in \mathbb{F}_2^N$	$m{X} = (X_0, \cdots, X_{Nt-1})$ $X_i \in \mathbb{F}_2$	$\mathbf{x} = (x_0, \cdots, x_t)$ $x_i \in \mathbb{F}_{2^n}$	
Operation	word/bit-based	bit-based	field-based	
Local Propagation	algebraic degree	ANF	polynomial representation	

Higher-Order Differential Attack [Lai94]

■ Suppose the algebraic degree of E_k is δ , for any vector space of dimension $\dim(\mathbb{P}) > \delta$, we have

$$\bigoplus_{\boldsymbol{p}\in\mathbb{P}} E_k(\boldsymbol{p}) = 0.$$

■ Attackers need to detect the algebraic degree (over \mathbb{F}_2) of ciphers over \mathbb{F}_{2^n} .

(Algebraic) Degree over Different Fields

$$X_0 \quad X_1 \quad X_2 \quad X_3 \quad X_{nt-2} \quad X_{nt-1}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

Example:
$$F(x_0, x_1) = x_0^{13} x_1 + x_0^7 x_1^{10} + 1$$

$$deg(F) = 17, \ \delta(F) = 5$$

Our Strategy

Goal is to check if y^v has the monomial $k^w x^u$ with algebraic degree $\delta > d$ or not.

New Detection Algorithm

$$\boldsymbol{k^w x^u} \leadsto \boldsymbol{y^v} \text{ for } \sum_i wt(u_i) > d$$

Initial Constraints

- $\mathbf{u} = (u_0, u_1, \cdots, u_{t-1})$, each u_i is a bitvector with length n.
- \blacksquare No constraints on w.

Stopping Rules

Consider the algebraic degree of the i'th output word

$$\begin{cases} v_i = 1, & \text{if } i = i', \\ v_i = 0, & \text{if } i \neq i'. \end{cases}$$

MiMC Family Specification [Alb+16; Alb+19a]

• Use $x \mapsto x^d$ as round function.

MiMC

Feistel MiMC

GMiMC-erf

Our Results: Feistel MiMC

Results from Our New Algorithm

MiMC

- **Exact** algebraic degree for d = 3 [BCP22].
- One or two more rounds higher-order distinguisher for $d=2^l-1$ (previous best [Eic+20]).
- Higher-order distinguisher with lower data for $d = 2^l + 1$.

Feistel MiMC

- A 124-round higher-order distinguisher (previous best 83 rounds [Bey+20]).
- A full-round known-key higher-order distinguisher (previous best 164 rounds [Bey+20]).

GMiMC_{erf}

■ A 50-round higher-order distinguisher for GMiMC_{erf}[33,8] (previous best 40 rounds [Bey+20]).

Results from Our New Algorithm

Primitive	Туре	#Rounds	Attack		Source
			#Rounds	Cost	
${}$ MiMC $(d=3)$	Integral distinguisher	82	81	2^{127}	This Work
MiMC $(d=7)$		46	46	2^{127}	This Work
$MiMC\ (d=9)$		41	41	2^{127}	This Work
Feistel MiMC	Integral distinguisher	166	124	2^{257}	This Work
	ZS distinguisher	166	166	2^{251}	This Work
	ZS distinguisher	166	248	2^{257}	This Work
GMiMC _{erf} [33,8]	Integral distinguisher	56	50	2^{263}	This Work

Conclusion

- Propose general monomial prediction, a way of studying the polynomial representation for ciphers over \mathbb{F}_{2^n} .
- Give a new framework of degree evaluation and we no longer only rely on the theoretical proof to estimate the algebraic degree over finite fields.
- Give best degree evaluation and distinguishers for MiMC, Feistel MiMC and GMiMC.
- Open questions:
 - Optimization of the performance?
 - ► The number of general monomial trails?
 - More about the structure?

Thank you.