

A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs

<u>Akinori Hosoyamada</u>¹ Takanori Isobe^{2,3,4} Yosuke Todo¹ Kan Yasuda¹

¹ NTT Social Informatics Laboratories
 ² University of Hyogo ³ NICT ⁴ PRESTO

Backgrounds

No direct access to the implementation of the algorithm

Real-World Threats

NTT 🕐

White-Box Cryptography [Chow et al. 2002]

- Technique to protect data against attackers who may have full direct access to implementations of cryptographic algorithms
- Requirement: Resistance against key extraction and code lifting
 - Key extraction...an attack to recover the secret key
 - Code lifting...an attack to copy the entire implementation

Incompressibility [Delerablée et al. 2013]

- Security notion against code lifting
- Hardness of compressing cryptographic implementations while keeping functionality
 - An encryption algorithm E_K is compiled to a large (e.g., 10GB) program $\mathbf{P}[E_K]$
 - $\mathbf{P}[E_K]$ is *incompressible* if, even if $\mathbf{P}[E_K]$ is given, it's hard to build a smaller program that is functionally equivalent to $\mathbf{P}[E_K]$
 - Incompressible \Rightarrow hard for malwares to leak useful information
 - Many variants exist (ENC-COM [Fouque et al. 2016], SPACE-Hardness [Bogdanov-Isobe 2015], etc.)
- Achievable without relying on special secure hardware
 - There exist high demands for software-only solutions in various scenarios (e.g., cloud-based payment services) [Bogdanov et al. 2016]

Motivation of Research

- There exist secure & efficient incompressible BCs, but no modes of operation to convert them into incompressible AEADs
 - GCM [MV04] is <u>not</u> incompressible even if instantiated with an incompressible BC:
 Once the hashing key for GHASH is leaked, universal forgery is possible
 - Similar attacks also work for CCM [WHF02], OCB [KR11], GCM-SIV [GL15],...
- There is no incompressible AE scheme achieving both of confidentiality & authenticity (w/o special hardware, when ∃leakage)
 - Can't we reduce incompressibility-like security notions of an AEAD mode to those of BCs?
- New security notions are necessary
 - For both of BCs and AEADs...because existing security notions do not seem suitable for reductions from AEADs to BCs
 - Authenticity notions achieved so far in the white-box setting are only (a kind of) universal unforgeability, much weaker than black-box model

Results

- New white-box security notions for AEAD/BC/PRF/etc.
- A weak variant of public indifferentiability implies reduction
- SIV w/ Sponge & CTR is a white-box secure AEAD mode of BCs
 - Secure up to $2^{n/4}$ black-box queries (n : block length of BC)
- New white-box-secure 256-bit block cipher, "SPACE256-16"
 - Variant of SPACE-16 [Bogdanov-Isobe 2015]
 - We conjecture it is secure (w.r.t. our new incompressibility security notion)
- Model & Assumption
 - Malwares can be detected if they consume lots of computational resources / send huge data outside
 - No assumptions on hardware

New Security Notions

How to Define Security Notions for AEADs?

- Real-Ideal distinguishing games
 - Like various conventional AEAD security notions
- Limits on the amount of leakage / malware running time
 - expecting malware can be detected if the leakage / running time are large
- Security after code lifting (= after malware stops)
 - no security is guaranteed during code lifting
- Leakage means nonce-repeat
 - Malware may leak valid plaintext-ciphertext pairs under some nonces that haven't been queried by the attacker, so nonce-misuse resistance is necessary
- We cannot prohibit the attacker to forward outputs from the encryption oracle to the decryption oracle

We extend the **Pseudo Random Injection (PRI) security** [RS06] Ideal object: Random Injection (and its inverse)

NTT 🕐

Security Notion for AEADs : whPRI

We say an AEAD scheme is *whPRI-secure* if

- For any "efficient" A = (A1,A2),
- there exists a time-unbounded simulator S making "reasonable amount of" queries to F / F^{-1} s.t.

 $Adv_S^{whPRI}(A) \coloneqq \Pr[\text{Game-Real} \Rightarrow 1] - \Pr[\text{Game-Ideal} \Rightarrow 1]$

is small

Interpretation of whPRI-security

∃ simulator s.t. Adv becomes small

 λ -bit leakage by malware can contain only λ -bit information of valid plaintext-ciphertext pairs

<u>The implementation is incompressible</u> privacy & authenticity lost by λ -bit leakage is only λ -bit

Security Notion for other schemes

- Security notions for other schemes (BCs, keyed functions,...) are similarly defined
- The new notion for BCs : "whPRP" (extension of PRP security)

- <u>**Conjecture</u>**: The SPACE cipher [Bogdanov-Isobe 2015] is whPRP-secure w.r.t. some reasonable parameters</u>
- <u>Our Goal</u>: Reduce whPRI-security of an AEAD mode of BCs to whPRP-security of a BC (e.g., SPACE)

(Some variants of) Indifferentiability Implies Reductions NTT (2)

- The structure of a scheme is indifferentiable from the random object (when the primitive is ideally random)
 - \Rightarrow \exists reductions between new white-box security notions

- In fact some weaker variants of indifferentiability are sufficient to show reductions
 - public indifferentiability [Dodis et al. 2009] [Yoneyama et al. 2009]
 - "weak public indifferentiability" (new!)

Incompressible AEAD Mode of BCs & New Incompressible BC

SIV [RS06] with Sponge [BDPV08] Based PRF + CTR NTT ()

256-bit Block Variant of SPACE Cipher

- (Very roughly,) the mode is secure up to $2^{n/4}$ black-box queries
- SPACE cipher seems to be whPRP-secure, but n=128
 - The security of the resulting AEAD is only up to 2^{32} complexity
 - SPACE256-16 : a new 256-bit block cipher
 - Based on SPACE(-16) [Bogdanov-Isobe 2015]
 - The resulting AEAD becomes secure up to 2⁶⁴ complexity
 - We conjecture it is secure if {query, malware time} $\ll 2^{64}$ & leakage $\ll 2^{20}$
- The resulting AEAD (w/ SPACE256-16) is practical : ≈530 cycle/B
 - Intel platform, 1KB message
 - Not so much worse than raw SPACE-16 (305.11 cycle/B) [Bogdanov et al. 2016]

Summary

Summary

- New white-box security notions for AEAD/BC/PRF/etc.
- A weak variant of public indifferentiability implies reduction
- SIV w/ Sponge & CTR is a white-box secure AEAD mode of BCs
 - Secure up to $2^{n/4}$ black-box queries (n : block length of BC)
- New white-box-secure 256-bit block cipher, "SPACE256-16"
 - Variant of SPACE(-16)
 - We conjecture it is secure (w.r.t. our new incompressibility security notion)
- Model & Assumption
 - Malwares can be detected if they consume lots of computational resources / send huge data outside
 - No assumptions on hardware