Concurrently Composable Non-Interactive Secure Computation

ASIACRYPT 2022

Andrew Morgan, Cornell University Rafael Pass, Cornell Tech

Secure Two-Party Computation [Yao82]

- Common output: **f(x,y)**
- Adversary should learn nothing besides the output.
 - Formally: **simulation-based security.**
 - We'll consider fully malicious adversaries [GMW87].

Non-Interactive Secure Computation (NISC) [Yao82, IKO+11]

- **Two rounds** with **one-sided functionality** (minimal).
- Plain model: 4 rounds necessary and sufficient! [KO04, GMPP16]
 - Need relaxed security definition: **superpolynomial-time simulation** [Pas03, PS04].

Non-Interactive Secure Computation (NISC) [Yao82, IKO+11]

- **Two rounds** with **one-sided functionality** (minimal).
- [BGI+17]: malicious SPS security in plain model.
 - Based on subexponential versions of standard assumptions (DDH, QR, Nth Residuosity, or LWE [BD18]).

A Stronger Definition of Security

- For many applications, the standard definition of simulationbased security isn't sufficient.
 - **Concurrency:** security holds with many active instances.
 - **Composability:** security holds when used as a sub-protocol.

Universal Composability

- Universal composability (UC) framework [Can01] captures composability and concurrency guarantees.
- Security needs to hold against a stronger adversary: an environment which can run many instances, corrupt parties, and control communication between corrupted parties.
 - **Strictly stronger** than "normal" stand-alone security!
- "Angel-based" UC security [PS04, CLP10]: UC analogue of SPS
 - Simulator and environment both have access to a superpolynomialtime helper H.

Universal Composability

- **Problem:** UC security is **strictly stronger** than stand-alone security, making it far more difficult to prove results.
- **Best known round complexity** (without trusted setup):
 - Stand-alone SPS security: **two rounds** [BGI⁺17]. (*minimal!*)
 - Concurrent SPS security: two broadcasts (two-sided/MPC).
 [AMR21, FJK21]
 - Still requires three messages for one-sided 2PC.
 - "Angel-based" (SPS) UC security: (unspecified) constant rounds [KMO14, GLP⁺15, CLP17].

Main Question

Is concurrently composable NISC achievable with malicious SPS security in the plain model?

• **Open for even concurrent security!** (for general functionalities)

• This work: NISC with angel-based UC security.

Main Theorem

Theorem 1. Assuming the existence of:

- subexponentially secure maliciously (stand-alone) SPS-secure NISC
- subexponentially secure non-interactive CCA-secure commitments

then there exists a maliciously (oracle-aided) UC-secure NISC protocol in the plain model for any polynomial-time computable functionality.

• **SPS-secure NISC** known from subexp. DDH/QR/LWE. [BGI+17]

Non-Interactive CCA-secure Commitments

- Tag-based commitments with:
 - Binding ٠
 - **non-interactivity** (single commitment message) ٠
 - "chosen-ciphertext" hiding against adversaries with a ٠ decommitment oracle on any tag but the challenge tag.

Weak CCA security: O* returns only value. ٠

Non-Interactive CCA-secure Commitments

- Tag-based commitments with:
 - Binding
 - **non-interactivity** (single commitment message)
 - **"chosen-ciphertext" hiding** against adversaries with a decommitment oracle on any tag but the challenge tag.

- Known constructions require more sophisticated assumptions.
 - [PPV08]: from adaptive OWPs.
 - [GKLW21]: from a variety of assumptions [LPS17, BL18, KK19]
 e.g., subexp. hinting PRGs (can be based on CDH/LWE), subexp. keyless
 CRHFs, subexp. time-lock puzzles.

Necessity of Assumptions

 Question: Can we construct concurrently composable SPSsecure NISC from weaker assumptions?

 Answer: NO, we show that non-interactive (weakly) CCAsecure commitments are not only sufficient, but also necessary, for UC-secure NISC.

Necessity of Assumptions

Theorem 1. Assuming the existence of:

- subexponentially secure maliciously (stand-alone) SPS-secure NISC
- subexponentially secure non-interactive CCA-secure commitments

then there exists a maliciously (oracle-aided) UC-secure NISC protocol in the plain model for any polynomial-time computable functionality.

Theorem 2. Assuming the existence of:

• maliciously (oracle-aided) UC-secure NISC (with perfect correctness) for the equality functionality

then there exists a non-interactive weakly CCA-secure commitment scheme.

Construction in **Thm. 1** is from **nearly minimal assumptions!** (subexp. security sufficient, poly-time necessary)

Constructing Our Protocol: Summary

- Begin by **leveraging the underlying NISC** to perform the computation.
- **UC security:** simulator must **extract** the malicious party's input from their message.
 - Restricted to poly-time: can't extract using simulator for inner (SPS) NISC!
 - Solution: Superpolynomial-time helper H implements CCA decommitment oracle O* to extract from commitments.
 - Tag-based security guarantees that an adversary cannot break honest parties' commitments.

- Start by considering a malicious receiver.
- **R** commits to **x** for extractability.
- Need to verify commitment c_x:
 - Use the NISC for "interactive witness encryption"!

c_x, NISC₁

Output NISC result.

 $c_x = Com(x, r_x)$

NISC

R's input: (x, r_x) S's input: (y, c_x) Functionality: If $c_x \neq Com(x, r_x)$ return \perp Else return f(x,y).

- Start by considering a malicious receiver.
- Still need to simulate sender message!
 - Begin by adding SPS-ZK (implementable with SPS-NISC) to verify sender message.

ReceiverSenderInput: xInput: y

c_x = Com(x, r_x)

If SPS-ZK rejects, output 1. Else output NISC result.

NISC R's input: (x, r_x) S's input: (y, c_x) Functionality: If $c_x \neq Com(x, r_x)$ return \bot Else return f(x,y).

SPS-ZK

Statement: (NISC₁, NISC₂, c_x) Witness: (r_{NISC}, y)

Proves that NISC₂ is correctly generated w.r.t. other inputs.

or $c_{t} \neq Com(t, r_{t})$ return \perp

If t = t' return z

Else return f(x,y).

- Start by considering a malicious receiver.
- Still need to simulate sender message without knowing y!
 - Add two-track functionality.
 - Sender can "program" NISC output when it uses the correct trapdoor.
 - Honest sender uses "real" witness w₁.
 - Simulator can extract t and complete the ZK using w₂.

Proves that $NISC_2$ is correctly generated w.r.t. either w_1 or w_2 .

Else return f(x,y).

- Finally, consider a malicious sender.
- Need **extractability** for input **y**.
 - Add "argument of knowledge" by committing to ZK witnesses.

AND the respective c is correct.

Simulating Our Protocol

generated w.r.t. either w_1 or w_2 , AND the respective c is correct.

Simulating Our Protocol

Summary

- We present the first **concurrently and composably secure** NISC protocol.
 - Satisfies **angel-based UC security** against malicious adversaries in the plain model.
 - Constructed from **stand-alone secure NISC** and **CCA-secure noninteractive commitments.**
- Additionally, we show that the above building blocks are both sufficient and necessary for UC-secure NISC.
 - Construction and proof in the paper!