
Concurrently Composable
Non-Interactive Secure Computation

ASIACRYPT 2022

Andrew Morgan, Cornell University

Rafael Pass, Cornell Tech

• Common output: f(x,y)

• Adversary should learn nothing besides the output.

• Formally: simulation-based security.

• We’ll consider fully malicious adversaries [GMW87].

Secure Two-Party Computation [Yao82]

R
Input: x

S
Input: y

• Two rounds with one-sided functionality (minimal).

• Plain model: 4 rounds necessary and sufficient!
[KO04, GMPP16]

• Need relaxed security definition: superpolynomial-time simulation
[Pas03, PS04].

Non-Interactive Secure Computation (NISC)
[Yao82, IKO+11]

R
Input: x

S
Input: y

Output: f(x,y)

• Two rounds with one-sided functionality (minimal).

• [BGI+17]: malicious SPS security in plain model.

• Based on subexponential versions of standard assumptions
(DDH, QR, Nth Residuosity, or LWE [BD18]).

Non-Interactive Secure Computation (NISC)
[Yao82, IKO+11]

R
Input: x

S
Input: y

Output: f(x,y)

• For many applications, the standard definition of simulation-
based security isn’t sufficient.

• Concurrency: security holds with many active instances.

• Composability: security holds when used as a sub-protocol.

A Stronger Definition of Security

• Universal composability (UC) framework [Can01] captures
composability and concurrency guarantees.

• Security needs to hold against a stronger adversary: an
environment which can run many instances, corrupt parties,
and control communication between corrupted parties.

• Strictly stronger than “normal” stand-alone security!

• “Angel-based” UC security [PS04, CLP10]: UC analogue of SPS

• Simulator and environment both have access to a superpolynomial-
time helper H.

Universal Composability

• Problem: UC security is strictly stronger than stand-alone
security, making it far more difficult to prove results.

• Best known round complexity (without trusted setup):

• Stand-alone SPS security: two rounds [BGI+17]. (minimal!)

• Concurrent SPS security: two broadcasts (two-sided/MPC).
[AMR21, FJK21]

• Still requires three messages for one-sided 2PC.

• “Angel-based” (SPS) UC security: (unspecified) constant rounds
[KMO14, GLP+15, CLP17].

Universal Composability

Is concurrently composable NISC achievable with
malicious SPS security in the plain model?

• Open for even concurrent security! (for general functionalities)

• This work: NISC with angel-based UC security.

Main Question

Theorem 1. Assuming the existence of:

• subexponentially secure maliciously (stand-alone) SPS-secure NISC

• subexponentially secure non-interactive CCA-secure commitments

then there exists a maliciously (oracle-aided) UC-secure
NISC protocol in the plain model for any polynomial-time
computable functionality.

• SPS-secure NISC known from subexp. DDH/QR/LWE. [BGI+17]

Main Theorem

• Tag-based commitments with:

• Binding

• non-interactivity (single commitment message)

• “chosen-ciphertext” hiding against adversaries with a
decommitment oracle on any tag but the challenge tag.

• Weak CCA security: O* returns only value.

Non-Interactive CCA-secure Commitments

A CO*
m0, m1, tag

v, r

Com(mb, tag)

c

b*
Accept if b = b*
AND O* not
queried on tag

• Tag-based commitments with:

• Binding

• non-interactivity (single commitment message)

• “chosen-ciphertext” hiding against adversaries with a
decommitment oracle on any tag but the challenge tag.

• Known constructions require more sophisticated assumptions.

• [PPV08]: from adaptive OWPs.

• [GKLW21]: from a variety of assumptions [LPS17, BL18, KK19]
e.g., subexp. hinting PRGs (can be based on CDH/LWE), subexp. keyless
CRHFs, subexp. time-lock puzzles.

Non-Interactive CCA-secure Commitments

• Question: Can we construct concurrently composable SPS-
secure NISC from weaker assumptions?

• Answer: NO, we show that non-interactive (weakly) CCA-

secure commitments are not only sufficient, but also
necessary, for UC-secure NISC.

Necessity of Assumptions

Theorem 1. Assuming the existence of:

• subexponentially secure maliciously (stand-alone) SPS-secure NISC

• subexponentially secure non-interactive CCA-secure commitments

then there exists a maliciously (oracle-aided) UC-secure NISC protocol in
the plain model for any polynomial-time computable functionality.

Theorem 2. Assuming the existence of:

• maliciously (oracle-aided) UC-secure NISC (with perfect correctness) for the
equality functionality

then there exists a non-interactive weakly CCA-secure commitment
scheme.

Construction in Thm. 1 is from nearly minimal assumptions!
(subexp. security sufficient, poly-time necessary)

Necessity of Assumptions

• Begin by leveraging the underlying NISC to perform the
computation.

• UC security: simulator must extract the malicious party’s
input from their message.

• Restricted to poly-time: can’t extract using simulator for inner (SPS)
NISC!

• Solution: Superpolynomial-time helper H implements CCA
decommitment oracle O* to extract from commitments.

• Tag-based security guarantees that an adversary cannot break
honest parties’ commitments.

Constructing Our Protocol: Summary

NISC
R’s input: (x, rx)
S’s input: (y, cx)

Functionality:
If cx ≠ Com(x, rx) return ꓕ
Else return f(x,y).

cx, NISC1

• Start by considering a malicious
receiver.

• R commits to x for extractability.

• Need to verify commitment cx:

• Use the NISC for “interactive
witness encryption”!

Constructing Our Protocol

Receiver
Input: x

Sender
Input: y

cx = Com(x, rx)

NISC2

Output NISC result.

If SPS-ZK rejects, output ꓕ.

Else output NISC result.

NISC2, ZK2

cx, NISC1, ZK1

• Start by considering a malicious
receiver.

• Still need to simulate sender
message!

• Begin by adding SPS-ZK
(implementable with
SPS-NISC) to verify
sender message.

Constructing Our Protocol

Receiver
Input: x

Sender
Input: y

cx = Com(x, rx)

NISC
R’s input: (x, rx)
S’s input: (y, cx)

Functionality:
If cx ≠ Com(x, rx) return ꓕ
Else return f(x,y).

SPS-ZK
Statement: (NISC1, NISC2, cx)
Witness: (rNISC, y)

Proves that NISC2 is correctly
generated w.r.t. other inputs.

Generate t.
cx = Com(x, rx)
ct = Com(t, rt)

SPS-ZK
Statement: (NISC1, NISC2, cx)
Witness: w1 = (rNISC, y)

AND w2 = (rNISC, t’, z)

Proves that NISC2 is correctly
generated w.r.t. either w1 or
w2.

NISC
R’s input: (x, t, rx, rt)
S’s input: (y, t’, z, cx ,ct)

Functionality:
If cx ≠ Com(x, rx)
or ct ≠ Com(t, rt) return ꓕ
If t = t’ return z
Else return f(x,y).

cx, ct, NISC1, ZK1

• Start by considering a malicious
receiver.

• Still need to simulate sender
message without knowing y!

• Add two-track functionality.

• Sender can “program”
NISC output when it uses
the correct trapdoor.

• Honest sender uses “real”
witness w1.

• Simulator can extract t and
complete the ZK using w2.

Constructing Our Protocol

Receiver
Input: x

Sender
Input: y

If SPS-ZK rejects, output ꓕ.

Else output NISC result.

NISC2, ZK2

w1 = (rNISC, y)
w2 = (rNISC, ꓕ, ꓕ)

SPS-ZK
Statement: (NISC1, NISC2, cx, c1, c2)

Witness: w1 = (rNISC, y), r1

AND w2 = (rNISC, t’, z), r2

Proves that NISC2 is correctly
generated w.r.t. either w1 or w2,
AND the respective c is correct.
s

NISC2, ZK2, c1, c2

• Finally, consider a malicious
sender.

• Need extractability for input y.

• Add “argument of knowledge” by
committing to ZK witnesses.

Constructing Our Protocol

Receiver
Input: x

Sender
Input: y

If SPS-ZK rejects, output ꓕ.

Else output NISC result.

w1 = (rNISC, y)
w2 = (rNISC, ꓕ, ꓕ)

Generate t.
cx = Com(x, rx)
ct = Com(t, rt)

NISC
R’s input: (x, t, rx, rt)
S’s input: (y, t’, z, cx ,ct)

Functionality:
If cx ≠ Com(x, rx)
or ct ≠ Com(t, rt) return ꓕ
If t = t’ return z
Else return f(x,y).

cx, ct, NISC1, ZK1 w1 = (rNISC, y)
w2 = (rNISC, ꓕ, ꓕ)
c1 = Com(w1, r1)
c2 = Com(w2, r2)

w1 = (rNISC, ꓕ)
w2 = (rNISC, t’, z*)
c1 = Com(w1, r1)
c2 = Com(w2, r2)

SPS-ZK
Statement: (NISC1, NISC2, cx, c1, c2)

Witness: w1 = (rNISC, y), r1

AND w2 = (rNISC, t’, z), r2

Proves that NISC2 is correctly
generated w.r.t. either w1 or w2,
AND the respective c is correct.
s

NISC2, ZK2, c1, c2

Simulating Our Protocol

Receiver
Input: x

Simulator

?

NISC
R’s input: (x, t, rx, rt)
S’s input: (y, t’, z, cx ,ct)

Functionality:
If cx ≠ Com(x, rx)
or ct ≠ Com(t, rt) return ꓕ
If t = t’ return z
Else return f(x,y).

cx, ct, NISC1, ZK1

?

H

Tf

cx, ct

x*, t’

x*

z*

SPS-ZK
Statement: (NISC1, NISC2, cx, c1, c2)

Witness: w1 = (rNISC, y), r1

AND w2 = (rNISC, t’, z), r2

Proves that NISC2 is correctly
generated w.r.t. either w1 or w2,
AND the respective c is correct.
s

NISC2, ZK2, c1, c2

Simulating Our Protocol

Simulator Sender
Input: y

?
NISC

R’s input: (x, t, rx, rt)
S’s input: (y, t’, z, cx ,ct)

Functionality:
If cx ≠ Com(x, rx)
or ct ≠ Com(t, rt) return ꓕ
If t = t’ return z
Else return f(x,y).

cx, ct, NISC1, ZK1

H

Tf

c1

(?, y*)

f(x, y*)

y*

If SPS-ZK rejects, output ꓕ.

Generate t.
cx = Com(0, rx)
ct = Com(t, rt)

R

• We present the first concurrently and composably secure
NISC protocol.

• Satisfies angel-based UC security against malicious adversaries in
the plain model.

• Constructed from stand-alone secure NISC and CCA-secure non-
interactive commitments.

• Additionally, we show that the above building blocks are
both sufficient and necessary for UC-secure NISC.

• Construction and proof in the paper!

Summary

