Exploring SAT for Cryptanalysis

(Quantum) Collision Attacks against 6-Round $\tt SHA-3$

Jian Guo¹, <u>Guozhen Liu</u>¹, Ling Song², Yi Tu¹

¹Nanyang Technological University, Singapore
²Jinan University, China

Asiacrypt 2022

Overview

- Summary of Collision Attacks on SHA-3
 - SHA-3 Hash Function
 - Collision Attacks Review and Progress
- SAT-based Automatic Search Toolkit
 - SAT Implementation
 - Truncated Differential Trail Search
 - Colliding Trail Search
 - Connecting Trail Search
- 3 6-round Collision Attacks
 - Basic Attack Strategy
 - Classical Collision Attack
 - Quantum Collision Attacks
- 4 Conclusion

SHA-3 Hash Family

Sponge construction

State

Keccak-f permutation

- θ : $A[i][j][k] \leftarrow A[i][j][k] \oplus \sum_{j'=0}^{4} A[i-1][j'][k] \oplus \sum_{j'=0}^{4} A[i+1][j'][k-1]$
- $\rho \colon \quad A[i][j] \leftarrow A[i][j] \lll T(i,j), \text{where } T(i,j) \text{s are constants}$
- π : $A[j][2i+3j] \leftarrow A[i][j]$
- $\chi \colon \quad A[i][j][k] \leftarrow A[i][j][k] \oplus (A[i+1][j][k] \oplus 1) \cdot A[i+2][j][k]$
- $L: A[0][0] \leftarrow A[0][0] \oplus RC_{i_r}$, where RC_{i_r} is the i_r -th round constant

6 Instances

SHA-3 SHA3-224

SHA3-256

SHA3-384

SHA3-512

SHAKE SHAKE128

SHAKE256

Collision Attacks against the SHA-3 family

Overview of the state-of-the-art cryptanalytic results

Target	Type	Rounds	Time Complexity	Reference	
SHA3-224	Classical	5	Practical	Guo et al. 2020 ¹	
	Quantum	6	$2^{97.75}/\sqrt{S}$	Sect.4.4	
SHA3-256	Classical	5	Practical	Guo et al. 2020 ¹	
	Quantum	6	$2^{104.25}/\sqrt{S}$	Sect.4.3	
SHA3-384	Classical	4	$2^{59.64}$	Huang et al. 2022^2	
SHA3-512	Classical	3	Practical	Dinur et al. 2013^3	
SHAKE128	Classical	5	Practical	Guo et al. 2020 ¹	
	Classical	6	$2^{123.5}$	Sect.4.2	
	Quantum	6	$2^{67.25}/\sqrt{S}$		
SHAKE256	-	-	-	-	

 $^{^1\}mathrm{Guo}$ et al, $\boldsymbol{JoC2020},$ Practical collision attacks against round-reduced SHA-3

 $^{^2\}mathrm{Huang}$ et al, ToSC2022, Finding Collisions against 4-round SHA3-384 in Practical Time

³Dinur et al, *FSE2013*, Collision attacks on up to 5 rounds of sha-3 using generalized internal differentials

Collision Attacks - Revisit Previous Works

Basic attack framework 1,2,3,4,5

- \bullet n_{r_2} -round colliding trail
- exhaustive collision search

Limitations & Obstacles

- Colliding trail search: highly dependent on truncated differential trail search
- Connector construction:
 - difficult to generate connecting trails
 - quick consumption of the Degree of Freedom

Lack of efficient trail search strategy.

 $^{^5}$ Guo et al, *JoC2020*, Practical collision attacks against round-reduced SHA-3 \checkmark $\stackrel{?}{=}$ \checkmark $\stackrel{?}{=}$ \checkmark

Dinur et al, FSE2012, New attacks on Keccak-224 and Keccak-256

 $^{^2}$ Dinur et al, *JoC2014*, Improved practical attacks on round-reduced Keccak

 $^{^3}$ Oiao et al, $\mathit{EuroCrypt2017}, \,\, \mathrm{New} \,\, \mathrm{collision} \,\, \mathrm{attacks} \,\, \mathrm{on} \,\, \mathrm{round\text{-}reduced} \,\, \mathrm{Keccak}$

 $^{^4}$ Song et al, $extit{Crypto2017}$, Non-full sbox linearization: Applications to collision attacks on round-reduced Keccak

Collision Attacks - Our Progress

SAT-based Collision Attacks on SHA-3

SAT-based trail search toolkit

- colliding trail search
 - satisfying any digest length
 - covering more rounds
 - following specific differential pattern
 - supporting exact probability constraint
- connecting trail search
 - a simpler and more efficient method compared with the previous Target Difference Algorithm (TDA)
 - providing adequate Degree of Freedom (DF)

Improved collision attacks

- 6-round collision attacks on SHAKE128
- 6-round quantum collision attacks on SHA3-224 and SHA3-256

SAT implementation

Basics

General approach

The SAT-based automatic search

SAT the boolean SATisfiability problems

• whether there exist valid assignments for a set of boolean formulas

CNF the conjunctive normal form

- a literal, e.g., x or $\neg x$
- a clause is a disjunction of literals
- a CNF is a conjunction of clauses or one clause

Solvers

- \bullet DPLL solvers, the systematic backtracking search strategy
- CDCL solvers, the conflict-driven clause learning method
- CryptoMiniSAT, CaDiCal, MapleSAT, Lingeling, ...

SAT implementation

Description of difference propagation over round function

CryptoMiniSAT

- high efficiency
- supporting XOR clauses
- simple interfaces

Propagation over 1-round

$$\alpha_r \xrightarrow{\theta} c_r \xrightarrow{\pi \circ \rho} \beta_r \xrightarrow{\chi} \alpha_{r+1}$$

• each difference bit $\alpha_r[i][j][k]$ is represented by a variable indexed with $(320 \times j + 64 \times i + k)_{\alpha_r}$.

Describing propagation over Keccak-f with CNFs

- θ : adding the XOR clauses to the solver
- ρ and π : simple index mapping
 - χ : relation between β_r and α_{r+1} , for each Sbox
 - represent DDT with truth table
 - 2 generate CNFs of truth table with *Logic Friday*

SAT implementation

Description of objective function

Cardinality encodings

- The Cardinality constraint, e.g., $\sum_{i=0}^{n-1} x_i \leq w$ or $\sum_{i=0}^{n-1} x_i \geq w$
- Translate the problem to CNFs with the sequential encoding method¹
 - $(n \cdot (w+1) w)$ auxiliary variables
 - $\mathcal{O}(n \cdot w)$ clauses

Describing the objective function with CNFs

- constraints on the number of active Sboxes Describe relation between difference and the variables that represent the activeness of an Sbox.
- constraints on *propagation weight* Describe relation between difference and the variables that represent the propagation weight.

¹Carsten Sinz, 2005, Towards an Optimal CNF Encoding of Boolean Cardinality Constraints

Truncated Differential Trail Search

SAT based Automatic Search Toolkit

Truncated differential trail and *trail core*

$$\underbrace{\alpha_i \xrightarrow{\lambda} \beta_i \xrightarrow{\chi} \alpha_{i+1} \xrightarrow{\lambda} \beta_{i+1} \xrightarrow{\chi} \alpha_{i+2} \xrightarrow{\lambda} \beta_{i+2} \xrightarrow{\chi} \alpha_{i+3} \xrightarrow{\lambda} \beta_{i+3} \xrightarrow{\chi} \alpha_{i+4}}_{w(\beta_{i+1})} \underbrace{w(\beta_{i+2})}_{w(\beta_{i+2})} \underbrace{w(\beta_{i+3})}$$

4-round trail: $(\alpha_i, \alpha_{i+1}, \alpha_{i+2}, \alpha_{i+3})$ or $(\beta_i, \beta_{i+1}, \beta_{i+2}, \beta_{i+3})$

4-round trail core: $(\alpha_{i+1}, \alpha_{i+2}, \alpha_{i+3})$ or $(\beta_{i+1}, \beta_{i+2}, \beta_{i+3})$

SAT-based truncated trail search

- **1** Translate the trail core $(\alpha_{i+1}, \beta_{i+1}, \alpha_{i+2}, \beta_{i+2}, \alpha_{i+3}, \beta_{i+3})$ to CNFs.
- **2** Add constraints on propagation weight, $w^{rev}(\alpha_{i+1}) + w(\beta_{i+1}) + w(\beta_{i+2}) + w(\beta_{i+3}) \leq W$.
 - Exhaustive 3-round trail search with W=52.
 - 2 best 4-round truncated trail with propagation weight 133.

Colliding Trail Search

$$\alpha_2 \xrightarrow{\lambda} \beta_2 \underbrace{\overset{\chi_2}{\underset{w^{res}=89}{\times}}} \alpha_3 \xrightarrow{\lambda} \beta_3 \xrightarrow{\overset{\chi_3}{\underset{w=24}{\times}}} \alpha_4 \xrightarrow{\lambda} \beta_4 \xrightarrow{\overset{\chi_4}{\underset{w=20}{\times}}} \alpha_5 \xrightarrow{\lambda} \beta_5 \xrightarrow{\overset{\chi_5}{\underset{w^d=8}{\times}}} \alpha_6^d$$

• Translate the digest collision to CNFs.

$$\alpha_6^d, d=256$$

$$\delta_{out}$$
= *0000

$$\delta_{in} \in \{00000, 00001, 00101, 10101, 00011, 01011, 01011, 01111, 11111\}$$

Colliding trail: $(\alpha_3, \beta_3, \alpha_4, \beta_4, \alpha_5, \beta_5^d)$

- Constraints on propagation weight or the number of active Sbox $w^{rev}(\alpha_3) + w(\beta_3) + w(\beta_4) + w(\beta_5^d) \leq W$ $AS(\alpha_3) + AS(\alpha_4) + AS(\beta_4) + AS(\beta_5^d) < N$
- Efficiency of colliding trail search

Rounds	Weight	Time	Reference
3	43	Several weeks	Guo et al.
3	32	2s	Our work
4	141	5mins	Our work

Connecting Trail Search

Phase 1.

Generating (β_1, β_2) trail

- describing trail $(\beta_1, \alpha_2, \beta_2, \alpha_3)$ with CNFs
- $\bullet \ weight \ constraints \\$
 - $\bullet \ w(\beta_1) + w(\beta_2) \le W$
 - $w(\beta_1) \leq w_1$ and $w(\beta_2) \leq w_2$

Phase 2.

Generating (β_0)

- adding α_0 and α_1 to the solver
- ensuring β_0 is a valid connector by introducing (x_0^1, x_0^2) variables
- weight constraint: the degree of freedom will be maximally produced for connectors

Basic Attack Strategy - Trail Search

Generating 4-round colliding trail core

With the SAT-based toolkit, propagation weight $w \ge 141$.

$$\alpha_2 \xrightarrow{\lambda} \beta_2 \underset{||w|^{\text{eve}} = 80}{\xrightarrow{\chi_2}} \alpha_3 \xrightarrow{\lambda} \beta_3 \underset{||w| = 24|}{\xrightarrow{\chi_3}} \alpha_4 \xrightarrow{\lambda} \beta_4 \underset{||w| = 20|}{\xrightarrow{\chi_4}} \alpha_5 \xrightarrow{\lambda} \beta_5 \underset{||w| = 8|}{\xrightarrow{\chi_5}} \alpha_6^d$$

Generating 2.5-round connecting trail

- With the SAT-based toolkit, (1) determine (β_1, β_2) , (2) determine (β_0) .
- Advantage: significant DF gain, e.g., increase from 124 to $330 \sim 430$.

Basic Attack Strategy - Connector Construction

2-round connector

List a system of linear equations on y_1 satisfying

- c+p condition
- χ_0 propagation
- partial of χ_1 propagation

Generate message pairs that partially follow α_2 .

Key techniques

- Fully linearize χ_0 to bypass the first round.
- Partially linearize χ_1 . Due to significant DF consumption, only part of β_1 bits are linearized. A greedy algorithm is used to determine which bits should be linearized.

Collision Attacks on 6-round SHAKE128

Differential trail

- 3-round colliding trail $2^{-141} \Rightarrow 2^{-52}$
- 3-round connecting trail

Solution space of E_{y_1}

- message pairs follow partial of α_3
- DF = 27

Connector construction

List system of linear equations on y_1 , E_{y_1}

- E_{y_0} , (1) c+p (2) χ_0 propagation
- E_{y_1} , (1) χ_1 propagation
 - (2) fully linearize χ_0 , and transfer E_{y_0} to E_{y_1}
- Transfer E_{y_2} to E_{y_1}
 - select β_2 bit with greedy algorithm
 - partially linearize χ_2 , 36 out of 116
 - list E_{y_2} and transfer to E_{y_1}

Collision Attacks on 6-round SHAKE128

Complexity analysis

Exhaustive search

2^{123.2} 6-round SHAKE128 computations

- 2¹³² SHAKE128 computations
 - The unsolved conditions of χ_2 , i.e., $2^{-80}=2^{-(116-36)}$
 - The colliding trail of probability 2^{-52}
- early-abort technique, $2^{-9.8}$ gain for one bit condition
 - 1st bit condition, 1/2 pairs left
 - 2 2nd bit condition, ¹/₄ pairs of the remaining ¹/₂ pairs left
 - **6** ...

Connector construction

2^{121.2} 6-round SHAKE128 computations

- 2^{105} (= $2^{132}/2^{27}$) connectors
- ullet the equivalent conversion
 - 56064 bitwise operations for 6-round SHAKE128 computation
 - $\mathcal{O}(m^2n)$ bitwise operations for solving equation system, i.e., $\leq 1600^3 = 4.096 \times 10^9$ bitwise operations

Total complexity

2^{123.5} 6-round SHAKE128 computations

6-round Quantum Collision Attack on SHA3-256

Basics

- The time-space tradeoff margin 2^{n/2}/S
 - \bullet n, the digest length
 - S, the maximum size of quantum and classical computers
- Assume quantum circuits exist already and concentrate on complexity evaluation.

Quantum collision attack

- Brute-force phase: 2²⁰⁶ 6-round SHA3-256
 - colliding trail 2¹⁶⁸
 - unsolved condition 2³⁸
- Solution space: DF = 5, 2^{201} connectors.
- Suppose there exists a quantum circuit C_1 (resp. C_2) for connector (resp. SHA3).
 - Prepare (M, M') with \mathcal{C}_1 .
 - ② For (M, M'), check digests with \mathcal{C}_2 .
 - Repeat until collision found.

6-round Quantum Collision Attack on SHA3-256

Complexity analysis

Suppose C_1 (resp. C_2) of depth T_c (resp. T_s) and width S_c (resp. S_s).

Time complexity of parallelized Grover search

$$T_A \cdot (\pi/4) \cdot \sqrt{S_A/(p \cdot S)}$$

- Defined $T_s = 1$, $S_s = 1$ and at least 3456 qubits are required in C_2 .
- Depth (T_A) . As T_c is negligible, $T_A = T_s = 1$.
 - Compared to T_s of nonlinear SHA3, T_c of C_1 that only contains linear operations (i.e., listing and solving equations) is negligible.
- Width (S_A) . In C_1 , the quantum states include
 - m qubits that mark whether to treat a condition or not
 - $k \times 1601$ qubits that store the k boolean equations

The overall $S_A = S_c + S_s = \frac{(m+k \times 1601 + 3456)}{3456} \le 742$.

• The total **time complexity** of the quantum collision attack is

$$1 \cdot (\pi/4) \cdot \sqrt{(742 \times 2^{206})/S} = 2^{104.25} / \sqrt{S} < 2^{128} / S$$

6-round Quantum Collision Attack on SHA3-224

$$\alpha_0 \xrightarrow{\lambda} \beta_0 \xrightarrow[\stackrel{\chi_0}{y_0, E_{y_0}}]{\stackrel{\chi_0}{x_0}} \alpha_1 \xrightarrow{\lambda} \beta_1 \xrightarrow[\stackrel{\chi_1}{y_1}, \frac{\chi_1}{y_2}]{\stackrel{\chi_1}{y_2}} \alpha_2 \xrightarrow{\lambda} \beta_2 \xrightarrow[\stackrel{\chi_2}{y_2}, \frac{\chi_2}{y_3}]{\stackrel{\chi_2}{y_2}} \alpha_3 \xrightarrow{\lambda} \beta_3 \xrightarrow[\stackrel{\chi_3}{y_2}, \frac{\chi_3}{y_3}]{\stackrel{\chi_3}{y_2}} \alpha_4 \xrightarrow{\lambda} \beta_4 \xrightarrow[\stackrel{\chi_4}{y_3}, \frac{\chi_4}{y_3}]{\stackrel{\chi_4}{y_2}} \alpha_5 \xrightarrow{\lambda} \beta_5 \xrightarrow[\stackrel{\chi_5}{y_2}, \frac{\chi_5}{y_3}]{\stackrel{\chi_5}{y_2}} \alpha_6^2 \xrightarrow{4\text{-round colliding trail}} \xrightarrow{4\text{-round colliding trail}} \alpha_1 \xrightarrow{\lambda} \beta_2 \xrightarrow[\stackrel{\chi_4}{y_2}, \frac{\chi_5}{y_3}]{\stackrel{\chi_5}{y_2}} \alpha_3 \xrightarrow{\lambda} \beta_3 \xrightarrow[\stackrel{\chi_5}{y_2}, \frac{\chi_5}{y_3}]{\stackrel{\chi_5}{y_3}} \alpha_4 \xrightarrow{\lambda} \beta_4 \xrightarrow[\stackrel{\chi_4}{y_3}, \frac{\chi_5}{y_3}]{\stackrel{\chi_5}{y_3}} \alpha_5 \xrightarrow{\lambda} \beta_5 \xrightarrow[\stackrel{\chi_5}{y_3}]{\stackrel{\chi_5}{y_3}} \alpha_6^2 \xrightarrow{4\text{-round colliding trail}}$$

Collision attack and complexity

- Brute-force phase: 2¹⁹³ 6-round SHA3-224,
 - colliding trail 2¹⁶⁵
 - unsolved condition 2²⁸
- Solution space of 2-round connector: DF=22
- Complexity

$$1 \cdot \left(\pi/4 \right) \cdot \sqrt{\left(\left((^{268 + 1600 \times 1601 + 3424)/3424} \right) \times 2^{193} \right) / S} = 2^{97.75} / \sqrt{S} < 2^{112} / S$$

Conclusion

SAT-based automatic toolkit

- colliding trail search covering one more round
- connecting trail search providing sufficient DF for connector construction
- truncated differential trail search

Collision attacks on 6-round SHA-3 instances

Target	Type	Connector Time	DF of Connector	Complexity
SHAKE128	Classical Quantum	0.8s	27	$\frac{2^{123.5}}{2^{67.25}/\sqrt{S}}$
SHA3-256	Quantum	3s	5	$2^{104.25}/\sqrt{S}$
SHA3-224	Quantum	3s	22	$2^{97.75}/\sqrt{S}$

Thank you for listening!

Questions? Comments?