

A Universally Composable Non-Interactive Aggregate Cash System

Yanxue Jia, Shi-Feng Sun, Hong-Sheng Zhou, Dawu Gu

饮水思源•爱国荣

Recall Mimblewimble

Our Contributions

Non-interactive Aggregate Cash System (NiACS)

Ideal Functionality for NiACS

Transaction Graph

Recall Mimblewimble

CoinJoin

Recall Mimblewimble

Drawback: Interactive Payment

Our Contributions

Solution \otimes Design a non-interactive Aggregate Cash System (NiACS) Π_{NiACS} in a hybrid model.

Solution Formalize an ideal functionality \mathcal{F}_{NiACS} for NiACS.

^(®) Prove that our Π_{NiACS} can securely realize \mathcal{F}_{NiACS} under the Universal Composition (UC) framework.

Our Non-interactive Aggregate Cash System

The essential reason why each party holds a part of the signing key

Adding the notion of address to achieve non-interaction

Challenges of Achieving Non-interaction

How to bind a commitment and an address;

How to bind the proof of the ownership of input coins with the transaction;

 $D \rightarrow TX$

How to non-interactively transfer the private information of the output coins to the receiver;

How to maintain the important feature "cut-through".

Bind a Commitment and an Address

Prove the Ownership of Input Coins

Split the excess into multiple parts, then sign each part under an address.

Non-Interactively Transfer the Private Information

Support Cut-Through

$$E_{1} = \frac{\widehat{C_{1}}\widehat{C_{2}}}{C_{1}C_{2}} \qquad E_{2} = \frac{\widehat{C_{3}}\widehat{C_{4}}}{C_{3}C_{4}}$$
$$\iint \widehat{C_{1}} = C_{3}$$
$$E_{1} \cdot E_{2} = \frac{\widehat{C_{1}}\widehat{C_{2}}}{C_{1}C_{2}} \cdot \frac{\widehat{C_{3}}\widehat{C_{4}}}{C_{3}C_{4}}$$

In our work, the excess is computed in the same way.

Ideal Functionality for NiACS

Can be used to analyze the security in complex execution environments;

Thanks

jiayanxue@sjtu.edu.cn