A Universally Composable Non－Interactive Aggregate Cash System

Yanxue Jia，Shi－Feng Sun，Hong－Sheng Zhou，Dawu Gu

绝 长
1 回
河
－

Contents

(3) Recall Mimblewimble
(®)Our Contributions
(3) Non-interactive Aggregate Cash System (NiACS)
(36)Ideal Functionality for NiACS

Transaction Graph

CoinJoin

Recall Mimblewimble

Drawback: Interactive Payment

Our Contributions

(3) Design a non-interactive Aggregate Cash System (NiACS) $\Pi_{N i A C S}$ in a hybrid model.
(9) Formalize an ideal functionality $\mathcal{F}_{N i A C S}$ for NiACS.
(6) Prove that our $\Pi_{N i A C S}$ can securely realize $\mathcal{F}_{\text {NiACS }}$ under the Universal Composition (UC) framework.

Our Non-interactive Aggregate Cash System

The essential reason why each party holds a part of the signing key

Rangeproof $\pi=\left\{\pi_{1}, \pi_{2}, \pi_{3}\right\}$
Excess $E=\prod_{i=1}^{4} C_{i} / \prod_{j=1}^{3} \widehat{C_{j}}$
Signature σ under E

- The transaction is balanced;
- The sender knows the spending keys of the input coins;

Adding the notion of address to achieve non-interaction

The transaction is balanced.

The sender knows the spending key of
e the input coin.

Challenges of Achieving Non-interaction

(6) How to bind a commitment and an address;

$$
C \longleftarrow \omega \longrightarrow D
$$

(36) How to bind the proof of the ownership of input coins with the transaction;

(645) How to non-interactively transfer the private information of the output coins to the receiver;

(6) How to maintain the important feature "cut-through".

Bind a Commitment and an Address

Prove the Ownership of Input Coins

Sign the transaction.

The transaction cannot be aggregated with other transactions.

Sign the excess.

These input coins can be identified as belonging to the same transaction.

Split the excess into multiple parts, then sign each part under an address.

$$
\begin{gathered}
E_{1}=\frac{\widehat{C_{1} C_{2}}}{C_{1} C_{2}} \quad E_{2}=\frac{\widehat{C_{3}} \widehat{C_{4}}}{C_{3} C_{4}} \\
\text { If } \widehat{C_{1}}=C_{3} \\
E_{1} \cdot E_{2}=\frac{\widehat{C_{1}} \widehat{C_{2}}}{C_{1} C_{2}} \cdot \frac{\widehat{C_{3}} \widehat{C_{4}}}{\widehat{C}_{2} C_{4}}
\end{gathered}
$$

In our work, the excess is computed in the same way.

Ideal Functionality for NiACS

Can be used to analyze the security in complex execution environments;

Thanks

jiayanxue＠sjtu．edu．cn

饮
 水

淂
源

国
：

