Latin Dances Reloaded: Improved Cryptanalysis against Salsa and ChaCha, and the proposal of Forró Murilo Coutinho, lago Passos, <u>Juan Grados</u>, Rafael T. de Sousa Jr, Fábio Borges - 1 Electrical Engineering Department (ENE), Technology College, University of Brasilia, Brasilia, Brazil 2 Technology Innovation Institute, Abu Dhabi, UAE 3 National Laboratory for Scientific Computing, Petrópolis, Brazil ### Agenda - Review ChaCha and Salsa - Review cryptanalysis against Chacha and Salsa - Review best attack techniques against ChaCha and Salsa - Our contributions - Cryptanalysis against Salsa and ChaCha - New cipher Forró - Conclusions #### Salsa description - Stream cipher Invented by Daniel J. Bernstein in 2005 - 20 rounds - Fast in software - Resistance against timing attacks and cache attacks - You can generate 2⁶⁴ streams #### ChaCha description - Stream cipher invented by Daniel J. Bernstein - Fast in software environment - Resistance against timing attacks and cache attacks - 20 rounds - Better Diffusion than Salsa - Actually used in TLS v1.3 Attacking Salsa Crowley Printios #### Attacking ChaCha Skietalciscial #### Differential-Linear Attack #### Differential-Linear Attack #### Differential-Linear Attack # Our contributions Cryptanalysis ## New Linear Approximations for ChaCha Reducing the number of rules - [Choudhuri and Maitra FSE'17] - 8 rules - [Coutinho et al EUROCRYPT'21] - 18 rules - This work - 3 rules Differential-Linear distinguisher ChaCha [This work] Differential-Linear distinguisher ChaCha [This work] [Coutinho and Souza ePrint'20] Complexity $2^{2\times(-11-2\times53)} \approx 2^{214}$ Differential-Linear distinguisher ChaCha [This work] [Coutinho and Souza ePrint'20] Complexity $2^{2\times(-11-2\times53)}\approx 2^{214}$ Complexity Previous Best Attack $$\Delta X_{4,4}^5$$ # Our contributions New cipher Forró # Salsa and ChaCha #### **Quarter Rounds** #### Description - 256 key bits - Same number of components as ChaCha and Salsa (12 components) - Daniel J. Bernstein advice [Bernstein, D.J.'08] -> "Replacing some of the rotations with a comparable number of additions might achieve comparable diffusion in less time." - Better Diffusion than ChaCha -> Less rounds -> 14 rounds # Forró Design # Forró Design | x_0 | x_3 | |-----------------|-------| | \mathcal{X}_4 | | | \mathcal{X}_8 | | | x_{12} | | # Forró Design | x_0 | | x_3 | |-----------------|--|-------| | x_4 | | | | \mathcal{X}_8 | | | | x_{12} | | | | x_0 | | <i>x</i> ₃ | |------------------------|--|-----------------------| | x_4 | | | | \mathcal{X}_8 | | | | <i>x</i> ₁₂ | | | | x_0 | \boldsymbol{x}_1 | <i>x</i> ₃ | |----------------|--------------------|-----------------------| | x_4 | x_5 | | | X ₈ | x_9 | | | x_{12} | x_{13} | | | x_0 | \boldsymbol{x}_1 | <i>x</i> ₃ | |------------------------|------------------------|-----------------------| | x_4 | x_5 | | | \mathcal{X}_8 | x_9 | | | <i>x</i> ₁₂ | <i>x</i> ₁₃ | | | x_0 | \boldsymbol{x}_1 | \mathcal{X}_2 | <i>X</i> ₃ | |------------------------|--------------------|-----------------|-----------------------| | x_4 | x_5 | x_6 | | | \mathcal{X}_8 | | x_{10} | | | <i>x</i> ₁₂ | | x_{14} | | | x_0 | x_1 | x_2 | x_3 | |------------------------|-------|----------|-------| | x_4 | | x_6 | | | \mathcal{X}_8 | | x_{10} | | | <i>x</i> ₁₂ | | x_{14} | | | x_0 | x_1 | x_2 | x_3 | |-------------------|-------|------------------------|-------| | x_4 | | | | | \mathcal{X}_{8} | | | | | x_{12} | | <i>x</i> ₁₄ | | | x_0 | x_1 | \mathcal{X}_2 | x_3 | |-------------------|----------|-----------------|----------| | x_4 | | | x_7 | | \mathcal{X}_{8} | | | x_{11} | | x_{12} | x_{13} | | x_{15} | | x_0 | x_1 | x_2 | x_3 | |------------------------|------------------------|------------------------|----------| | x_4 | | | x_7 | | X ₈ | | | x_{11} | | <i>x</i> ₁₂ | <i>x</i> ₁₃ | <i>x</i> ₁₄ | x_{15} | | x_0 | x_1 | x_2 | x_3 | |------------------------|------------------------|-------|------------------------| | x_4 | | | <i>X</i> ₇ | | X ₈ | | | | | <i>x</i> ₁₂ | <i>x</i> ₁₃ | | <i>x</i> ₁₅ | | x_0 | x_1 | x_2 | x_3 | |-----------------------|------------------------|-------|------------------------| | x_4 | x_5 | | <i>x</i> ₇ | | <i>X</i> ₈ | | | x_{11} | | x_{12} | <i>x</i> ₁₃ | | <i>x</i> ₁₅ | | x_0 | x_1 | x_2 | x_3 | |------------------------|------------------------|----------|----------| | x_4 | x_5 | | | | x_8 | | x_{10} | | | <i>x</i> ₁₂ | <i>x</i> ₁₃ | x_{14} | x_{15} | | x_0 | \boldsymbol{x}_1 | x_2 | x_3 | |------------------------|------------------------|------------------------|-----------------------| | x_4 | x_5 | x_6 | <i>x</i> ₇ | | X ₈ | | x_{10} | x_{11} | | <i>x</i> ₁₂ | <i>X</i> ₁₃ | <i>x</i> ₁₄ | x_{15} | | x_0 | x_1 | x_2 | x_3 | |----------------|------------------------|------------------------|------------------------| | x_4 | x_5 | x_6 | | | X ₈ | | x_{10} | | | x_{12} | <i>x</i> ₁₃ | <i>x</i> ₁₄ | <i>x</i> ₁₅ | | x_0 | x_1 | x_2 | x_3 | |------------------------|------------------------|------------------------|------------------------| | x_4 | x_5 | | | | X ₈ | | x_{10} | <i>x</i> ₁₁ | | <i>x</i> ₁₂ | <i>x</i> ₁₃ | <i>x</i> ₁₄ | <i>x</i> ₁₅ | | x_0 | \boldsymbol{x}_1 | x_2 | x_3 | |------------------------|------------------------|----------|------------------------| | x_4 | x_5 | | | | X ₈ | | x_{10} | x_{11} | | <i>x</i> ₁₂ | <i>x</i> ₁₃ | | <i>x</i> ₁₅ | | x_0 | x_1 | x_2 | x_3 | |-----------------|-------|----------|----------| | x_4 | x_5 | x_6 | x_7 | | \mathcal{X}_8 | | x_{10} | x_{11} | | x_{12} | | | x_{15} | | x_0 | x_1 | x_2 | x_3 | |----------|------------------------|------------------------|----------| | x_4 | x_5 | x_6 | | | x_8 | x_9 | x_{10} | x_{11} | | x_{12} | <i>x</i> ₁₃ | <i>x</i> ₁₄ | | | x_0 | x_1 | x_2 | x_3 | |----------------|------------------------|----------|-------| | x_4 | x_5 | x_6 | | | X ₈ | | x_{10} | | | x_{12} | <i>X</i> ₁₃ | x_{14} | | | x_0 | \boldsymbol{x}_1 | x_2 | x_3 | |----------------|------------------------|------------------------|------------------------| | x_4 | x_5 | x_6 | x_7 | | X ₈ | | x_{10} | x_{11} | | x_{12} | <i>x</i> ₁₃ | <i>x</i> ₁₄ | <i>x</i> ₁₅ | | x_0 | \boldsymbol{x}_1 | x_2 | x_3 | |----------------|------------------------|------------------------|------------------------| | x_4 | x_5 | x_6 | <i>x</i> ₇ | | X ₈ | | x_{10} | x_{11} | | x_{12} | <i>x</i> ₁₃ | <i>x</i> ₁₄ | <i>x</i> ₁₅ | | x_0 | x_1 | \mathcal{X}_2 | x_3 | |----------|----------|-----------------|------------------------| | x_4 | x_5 | x_6 | x_7 | | x_8 | | x_{10} | x_{11} | | x_{12} | x_{13} | | <i>x</i> ₁₅ | | x_0 | x_1 | x_2 | x_3 | |----------|----------|----------|-------| | x_4 | x_5 | x_6 | x_7 | | x_8 | | x_{10} | | | x_{12} | x_{13} | x_{14} | | | x_0 | x_1 | x_2 | x_3 | |----------|------------------------|------------------------|------------------------| | x_4 | x_5 | x_6 | <i>x</i> ₇ | | x_8 | | x_{10} | x_{11} | | x_{12} | <i>x</i> ₁₃ | <i>x</i> ₁₄ | <i>x</i> ₁₅ | | x_0 | x_1 | x_2 | x_3 | |-----------------------|----------|----------|------------------------| | x_4 | x_5 | x_6 | <i>x</i> ₇ | | <i>X</i> ₈ | | x_{10} | x_{11} | | x_{12} | x_{13} | x_{14} | <i>x</i> ₁₅ | | x_0 | x_1 | x_2 | x_3 | |-----------------------|----------|----------|------------------------| | x_4 | x_5 | x_6 | <i>x</i> ₇ | | <i>X</i> ₈ | | x_{10} | x_{11} | | x_{12} | x_{13} | x_{14} | <i>x</i> ₁₅ | | x_0 | x_1 | x_2 | x_3 | |----------|----------|----------|-------| | x_4 | x_5 | x_6 | | | x_8 | x_9 | x_{10} | | | x_{12} | x_{13} | x_{14} | | | x_0 | x_1 | x_2 | x_3 | |----------|------------------------|----------|------------------------| | x_4 | x_5 | x_6 | x_7 | | x_8 | x_9 | x_{10} | x_{11} | | x_{12} | <i>x</i> ₁₃ | x_{14} | <i>x</i> ₁₅ | #### Security and Performance - We reach up to 5 and 5.25 rounds against Forró by using the state of the art attacks against Salsa and ChaCha - We attack 5 rounds of Forró in the key-recovery setting why using PNBs - We implemented Forró in several hardware architectures and we conclude that Forró has slightly better performance than ChaCha and Salsa in hardware using some contained architectures (for example ARMv7). - In some Intel architectures Forró has a comparable performance to ChaCha and Salsa #### Conclusion - New technique to attack Salsa - First time ever reaching 8-round using a "pure" differential-linear distinguisher - Our key-recovery attack against 8-round improve previous by a factor of 2^32 - Less rules to derive linear approximations in ChaCha - Our attack is 2^10 times faster - Looking forward to apply in other ciphers - New cipher with better diffusion called Forró - New tool https://github.com/MurCoutinho/forro_cipher