

Latin Dances Reloaded: Improved Cryptanalysis against Salsa and ChaCha, and the proposal of Forró

Murilo Coutinho, lago Passos, <u>Juan Grados</u>, Rafael T. de Sousa Jr, Fábio Borges

- 1 Electrical Engineering Department (ENE), Technology College, University of Brasilia, Brasilia, Brazil 2 Technology Innovation Institute, Abu Dhabi, UAE 3 National Laboratory for Scientific Computing, Petrópolis, Brazil

Agenda

- Review ChaCha and Salsa
- Review cryptanalysis against Chacha and Salsa
- Review best attack techniques against ChaCha and Salsa
- Our contributions
 - Cryptanalysis against Salsa and ChaCha
 - New cipher Forró
- Conclusions

Salsa description

- Stream cipher Invented by Daniel J. Bernstein in 2005
- 20 rounds
- Fast in software
- Resistance against timing attacks and cache attacks
- You can generate 2⁶⁴ streams

ChaCha description

- Stream cipher invented by Daniel J. Bernstein
- Fast in software environment
- Resistance against timing attacks and cache attacks
- 20 rounds
- Better Diffusion than Salsa
- Actually used in TLS v1.3

Attacking Salsa

Crowley Printios

Attacking ChaCha

Skietalciscial

Differential-Linear Attack

Differential-Linear Attack

Differential-Linear Attack

Our contributions Cryptanalysis

New Linear Approximations for ChaCha

Reducing the number of rules

- [Choudhuri and Maitra FSE'17]
 - 8 rules
- [Coutinho et al EUROCRYPT'21]
 - 18 rules
- This work
 - 3 rules

Differential-Linear distinguisher ChaCha

[This work]

Differential-Linear distinguisher ChaCha [This work] [Coutinho and Souza ePrint'20] Complexity $2^{2\times(-11-2\times53)} \approx 2^{214}$

Differential-Linear distinguisher ChaCha [This work] [Coutinho and Souza ePrint'20] Complexity $2^{2\times(-11-2\times53)}\approx 2^{214}$ Complexity Previous Best Attack

$$\Delta X_{4,4}^5$$

Our contributions New cipher Forró

Salsa and ChaCha

Quarter Rounds

Description

- 256 key bits
- Same number of components as ChaCha and Salsa (12 components)
- Daniel J. Bernstein advice [Bernstein, D.J.'08] -> "Replacing some of the rotations with a comparable number of additions might achieve comparable diffusion in less time."
- Better Diffusion than ChaCha -> Less rounds -> 14 rounds

Forró Design

Forró Design

x_0	x_3
\mathcal{X}_4	
\mathcal{X}_8	
x_{12}	

Forró Design

x_0		x_3
x_4		
\mathcal{X}_8		
x_{12}		

x_0		<i>x</i> ₃
x_4		
\mathcal{X}_8		
<i>x</i> ₁₂		

x_0	\boldsymbol{x}_1	<i>x</i> ₃
x_4	x_5	
X ₈	x_9	
x_{12}	x_{13}	

x_0	\boldsymbol{x}_1	<i>x</i> ₃
x_4	x_5	
\mathcal{X}_8	x_9	
<i>x</i> ₁₂	<i>x</i> ₁₃	

x_0	\boldsymbol{x}_1	\mathcal{X}_2	<i>X</i> ₃
x_4	x_5	x_6	
\mathcal{X}_8		x_{10}	
<i>x</i> ₁₂		x_{14}	

x_0	x_1	x_2	x_3
x_4		x_6	
\mathcal{X}_8		x_{10}	
<i>x</i> ₁₂		x_{14}	

x_0	x_1	x_2	x_3
x_4			
\mathcal{X}_{8}			
x_{12}		<i>x</i> ₁₄	

x_0	x_1	\mathcal{X}_2	x_3
x_4			x_7
\mathcal{X}_{8}			x_{11}
x_{12}	x_{13}		x_{15}

x_0	x_1	x_2	x_3
x_4			x_7
X ₈			x_{11}
<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	x_{15}

x_0	x_1	x_2	x_3
x_4			<i>X</i> ₇
X ₈			
<i>x</i> ₁₂	<i>x</i> ₁₃		<i>x</i> ₁₅

x_0	x_1	x_2	x_3
x_4	x_5		<i>x</i> ₇
<i>X</i> ₈			x_{11}
x_{12}	<i>x</i> ₁₃		<i>x</i> ₁₅

x_0	x_1	x_2	x_3
x_4	x_5		
x_8		x_{10}	
<i>x</i> ₁₂	<i>x</i> ₁₃	x_{14}	x_{15}

x_0	\boldsymbol{x}_1	x_2	x_3
x_4	x_5	x_6	<i>x</i> ₇
X ₈		x_{10}	x_{11}
<i>x</i> ₁₂	<i>X</i> ₁₃	<i>x</i> ₁₄	x_{15}

x_0	x_1	x_2	x_3
x_4	x_5	x_6	
X ₈		x_{10}	
x_{12}	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅

x_0	x_1	x_2	x_3
x_4	x_5		
X ₈		x_{10}	<i>x</i> ₁₁
<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅

x_0	\boldsymbol{x}_1	x_2	x_3
x_4	x_5		
X ₈		x_{10}	x_{11}
<i>x</i> ₁₂	<i>x</i> ₁₃		<i>x</i> ₁₅

x_0	x_1	x_2	x_3
x_4	x_5	x_6	x_7
\mathcal{X}_8		x_{10}	x_{11}
x_{12}			x_{15}

x_0	x_1	x_2	x_3
x_4	x_5	x_6	
x_8	x_9	x_{10}	x_{11}
x_{12}	<i>x</i> ₁₃	<i>x</i> ₁₄	

x_0	x_1	x_2	x_3
x_4	x_5	x_6	
X ₈		x_{10}	
x_{12}	<i>X</i> ₁₃	x_{14}	

x_0	\boldsymbol{x}_1	x_2	x_3
x_4	x_5	x_6	x_7
X ₈		x_{10}	x_{11}
x_{12}	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅

x_0	\boldsymbol{x}_1	x_2	x_3
x_4	x_5	x_6	<i>x</i> ₇
X ₈		x_{10}	x_{11}
x_{12}	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅

x_0	x_1	\mathcal{X}_2	x_3
x_4	x_5	x_6	x_7
x_8		x_{10}	x_{11}
x_{12}	x_{13}		<i>x</i> ₁₅

x_0	x_1	x_2	x_3
x_4	x_5	x_6	x_7
x_8		x_{10}	
x_{12}	x_{13}	x_{14}	

x_0	x_1	x_2	x_3
x_4	x_5	x_6	<i>x</i> ₇
x_8		x_{10}	x_{11}
x_{12}	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅

x_0	x_1	x_2	x_3
x_4	x_5	x_6	<i>x</i> ₇
<i>X</i> ₈		x_{10}	x_{11}
x_{12}	x_{13}	x_{14}	<i>x</i> ₁₅

x_0	x_1	x_2	x_3
x_4	x_5	x_6	<i>x</i> ₇
<i>X</i> ₈		x_{10}	x_{11}
x_{12}	x_{13}	x_{14}	<i>x</i> ₁₅

x_0	x_1	x_2	x_3
x_4	x_5	x_6	
x_8	x_9	x_{10}	
x_{12}	x_{13}	x_{14}	

x_0	x_1	x_2	x_3
x_4	x_5	x_6	x_7
x_8	x_9	x_{10}	x_{11}
x_{12}	<i>x</i> ₁₃	x_{14}	<i>x</i> ₁₅

Security and Performance

- We reach up to 5 and 5.25 rounds against Forró by using the state of the art attacks against Salsa and ChaCha
- We attack 5 rounds of Forró in the key-recovery setting why using PNBs
- We implemented Forró in several hardware architectures and we conclude that Forró has slightly better performance than ChaCha and Salsa in hardware using some contained architectures (for example ARMv7).
- In some Intel architectures Forró has a comparable performance to ChaCha and Salsa

Conclusion

- New technique to attack Salsa
 - First time ever reaching 8-round using a "pure" differential-linear distinguisher
 - Our key-recovery attack against 8-round improve previous by a factor of 2^32
- Less rules to derive linear approximations in ChaCha
 - Our attack is 2^10 times faster
- Looking forward to apply in other ciphers
- New cipher with better diffusion called Forró
- New tool https://github.com/MurCoutinho/forro_cipher