
Asiacrypt 2022

Threshold Linearly  
Homomorphic Encryption on ℤ/2kℤ
Guilhem Castagnos 1, Fabien Laguillaumie 2, Ida Tucker 3


1 Université de Bordeaux 

2 Université de Montpellier

3 Zondax AG



Threshold Public Key Encryption



Threshold Public Key Encryption



Threshold Public Key Encryption



Threshold Public Key Encryption



Threshold Public Key Encryption

ida

ida

ida

ida



Threshold Public Key Encryption



Threshold Public Key Encryption



Motivation 
Multi-party computation modulo 2k



Secure multi-party computation (MPC)



Secure multi-party computation (MPC)



Secure multi-party computation (MPC)



Secure multi-party computation (MPC)



Multi-party computation mod 2k

Integer arithmetic on standard CPUs is done modulo   (e.g.  bits).2k 32/64

MPC modulo  mirrors this design, and allows for:2k

- Simplified implementation 
No need for modular arithmetic, or to compensate modular reduction


- Using optimizations for CPUs directly 
Often expensive to emulate modulo p



Building multi-party computation mod 2k

Produces ‘raw material’ (a.k.a. correlated randomness) 


Create shares of many triplets [a], [b], [ab],  
where a and b are random in ℤ/2kℤ

Preprocessing phase  
(offline, slow)

Uses ‘raw material’ generated offlineOnline phase  
(fast, information theoretic)



Building multi-party computation mod 2k

Produces ‘raw material’ (a.k.a. correlated randomness) 


Create shares of many triplets [a], [b], [ab],  
where a and b are random in ℤ/2kℤ

Preprocessing phase  
(offline, slow)

- SPD  : Oblivious transfer (fast but high bandwidth consumption) 
Cramer, Damgård, Escudero, Scholl, and Xing @ CRYPTO 2018 

- Overdrive2k : Somewhat homomorphic encryption (complex)       
Orsini, Smart, and Vercauteren @ CT-RSA 2020  

- Mon a : Linearly Homomorphic Encryption modulo  
Catalano, Di Raimondo, Fiore, and Giacomelli @ PKC 2020 

ℤ2k

ℤ2k 2k



Mon a Catalano, Di Raimondo, Fiore, and Giacomelli @ PKC 2020 ℤ2k

Uses the Joye-Libert encryption scheme

Linearly homomorphic
No known threshold decryption

Message space ℤ/2kℤ
&

2-party MPC only 
with  

Zero Knowledge Proofs

Negative impact on bandwidth
Benhamouda, Herranz, Joye, and Libert  @ JoC 2017



Our encryption scheme

Castagnos-Laguillaumie  
Tucker

Linearly homomorphic Threshold decryption

Message space ℤ/2kℤ



Abstract framework 
and construction



Abstract framework
Similar to the framework of Castagnos and Laguillaumie @ CT-RSA 2015

➡     : cyclic group of order , with 

➡     : subgroup of −roots of unity of , of order  

➡    Efficient algorithm for computing discrete logarithms in  (  given  ) 

➡     : subgroup of −th powers of  of unknown odd order 

➡    

➡      is a known upper bound for  

G = ⟨g⟩ s ⋅ 2k gcd(2k, s) = 1
F = ⟨ f⟩ 2k G 2k

F x f x

H = ⟨h⟩ 2k G s
G ≃ F × H
s̃ s



Abstract framework

HSM  assumption: Given  and  , where , 

  , and     for      and   


no PPT algorithm can decide  with probability significantly greater than 1/2.

2k f, h, s̃ zb b ← ({0,1}
z0 = hx ⋅ f u z1 = hx x ↩ *H u ← (((ℤ/2kℤ)×)

b

➡     : cyclic group of order , with 

➡     : subgroup of −roots of unity of , of order  

➡    Efficient algorithm for computing discrete logarithms in  (  given  ) 

➡     : subgroup of −th powers of  of unknown odd order 

➡    

➡      is a known upper bound for  

G = ⟨g⟩ s ⋅ 2k gcd(2k, s) = 1
F = ⟨ f⟩ 2k G 2k

F x f x

H = ⟨h⟩ 2k G s
G ≃ F × H
s̃ s

Similar to the framework of Castagnos and Laguillaumie @ CT-RSA 2015



Public Key Encryption Scheme on ℤ/2kℤ
KeyGen (  ): 


- sample  
-  
- return 

pp
sk ↩ *H

pk := hsk

(pk, sk)

Encrypt (  ): 


- sample  
-  
-  
- return 

pp, pk, m
r ↩ *H

c1 := hr

c2 := f mpkr

(c1, c2)

Decrypt (  ): 


-  
- if  then 
       return  
- return 

pp, sk, (c1, c2)
M := c2 ⋅ c−sk

1
M ∉ F

⊥
logf(M)

     of order ,   

      of order   

     of unknown order  

     

      is a known upper bound for   

G = ⟨g⟩ s ⋅ 2k gcd(s,2k) = 1
F = ⟨ f⟩ 2k

H = ⟨h⟩ s
G ≃ F × H
s̃ s

  are public parameterspp := ( f, h, s̃)



Linearly Homomorphic Encryption Scheme on ℤ/2kℤ
     of order ,   

      of order   

     of unknown order  

     

      is a known upper bound for   

G = ⟨g⟩ s ⋅ 2k gcd(s,2k) = 1
F = ⟨ f⟩ 2k

H = ⟨h⟩ s
G ≃ F × H
s̃ s

KeyGen (  ): 


- sample  
-  
- return 

pp
sk ↩ *H

pk := hsk

(pk, sk)

Encrypt (  ): 


- sample  
-  
-  
- return 

pp, pk, m
r ↩ *H

c1 := hr

c2 := f mpkr

(c1, c2)

Decrypt (  ): 


-  
- if  then 
       return  
- return 

pp, sk, (c1, c2)
M := c2 ⋅ c−sk

1
M ∉ F

⊥
logf(M)

EvalAdd (  ): 


-     and     
- sample  
- return 

pp, pk, (c1, c2), (c′ 1, c′ 2)
c′ ′ 1 := c1 c′ 1 c′ ′ 2 := c2 c′ 2

r ↩ *H
(c′ ′ 1hr, c′ ′ 2 pkr)

EvalScal (  ): 


-     and     
- sample  
- return 

pp, pk, (c1, c2), α
c′ 1 := cα

1 c′ 2 := cα
2

r ↩ *H
(c′ 1hr, c′ 2pkr)

  are public parameterspp := ( f, h, s̃)



Security - game 0
     of order ,   

      of order   

     of unknown order  

     

      is a known upper bound for   

G = ⟨g⟩ s ⋅ 2k gcd(s,2k) = 1
F = ⟨ f⟩ 2k

H = ⟨h⟩ s
G ≃ F × H
s̃ s

KeyGen (  ): 


- sample  
-  
- return 

pp
sk ↩ *H

pk := hsk

(pk, sk)

Encrypt (  ): 


- sample  
-  
-  
- return 

pp, pk, m
r ↩ *H

c1 := hr

c2 := f mpkr

(c1, c2)

Decrypt (  ): 


-  
- if  then 
       return  
- return 

pp, sk, (c1, c2)
M := c2 ⋅ c−sk

1
M ∉ F

⊥
logf(M)

KeyGen (  ): 


- sample  
-  
- return 

pp
sk ↩ *G

pk := hsk

(pk, sk)

Simulation

Distribution of public key  
in real and simulated KeyGen  

are negligibly close.

  are public parameterspp := ( f, h, s̃)



Encrypt (  ): 


- sample  
-  
-  
- return 

pp, pk, m
r ↩ *H

c1 := hr

c2 := f mcsk
1

(c1, c2)

Security - game 1
     of order ,   

      of order   

     of unknown order  

     

      is a known upper bound for   

G = ⟨g⟩ s ⋅ 2k gcd(s,2k) = 1
F = ⟨ f⟩ 2k

H = ⟨h⟩ s
G ≃ F × H
s̃ s

KeyGen (  ): 


- sample  
-  
- return 

pp
sk ↩ *H

pk := hsk

(pk, sk)

Encrypt (  ): 


- sample  
-  
-  
- return 

pp, pk, m
r ↩ *H

c1 := hr

c2 := f mpkr

(c1, c2)

Decrypt (  ): 


-  
- if  then 
       return  
- return 

pp, sk, (c1, c2)
M := c2 ⋅ c−sk

1
M ∉ F

⊥
logf(M)

KeyGen (  ): 


- sample  
-  
- return 

pp
sk ↩ *G

pk := hsk

(pk, sk)

Simulation

Distribution of public key  
in real and simulated KeyGen  

are negligibly close.

Nothing changes,  
just the way we compute c2

  are public parameterspp := ( f, h, s̃)



Security - game 2
     of order ,   

      of order   

     of unknown order  

     

      is a known upper bound for   

G = ⟨g⟩ s ⋅ 2k gcd(s,2k) = 1
F = ⟨ f⟩ 2k

H = ⟨h⟩ s
G ≃ F × H
s̃ s

KeyGen (  ): 


- sample  
-  
- return 

pp
sk ↩ *H

pk := hsk

(pk, sk)

Encrypt (  ): 


- sample  
-  
-  
- return 

pp, pk, m
r ↩ *H

c1 := hr

c2 := f mpkr

(c1, c2)

Decrypt (  ): 


-  
- if  then 
       return  
- return 

pp, sk, (c1, c2)
M := c2 ⋅ c−sk

1
M ∉ F

⊥
logf(M)

KeyGen (  ): 


- sample  
-  
- return 

pp
sk ↩ *G

pk := hsk

(pk, sk)

Simulation

Distribution of public key  
in real and simulated KeyGen  

are negligibly close.

Encrypt (  ): 


- sample ,  
-  
-  
- return 

pp, pk, m
r ↩ *H u ← (ℤ/2kℤ)

c1 := hrf u

c2 := f mcsk
1

(c1, c2)

The HSM  assumption  
ensures this change  
is indistinguishable

2k

  are public parameterspp := ( f, h, s̃)

ida
x



Security - game 2
     of order ,   

      of order   

     of unknown order  

     

      is a known upper bound for   

G = ⟨g⟩ s ⋅ 2k gcd(s,2k) = 1
F = ⟨ f⟩ 2k

H = ⟨h⟩ s
G ≃ F × H
s̃ s

KeyGen (  ): 


- sample  
-  
- return 

pp
sk ↩ *H

pk := hsk

(pk, sk)

Encrypt (  ): 


- sample  
-  
-  
- return 

pp, pk, m
r ↩ *H

c1 := hr

c2 := f mpkr

(c1, c2)

Decrypt (  ): 


-  
- if  then 
       return  
- return 

pp, sk, (c1, c2)
M := c2 ⋅ c−sk

1
M ∉ F

⊥
logf(M)

Simulation

Distribution of public key  
in real and simulated KeyGen  

are negligibly close.

The HSM  assumption  
ensures this change  
is indistinguishable

2k

c2 = f m+u⋅sk pkr

Information on m in simulated cipher text:

KeyGen (  ): 


- sample  
-  
- return 

pp
sk ↩ *G

pk := hsk

(pk, sk)

Encrypt (  ): 


- sample ,  
-  
-  
- return 

pp, pk, m
r ↩ *H u ← (ℤ/2kℤ)

c1 := hrf u

c2 := f mcsk
1

(c1, c2)

  are public parameterspp := ( f, h, s̃)



Security - game 2
     of order ,   

      of order   

     of unknown order  

     

      is a known upper bound for   

G = ⟨g⟩ s ⋅ 2k gcd(s,2k) = 1
F = ⟨ f⟩ 2k

H = ⟨h⟩ s
G ≃ F × H
s̃ s

KeyGen (  ): 


- sample  
-  
- return 

pp
sk ↩ *H

pk := hsk

(pk, sk)

Encrypt (  ): 


- sample  
-  
-  
- return 

pp, pk, m
r ↩ *H

c1 := hr

c2 := f mpkr

(c1, c2)

Decrypt (  ): 


-  
- if  then 
       return  
- return 

pp, sk, (c1, c2)
M := c2 ⋅ c−sk

1
M ∉ F

⊥
logf(M)

Simulation

Distribution of public key  
in real and simulated KeyGen  

are negligibly close.

The HSM  assumption  
ensures this change  
is indistinguishable

2k

c2 = f m+u⋅sk pkr m + u ⋅ sk mod 2k

Information on m in simulated cipher text:

Information theoretically 
reveals

KeyGen (  ): 


- sample  
-  
- return 

pp
sk ↩ *G

pk := hsk

(pk, sk)

Encrypt (  ): 


- sample ,  
-  
-  
- return 

pp, pk, m
r ↩ *H u ← (ℤ/2kℤ)

c1 := hrf u

c2 := f mcsk
1

(c1, c2)

  are public parameterspp := ( f, h, s̃)



Security - game 2
     of order ,   

      of order   

     of unknown order  

     

      is a known upper bound for   

G = ⟨g⟩ s ⋅ 2k gcd(s,2k) = 1
F = ⟨ f⟩ 2k

H = ⟨h⟩ s
G ≃ F × H
s̃ s

KeyGen (  ): 


- sample  
-  
- return 

pp
sk ↩ *H

pk := hsk

(pk, sk)

  are public parameterspp := ( f, h, s̃)
Encrypt (  ): 


- sample  
-  
-  
- return 

pp, pk, m
r ↩ *H

c1 := hr

c2 := f mpkr

(c1, c2)

Decrypt (  ): 


-  
- if  then 
       return  
- return 

pp, sk, (c1, c2)
M := c2 ⋅ c−sk

1
M ∉ F

⊥
logf(M)

Simulation

Distribution of public key  
in real and simulated KeyGen  

are negligibly close.

The HSM  assumption  
ensures this change  
is indistinguishable

2k

c2 = f m+u⋅sk pkr m + u ⋅ sk mod 2k

Information on m in simulated cipher text:

Information theoretically 
reveals

close to uniform mod 2k

KeyGen (  ): 


- sample  
-  
- return 

pp
sk ↩ *G

pk := hsk

(pk, sk)

Encrypt (  ): 


- sample ,  
-  
-  
- return 

pp, pk, m
r ↩ *H u ← (ℤ/2kℤ)

c1 := hrf u

c2 := f mcsk
1

(c1, c2)



Security - game 2
     of order ,   

      of order   

     of unknown order  

     

      is a known upper bound for   

G = ⟨g⟩ s ⋅ 2k gcd(s,2k) = 1
F = ⟨ f⟩ 2k

H = ⟨h⟩ s
G ≃ F × H
s̃ s

KeyGen (  ): 


- sample  
-  
- return 

pp
sk ↩ *H

pk := hsk

(pk, sk)

Encrypt (  ): 


- sample  
-  
-  
- return 

pp, pk, m
r ↩ *H

c1 := hr

c2 := f mpkr

(c1, c2)

Decrypt (  ): 


-  
- if  then 
       return  
- return 

pp, sk, (c1, c2)
M := c2 ⋅ c−sk

1
M ∉ F

⊥
logf(M)

Simulation

Distribution of public key  
in real and simulated KeyGen  

are negligibly close.

The HSM  assumption  
ensures this change  
is indistinguishable

2k

c2 = f m+u⋅sk pkr m + u ⋅ sk mod 2k

Information on m in simulated cipher text:

Information theoretically 
reveals

close to uniform mod 2k
Invertible mod 2k

KeyGen (  ): 


- sample  
-  
- return 

pp
sk ↩ *G

pk := hsk

(pk, sk)

Encrypt (  ): 


- sample ,  
-  
-  
- return 

pp, pk, m
r ↩ *H u ← (ℤ/2kℤ)

c1 := hrf u

c2 := f mcsk
1

(c1, c2)

  are public parameterspp := ( f, h, s̃)



Security - game 2
     of order ,   

      of order   

     of unknown order  

     

      is a known upper bound for   

G = ⟨g⟩ s ⋅ 2k gcd(s,2k) = 1
F = ⟨ f⟩ 2k

H = ⟨h⟩ s
G ≃ F × H
s̃ s

KeyGen (  ): 


- sample  
-  
- return 

pp
sk ↩ *H

pk := hsk

(pk, sk)

Encrypt (  ): 


- sample  
-  
-  
- return 

pp, pk, m
r ↩ *H

c1 := hr

c2 := f mpkr

(c1, c2)

Decrypt (  ): 


-  
- if  then 
       return  
- return 

pp, sk, (c1, c2)
M := c2 ⋅ c−sk

1
M ∉ F

⊥
logf(M)

Simulation

Distribution of public key  
in real and simulated KeyGen  

are negligibly close.

The HSM  assumption  
ensures this change  
is indistinguishable

2k

c2 = f m+u⋅sk pkr m + u ⋅ sk mod 2k

Information on m in simulated cipher text:

Information theoretically 
reveals

close to uniform mod 2k
Invertible mod 2k

Perfectly masked!

KeyGen (  ): 


- sample  
-  
- return 

pp
sk ↩ *G

pk := hsk

(pk, sk)

Encrypt (  ): 


- sample ,  
-  
-  
- return 

pp, pk, m
r ↩ *H u ← (ℤ/2kℤ)

c1 := hrf u

c2 := f mcsk
1

(c1, c2)

  are public parameterspp := ( f, h, s̃)



Threshold variant

We use linear integer secret sharing (LISS) Damgård and Thorbek @ PKC 2006 
to share the decryption key over the integers.

Decryption key  is used for exponentiation to  in group of unknown order .sk sk H

Our resulting scheme allows any access structure for the decryption policy 

 Threshold Decryption 



Realizing the framework 
class groups of imaginary quadratic fields



Plug and play?

The original ‘CL framework’ of Castagnos, Laguillaumie @ CT-RSA 2020

similar abstraction, only the subgroup  encoding messages is of prime order . F q
provides a



Plug and play?

The original ‘CL framework’ of Castagnos, Laguillaumie @ CT-RSA 2015

similar abstraction, only the subgroup  encoding messages is of prime order . F q

Original CL with  primeq

Two class groups:  
-  with discriminant   
-  with discriminant . 


Surjection 


  of order 


Cl(ΔK) ΔK = − pq
Cl(Δ) −pq3

ϕ̄q : Cl(Δ) ↠ Cl(ΔK)

F = Ker(ϕ̄q) q

provides a



Plug and play?

The original ‘CL framework’ of Castagnos, Laguillaumie @ CT-RSA 2015

similar abstraction, only the subgroup  encoding messages is of prime order . F q

Original CL with  primeq Plugging q = 2k

Known factorization of  


Can compute square roots, and decide 
if elements are squares. 


HSM  assumption does not hold!

ΔK

2k

provides a

Two class groups:  
-  with discriminant   
-  with discriminant . 


Surjection 


  of order 


Cl(ΔK) ΔK = − pq
Cl(Δ) −pq3

ϕ̄q : Cl(Δ) ↠ Cl(ΔK)

F = Ker(ϕ̄q) q



Realizing the framework for q = 2k

Computing square roots must be hard            build  from RSA integer ΔK N



Realizing the framework for q = 2k

Genus theory associated to class groups:  
Some genera can leak information on discrete logarithms!

Computing square roots must be hard            build  from RSA integer ΔK N



Realizing the framework for q = 2k

Genus theory associated to class groups:  
Some genera can leak information on discrete logarithms!

Computing square roots must be hard            build  from RSA integer ΔK N

Carefully select discriminants   ( and hence  ) that allow 
to securely work with the group of squares  

of cardinality  where  is odd.

ΔK N

s ⋅ 2k s



Performance 
timings and cipher text size



BICYCL : C/C++ class group library

k 1 (bits) Ciphertext 
(bits) Setup KeyGen Encrypt Decrypt

64

112 3272 0.571 s 0.019 s 7.78 ms 17.7 ms

128 4808 1.78 s 0.044 s 17.4 ms 40.1 ms

N has sizes of 2048 bits (for 1 = 112) and 3072 bits (1 = 128).


Implemented from scratch in C++. 

Timings performed on a standard laptop (Intel(R) Core(TM) i7-8665U CPU @ 1.90GHz).

Bouvier, Castagnos, Imbert, Laguillaumie @ eprint.iacr.org/2022/1466



That's all folks 
Questions?


