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Motivation 
Multi-party computation modulo 2k
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Multi-party computation mod 2k

Integer arithmetic on standard CPUs is done modulo   (e.g.  bits).2k 32/64

MPC modulo  mirrors this design, and allows for:2k

- Simplified implementation 
No need for modular arithmetic, or to compensate modular reduction


- Using optimizations for CPUs directly 
Often expensive to emulate modulo p



Building multi-party computation mod 2k

Produces ‘raw material’ (a.k.a. correlated randomness) 


Create shares of many triplets [a], [b], [ab],  
where a and b are random in ℤ/2kℤ

Preprocessing phase  
(offline, slow)

Uses ‘raw material’ generated offlineOnline phase  
(fast, information theoretic)



Building multi-party computation mod 2k

Produces ‘raw material’ (a.k.a. correlated randomness) 


Create shares of many triplets [a], [b], [ab],  
where a and b are random in ℤ/2kℤ

Preprocessing phase  
(offline, slow)

- SPD  : Oblivious transfer (fast but high bandwidth consumption) 
Cramer, Damgård, Escudero, Scholl, and Xing @ CRYPTO 2018 

- Overdrive2k : Somewhat homomorphic encryption (complex)       
Orsini, Smart, and Vercauteren @ CT-RSA 2020  

- Mon a : Linearly Homomorphic Encryption modulo  
Catalano, Di Raimondo, Fiore, and Giacomelli @ PKC 2020 

ℤ2k

ℤ2k 2k



Mon a Catalano, Di Raimondo, Fiore, and Giacomelli @ PKC 2020 ℤ2k

Uses the Joye-Libert encryption scheme

Linearly homomorphic
No known threshold decryption

Message space ℤ/2kℤ
&

2-party MPC only 
with  

Zero Knowledge Proofs

Negative impact on bandwidth
Benhamouda, Herranz, Joye, and Libert  @ JoC 2017



Our encryption scheme

Castagnos-Laguillaumie  
Tucker

Linearly homomorphic Threshold decryption

Message space ℤ/2kℤ



Abstract framework 
and construction



Abstract framework
Similar to the framework of Castagnos and Laguillaumie @ CT-RSA 2015

➡     : cyclic group of order , with 

➡     : subgroup of −roots of unity of , of order  

➡    Efficient algorithm for computing discrete logarithms in  (  given  ) 

➡     : subgroup of −th powers of  of unknown odd order 

➡    

➡      is a known upper bound for  

G = ⟨g⟩ s ⋅ 2k gcd(2k, s) = 1
F = ⟨ f⟩ 2k G 2k

F x f x

H = ⟨h⟩ 2k G s
G ≃ F × H
s̃ s



Abstract framework

HSM  assumption: Given  and  , where , 

  , and     for      and   


no PPT algorithm can decide  with probability significantly greater than 1/2.

2k f, h, s̃ zb b ← ({0,1}
z0 = hx ⋅ f u z1 = hx x ↩ *H u ← (((ℤ/2kℤ)×)

b

➡     : cyclic group of order , with 

➡     : subgroup of −roots of unity of , of order  

➡    Efficient algorithm for computing discrete logarithms in  (  given  ) 

➡     : subgroup of −th powers of  of unknown odd order 

➡    

➡      is a known upper bound for  

G = ⟨g⟩ s ⋅ 2k gcd(2k, s) = 1
F = ⟨ f⟩ 2k G 2k

F x f x

H = ⟨h⟩ 2k G s
G ≃ F × H
s̃ s

Similar to the framework of Castagnos and Laguillaumie @ CT-RSA 2015



Public Key Encryption Scheme on ℤ/2kℤ
KeyGen (  ): 


- sample  
-  
- return 

pp
sk ↩ *H

pk := hsk

(pk, sk)

Encrypt (  ): 


- sample  
-  
-  
- return 

pp, pk, m
r ↩ *H

c1 := hr

c2 := f mpkr

(c1, c2)

Decrypt (  ): 


-  
- if  then 
       return  
- return 

pp, sk, (c1, c2)
M := c2 ⋅ c−sk

1
M ∉ F

⊥
logf(M)

     of order ,   

      of order   

     of unknown order  

     

      is a known upper bound for   

G = ⟨g⟩ s ⋅ 2k gcd(s,2k) = 1
F = ⟨ f⟩ 2k

H = ⟨h⟩ s
G ≃ F × H
s̃ s

  are public parameterspp := ( f, h, s̃)
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- return 
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1
M ∉ F

⊥
logf(M)

EvalAdd (  ): 


-     and     
- sample  
- return 

pp, pk, (c1, c2), (c′ 1, c′ 2)
c′ ′ 1 := c1 c′ 1 c′ ′ 2 := c2 c′ 2

r ↩ *H
(c′ ′ 1hr, c′ ′ 2 pkr)

EvalScal (  ): 


-     and     
- sample  
- return 

pp, pk, (c1, c2), α
c′ 1 := cα

1 c′ 2 := cα
2

r ↩ *H
(c′ 1hr, c′ 2pkr)

  are public parameterspp := ( f, h, s̃)



Security - game 0
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Simulation

Distribution of public key  
in real and simulated KeyGen  

are negligibly close.
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Encrypt (  ): 


- sample  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- return 
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1

(c1, c2)
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KeyGen (  ): 


- sample  
-  
- return 

pp
sk ↩ *G

pk := hsk

(pk, sk)

Simulation

Distribution of public key  
in real and simulated KeyGen  

are negligibly close.

Nothing changes,  
just the way we compute c2

  are public parameterspp := ( f, h, s̃)
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Encrypt (  ): 


- sample ,  
-  
-  
- return 

pp, pk, m
r ↩ *H u ← (ℤ/2kℤ)

c1 := hrf u

c2 := f mcsk
1

(c1, c2)

The HSM  assumption  
ensures this change  
is indistinguishable

2k

  are public parameterspp := ( f, h, s̃)
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Threshold variant

We use linear integer secret sharing (LISS) Damgård and Thorbek @ PKC 2006 
to share the decryption key over the integers.

Decryption key  is used for exponentiation to  in group of unknown order .sk sk H

Our resulting scheme allows any access structure for the decryption policy 

 Threshold Decryption 



Realizing the framework 
class groups of imaginary quadratic fields



Plug and play?
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similar abstraction, only the subgroup  encoding messages is of prime order . F q
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Plug and play?

The original ‘CL framework’ of Castagnos, Laguillaumie @ CT-RSA 2015

similar abstraction, only the subgroup  encoding messages is of prime order . F q

Original CL with  primeq Plugging q = 2k

Known factorization of  


Can compute square roots, and decide 
if elements are squares. 


HSM  assumption does not hold!

ΔK

2k

provides a

Two class groups:  
-  with discriminant   
-  with discriminant . 


Surjection 


  of order 


Cl(ΔK) ΔK = − pq
Cl(Δ) −pq3

ϕ̄q : Cl(Δ) ↠ Cl(ΔK)

F = Ker(ϕ̄q) q



Realizing the framework for q = 2k

Computing square roots must be hard            build  from RSA integer ΔK N
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Realizing the framework for q = 2k

Genus theory associated to class groups:  
Some genera can leak information on discrete logarithms!

Computing square roots must be hard            build  from RSA integer ΔK N

Carefully select discriminants   ( and hence  ) that allow 
to securely work with the group of squares  

of cardinality  where  is odd.

ΔK N

s ⋅ 2k s



Performance 
timings and cipher text size



BICYCL : C/C++ class group library

k 1 (bits) Ciphertext 
(bits) Setup KeyGen Encrypt Decrypt

64

112 3272 0.571 s 0.019 s 7.78 ms 17.7 ms

128 4808 1.78 s 0.044 s 17.4 ms 40.1 ms

N has sizes of 2048 bits (for 1 = 112) and 3072 bits (1 = 128).


Implemented from scratch in C++. 

Timings performed on a standard laptop (Intel(R) Core(TM) i7-8665U CPU @ 1.90GHz).

Bouvier, Castagnos, Imbert, Laguillaumie @ eprint.iacr.org/2022/1466



That's all folks 
Questions?


