Threshold Linearly Homomorphic Encryption on $\mathbb{Z}/2^k\mathbb{Z}$ Guilhem Castagnos ¹, Fabien Laguillaumie ², Ida Tucker ³

¹ Université de Bordeaux
² Université de Montpellier
³ Zondax AG

Asiacrypt 2022

Anyone can encrypt a message m with ek m - Encrypt (ek, m)

Partial Decryption

Final Decryption

public operation

LINEARLY HOMOMORPHIC Threshold Public Key Encryption

- and m* that decrypts to m*
- Eval Add (m, m*) D m+m*
 Contempts to m+m*
 - 7 l'decrypts to a.m

LINEARLY Homomorphic Threshold Public Key Encryption on 4/2×71

Public operations on ciphertexts ~o operations on un derlying plaintexts modulo 2k

Part Dec Part Dec Part Dec M

Motivation Multi-party computation modulo 2^k

Multi-party computation mod 2^k

MPC modulo 2^k mirrors this design, and allows for:

- Simplified implementation No need for modular arithmetic, or to compensate modular reduction
- Using optimizations for CPUs directly Often expensive to emulate modulo p

Integer arithmetic on standard CPUs is done modulo 2^k (e.g. 32/64 bits).

Building multi-party computation mod 2^k

Produces Crea W

Online phase (fast, information theoretic)

Produces 'raw material' (a.k.a. correlated randomness)

Create shares of many triplets [a], [b], [ab], where a and b are random in $\mathbb{Z}/2^k\mathbb{Z}$

Uses 'raw material' generated offline

Building multi-party computation mod 2^k

- Cramer, Damgård, Escudero, Scholl, and Xing @ CRYPTO 2018
- Orsini, Smart, and Vercauteren @ CT-RSA 2020
- Mon \mathbb{Z}_{2^k} a : Linearly Homomorphic Encryption modulo 2^k Catalano, Di Raimondo, Fiore, and Giacomelli @ PKC 2020

Produces 'raw material' (a.k.a. correlated randomness)

Create shares of many triplets [a], [b], [ab], where a and b are random in $\mathbb{Z}/2^k\mathbb{Z}$

- SPD \mathbb{Z}_{2^k} : Oblivious transfer (fast but high bandwidth consumption)

- Overdrive2k : Somewhat homomorphic encryption (complex)

 $Von \mathbb{Z}_{2k}a$ Catalano, Di Raimondo, Fiore, and Giacomelli @ PKC 2020

Uses the Joye-Libert encryption scheme

Linearly homomorphic & Message space $\mathbb{Z}/2^k\mathbb{Z}$

Benhamouda, Herranz, Joye, and Libert @ JoC 2017

No known threshold decryption 2-party MPC only with Zero Knowledge Proofs Negative impact on bandwidth

...

Our encryption scheme

Linearly homomorphic

Message space $\mathbb{Z}/2^k\mathbb{Z}$

Castagnos-Laguillaumie Tucker

Scheme.

Threshold decryption

Abstract framework and construction

Abstract framework

- $rightarrow G = \langle g \rangle$: cyclic group of order $s \cdot 2^k$, with $gcd(2^k, s) = 1$
- \implies $F = \langle f \rangle$: subgroup of 2^k -roots of unity of G, of order 2^k
- Efficient algorithm for computing discrete logarithms in F (x given f^x)
- \Rightarrow $H = \langle h \rangle$: subgroup of 2^k -th powers of G of <u>unknown</u> odd order s
- $\implies G \simeq F \times H$
- \implies \tilde{s} is a known upper bound for s

Similar to the framework of Castagnos and Laguillaumie @ CT-RSA 2015

Abstract framework

- \Rightarrow $G = \langle g \rangle$: cyclic group of order $s \cdot 2^k$, with $gcd(2^k, s) = 1$
- \implies $F = \langle f \rangle$: subgroup of 2^k -roots of unity of G, of order 2^k
- Efficient algorithm for computing discrete logarithms in F (x given f^x)
- \Rightarrow $H = \langle h \rangle$: subgroup of 2^k -th powers of G of <u>unknown</u> odd order s
- $\implies G \simeq F \times H$
- \implies \tilde{s} is a known upper bound for

HSM_{2^k} assumption: Given f, h, \tilde{s} and z_h , where $b \leftarrow \mathcal{U}\{0, 1\}$, $z_0 = h^x \cdot f^u$, and $z_1 = h^x$ for $x \leftarrow \mathcal{D}_H$ and $u \leftarrow \mathcal{U}((\mathbb{Z}/2^k \mathbb{Z})^{\times})$

Similar to the framework of Castagnos and Laguillaumie @ CT-RSA 2015

$$S$$
 $H \times F^{*} \approx_{c} Z \in \mathcal{I}$

no PPT algorithm can decide b with probability significantly greater than 1/2.

Public Key Encryption Scheme on $\mathbb{Z}/2^k\mathbb{Z}$

KeyGen (
$$pp$$
):
- sample $sk \nleftrightarrow \mathscr{D}_H$
- $pk := h^{sk}$
- return (pk , sk)

Encrypt (
$$pp, pk, m$$
):
- sample $r \nleftrightarrow \mathscr{D}_H$
- $c_1 := h^r$
- $c_2 := f^m pk^r$
- return (c_1, c_2)

Decrypt
$$(pp, sk, (c_1, c_2))$$
:
 $-M := c_2 \cdot c_1^{-sk}$
 $- \text{ if } M \notin F \text{ then}$
 $- \text{ return } \bot$
 $- \text{ return } \log_f(M)$

 $G = \langle g \rangle$ of order $s \cdot 2^k$, $gcd(s, 2^k) = 1$ $F = \langle f \rangle$ of order 2^k $H = \langle h \rangle$ of <u>unknown</u> order s $G \simeq F \times H$ \tilde{s} is a <u>known</u> upper bound for s

 $pp := (f, h, \tilde{s})$ are public parameters

Linearly Homomorphic Encryption Scheme on $\mathbb{Z}/2^k\mathbb{Z}$

KeyGen (
$$pp$$
):
- sample $sk \nleftrightarrow \mathscr{D}_H$
- $pk := h^{sk}$
- return (pk , sk)

EvalAdd (
$$pp, pk, (c_1, c_2)$$

- $c_1'' := c_1 c_1'$ and
- sample $r \nleftrightarrow \mathscr{D}_H$
- return ($c_1''h^r, c_2''pk^r$)

Encrypt (
$$pp, pk, m$$
):
- sample $r \nleftrightarrow \mathscr{D}_H$
- $c_1 := h^r$
- $c_2 := f^m pk^r$
- return (c_1, c_2)

EvalScal (
$$pp, pk, (c_1, c_2), \alpha$$
):
- $c'_1 := c^{\alpha}_1$ and $c'_2 := c^{\alpha}_2$
- sample $r \nleftrightarrow \mathscr{D}_H$
- return (c'_1h^r, c'_2pk^r)

Decrypt
$$(pp, sk, (c_1, c_2))$$
:
 $-M := c_2 \cdot c_1^{-sk}$
 $- \text{ if } M \notin F \text{ then}$
 $ext{return } \bot$
 $- ext{return } \log_f(M)$

 $c'_{2}), (c'_{1}, c'_{2})):$ $c''_{2} := c_{2} c'_{2}$ $G = \langle g \rangle$ of order $s \cdot 2^k$, $gcd(s, 2^k) = 1$

 $F = \langle f \rangle$ of order 2^k

 $H = \langle h \rangle$ of <u>unknown</u> order *s*

 $G \simeq F \times H$

 \tilde{s} is a <u>known</u> upper bound for s

 $pp := (f, h, \tilde{s})$ are public parameters

KeyGen (
$$pp$$
):
- sample $sk \nleftrightarrow \mathscr{D}_H$
- $pk := h^{sk}$
- return (pk , sk)

Simulation

KeyGen (pp):

- sample
$$sk \leftrightarrow \mathscr{D}_G$$

- $pk := h^{sk}$
- return (pk , sk)

Encrypt (*pp*, *pk*, *m*): - sample $r \leftrightarrow \mathscr{D}_H$ $-c_1 := h^r$ $-c_2 := f^m p k^r$ - return (c_1, c_2)

Decrypt
$$(pp, sk, (c_1, c_2))$$
:
 $-M := c_2 \cdot c_1^{-sk}$
 $- \text{ if } M \notin F \text{ then}$
 $ext{return } \bot$
 $- ext{return } \log_f(M)$

Distribution of public key in real and simulated KeyGen are negligibly close.

 $G = \langle g \rangle$ of order $s \cdot 2^k$, $gcd(s, 2^k) = 1$ $F = \langle f \rangle$ of order 2^k $H = \langle h \rangle$ of <u>unknown</u> order s $G \simeq F \times H$ \tilde{s} is a <u>known</u> upper bound for s

 $pp := (f, h, \tilde{s})$ are public parameters

KeyGen (pp): - sample $sk \leftrightarrow \mathscr{D}_H$ $-pk := h^{sk}$ - return (pk, sk)

Simulation

KeyGen (pp): - sample $sk \leftrightarrow \mathscr{D}_G$ $-pk := h^{sk}$ - return (pk, sk)

Encrypt (pp, pk, m): - sample $r \leftrightarrow \mathcal{D}_H$ $-c_1 := h^r$ $-c_2 := f^m p k^r$ - return (c_1, c_2)

Encrypt (
$$pp, pk, m$$
):
- sample $r \nleftrightarrow \mathscr{D}_H$
- $c_1 := h^r$
- $c_2 := f^m c_1^{sk}$
- return (c_1, c_2)

Decrypt
$$(pp, sk, (c_1, c_2))$$
:
 $-M := c_2 \cdot c_1^{-sk}$
 $- \text{ if } M \notin F \text{ then}$
 $ext{return } \bot$
 $- ext{return } \log_f(M)$

Distribution of public key in real and simulated KeyGen are negligibly close.

 $G = \langle g \rangle$ of order $s \cdot 2^k$, $gcd(s, 2^k) = 1$ $F = \langle f \rangle$ of order 2^k $H = \langle h \rangle$ of <u>unknown</u> order s $G \simeq F \times H$ \tilde{s} is a <u>known</u> upper bound for s

Nothing changes, just the way we compute c_2

KeyGen (pp): - sample $sk \leftrightarrow \mathscr{D}_H$ $-pk := h^{sk}$ - return (pk, sk)

Simulation

KeyGen (pp): - sample $sk \leftrightarrow \mathscr{D}_G$ $-pk := h^{sk}$ - return (pk, sk)

Encrypt (pp, pk, m): - sample $r \leftrightarrow \mathcal{D}_H$ $-c_1 := h^r$ $-c_2 := f^m p k^r$ - return (c_1, c_2)

Encrypt (
$$pp, pk, m$$
):
- sample $r \nleftrightarrow \mathscr{D}_H, u \leftarrow (I)$
- $c_1 := h^r f^u$
- $c_2 := f^m c_1^{sk}$
- return (c_1, c_2)

Decrypt
$$(pp, sk, (c_1, c_2))$$
:
 $-M := c_2 \cdot c_1^{-sk}$
 $- \text{ if } M \notin F \text{ then}$
 $ext{return } \bot$
 $- ext{return } \log_f(M)$

Distribution of public key in real and simulated KeyGen are negligibly close.

 $G = \langle g \rangle$ of order $s \cdot 2^k$, $gcd(s, 2^k) = 1$ $F = \langle f \rangle$ of order 2^k $H = \langle h \rangle$ of <u>unknown</u> order s $G \simeq F \times H$ \tilde{s} is a <u>known</u> upper bound for s

 $\mathbb{Z}/2^k\mathbb{Z}^{\times}$

The HSM_{2^k} assumption ensures this change is indistinguishable

KeyGen (pp): - sample $sk \leftrightarrow \mathscr{D}_H$ $-pk := h^{sk}$ - return (pk, sk)

Simulation

KeyGen (pp): - sample $sk \leftrightarrow \mathscr{D}_G$ $-pk := h^{sk}$ - return (pk, sk)

Encrypt (pp, pk, m): - sample $r \leftrightarrow \mathcal{D}_H$ $-c_1 := h^r$ $-c_2 := f^m p k^r$ - return (c_1, c_2)

Encrypt (pp, pk, m): - sample $r \leftarrow \mathcal{D}_H, u \leftarrow (\mathbb{Z}/2^k\mathbb{Z})$ $-c_1 := h^r f^u$ $-c_2 := f^m c_1^{sk}$ - return (c_1, c_2)

Decrypt
$$(pp, sk, (c_1, c_2))$$
:
 $-M := c_2 \cdot c_1^{-sk}$
 $- \text{ if } M \notin F \text{ then}$
 $ext{return } \bot$
 $- ext{return } \log_f(M)$

Information on m in simulated cipher text:

$$c_2 = f^{m+u \cdot sk} p$$

Distribution of public key in real and simulated KeyGen are negligibly close.

 $G = \langle g \rangle$ of order $s \cdot 2^k$, $gcd(s, 2^k) = 1$ $F = \langle f \rangle$ of order 2^k $H = \langle h \rangle$ of <u>unknown</u> order s $G \simeq F \times H$ \tilde{s} is a <u>known</u> upper bound for s $pp := (f, h, \tilde{s})$ are public parameters

The HSM_{2^k} assumption ensures this change is indistinguishable

pk^r

KeyGen (pp): - sample $sk \leftrightarrow \mathscr{D}_H$ $-pk := h^{sk}$ - return (pk, sk)

Simulation

KeyGen (pp): - sample $sk \leftrightarrow \mathscr{D}_G$ $-pk := h^{sk}$ - return (pk, sk)

Encrypt (pp, pk, m): - sample $r \leftrightarrow \mathcal{D}_H$ $-c_1 := h^r$ $-c_2 := f^m p k^r$ - return (c_1, c_2)

Encrypt (pp, pk, m): - sample $r \leftarrow \mathcal{D}_H, u \leftarrow (\mathbb{Z}/2^k\mathbb{Z})$ $-c_1 := h^r f^u$ $-c_2 := f^m c_1^{sk}$ - return (c_1, c_2)

Decrypt
$$(pp, sk, (c_1, c_2))$$
:
 $-M := c_2 \cdot c_1^{-sk}$
 $- \text{ if } M \notin F \text{ then}$
 $ext{return } \bot$
 $- ext{return } \log_f(M)$

Information on m in simulated cipher text:

$$c_2 = f^{m+u \cdot sk} p$$

Distribution of public key in real and simulated KeyGen are negligibly close.

 $G = \langle g \rangle$ of order $s \cdot 2^k$, $gcd(s, 2^k) = 1$ $F = \langle f \rangle$ of order 2^k $H = \langle h \rangle$ of <u>unknown</u> order s $G \simeq F \times H$ \tilde{s} is a <u>known</u> upper bound for s

The HSM_{2^k} assumption ensures this change is indistinguishable

 $pk^r \longrightarrow m + u \cdot sk \mod 2^k$

Information theoretically reveals

KeyGen (pp): - sample $sk \leftrightarrow \mathscr{D}_H$ $-pk := h^{sk}$ - return (pk, sk)

Simulation

KeyGen (pp): - sample $sk \leftrightarrow \mathscr{D}_G$ $-pk := h^{sk}$ - return (pk, sk)

Encrypt (pp, pk, m): - sample $r \leftrightarrow \mathcal{D}_H$ $-c_1 := h^r$ $-c_2 := f^m p k^r$ - return (c_1, c_2)

Encrypt (pp, pk, m): - sample $r \leftarrow \mathcal{D}_H, u \leftarrow (\mathbb{Z}/2^k\mathbb{Z})$ $-c_1 := h^r f^u$ $-c_2 := f^m c_1^{sk}$ - return (c_1, c_2)

Decrypt
$$(pp, sk, (c_1, c_2))$$
:
 $-M := c_2 \cdot c_1^{-sk}$
 $- \text{ if } M \notin F \text{ then}$
 $ext{return } \bot$
 $- ext{return } \log_f(M)$

Information on m in simulated cipher text: close to uniform mod 2^k $\longrightarrow m + u sk$ mod 2^k ok^r Information theoretically reveals

$$c_2 = f^{m+u \cdot sk} p$$

Distribution of public key in real and simulated KeyGen are negligibly close.

 $G = \langle g \rangle$ of order $s \cdot 2^k$, $gcd(s, 2^k) = 1$ $F = \langle f \rangle$ of order 2^k $H = \langle h \rangle$ of <u>unknown</u> order s $G \simeq F \times H$ \tilde{s} is a <u>known</u> upper bound for s

 $pp := (f, h, \tilde{s})$ are public parameters

The HSM_{2^k} assumption ensures this change is indistinguishable

KeyGen (pp): - sample $sk \leftrightarrow \mathscr{D}_H$ $-pk := h^{sk}$ - return (pk, sk)

Simulation

KeyGen (pp): - sample $sk \leftrightarrow \mathscr{D}_G$ $-pk := h^{sk}$ - return (pk, sk)

Encrypt (pp, pk, m): - sample $r \leftrightarrow \mathcal{D}_H$ $-c_1 := h^r$ $-c_2 := f^m p k^r$ - return (c_1, c_2)

Encrypt (pp, pk, m): - sample $r \leftarrow \mathcal{D}_H, u \leftarrow (\mathbb{Z}/2^k\mathbb{Z})$ $-c_1 := h^r f^u$ $-c_2 := f^m c_1^{sk}$ - return (c_1, c_2)

Decrypt
$$(pp, sk, (c_1, c_2))$$
:
 $-M := c_2 \cdot c_1^{-sk}$
 $- \text{ if } M \notin F \text{ then}$
 $ext{return } \bot$
 $- ext{return } \log_f(M)$

Information on m in simulated cipher text:

$$c_2 = f^{m+u \cdot sk} p k^r$$

 $G = \langle g \rangle$ of order $s \cdot 2^k$, $gcd(s, 2^k) = 1$ $F = \langle f \rangle$ of order 2^k $H = \langle h \rangle$ of <u>unknown</u> order s $G \simeq F \times H$ \tilde{s} is a <u>known</u> upper bound for s

 $pp := (f, h, \tilde{s})$ are public parameters

The HSM_{2k} assumption ensures this change is indistinguishable

Invertible mod 2^k

close to uniform mod 2^k

 $\rightarrow m + u \cdot sk$ mod 2^k

Information theoretically reveals

KeyGen (pp): - sample $sk \leftrightarrow \mathscr{D}_H$ $-pk := h^{sk}$ - return (pk, sk)

Simulation

KeyGen (pp): - sample $sk \leftrightarrow \mathscr{D}_G$ $-pk := h^{sk}$ - return (pk, sk)

Encrypt (pp, pk, m): - sample $r \leftrightarrow \mathcal{D}_H$ $-c_1 := h^r$ $-c_2 := f^m p k^r$ - return (c_1, c_2)

Encrypt (pp, pk, m): - sample $r \leftarrow \mathcal{D}_H, u \leftarrow (\mathbb{Z}/2^k\mathbb{Z})$ $-c_1 := h^r f^u$ $-c_2 := f^m c_1^{sk}$ - return (c_1, c_2)

Decrypt
$$(pp, sk, (c_1, c_2))$$
:
 $-M := c_2 \cdot c_1^{-sk}$
 $- \text{ if } M \notin F \text{ then}$
 $ext{return } \bot$
 $- ext{return } \log_f(M)$

Information on m in simulated cipher text:

$$c_2 = f^{m+u \cdot sk} p k^r$$

 $G = \langle g \rangle$ of order $s \cdot 2^k$, $gcd(s, 2^k) = 1$ $F = \langle f \rangle$ of order 2^k $H = \langle h \rangle$ of <u>unknown</u> order s $G \simeq F \times H$ \tilde{s} is a <u>known</u> upper bound for s

The HSM_{2k} assumption ensures this change is indistinguishable

Invertible mod 2^k

close to uniform mod 2^k

m+u. $\mod 2^k$ **N**

Information theoretically reveals

Perfectly masked!

Threshold variant

Decryption key sk is used for exponentiation to sk in group of unknown order H. We use linear integer secret sharing (LISS) Damgård and Thorbek @ PKC 2006

Our resulting scheme allows any access structure for the decryption policy

to share the decryption key over the integers.

Threshold Decryption

Realizing the framework class groups of imaginary quadratic fields

The original 'CL framework' of Castagnos, Laguillaumie @ CT-RSA 2015 provides a similar abstraction, only the subgroup F encoding messages is of prime order q.

Plug and play?

The original 'CL framework' of Castagnos, Laguillaumie @ CT-RSA 2015 provides a similar abstraction, only the subgroup F encoding messages is of prime order q.

Original CL with *q* prime

Two class groups:

- $Cl(\Delta_K)$ with discriminant $\Delta_K = -pq$
- $Cl(\Delta)$ with discriminant $-pq^3$.

Surjection $\bar{\phi}_q$: $Cl(\Delta) \twoheadrightarrow Cl(\Delta_K)$

 $F = Ker(\phi_q)$ of order q

Plug and play?

The original 'CL framework' of Castagnos, Laguillaumie @ CT-RSA 2015 provides a similar abstraction, only the subgroup F encoding messages is of prime order q.

Original CL with *q* prime

Two class groups:

- $Cl(\Delta_K)$ with discriminant $\Delta_K = -pq$
- $Cl(\Delta)$ with discriminant $-pq^3$.

Surjection $\overline{\phi}_a : Cl(\Delta) \twoheadrightarrow Cl(\Delta_K)$

 $F = Ker(\phi_q)$ of order q

Plug and play?

Realizing the framework for $q = 2^k$

Computing square roots must be hard \longrightarrow build Δ_K from RSA integer N

Realizing the framework for $q = 2^k$

Computing square roots must be hard \longrightarrow build Δ_K from RSA integer N

Genus theory associated to class groups: Some genera can leak information on discrete logarithms!

Realizing the framework for $q = 2^k$

Computing square roots must be hard \longrightarrow build Δ_K from RSA integer N

Genus theory associated to class groups: Some genera can leak information on discrete logarithms!

Carefully select discriminants Δ_K (and hence N) that allow to securely work with the group of squares.

Performance timings and cipher text size

BICYCL : C/C++ class group library

Bouvier, Castagnos, Imbert, Laguillaumie @ eprint.iacr.org/2022/1466

	k	λ (bits)	Ciphertext (bits)	Setup	KeyGen	Encrypt	Decrypt
	64	112	3272	0.571 s	0.019 s	7.78 ms	17.7 ms
		128	4808	1.78 s	0.044 s	17.4 ms	40.1 ms

Implemented from scratch in C++. Timings performed on a standard laptop (Intel(R) Core(TM) i7-8665U CPU @ 1.90GHz).

N has sizes of 2048 bits (for $\lambda = 112$) and 3072 bits ($\lambda = 128$).

That's all folks Questions?