Log-S-unit Lattices using Explicit Stickelberger Generators to Solve Approx Ideal-SVP

Olivier Bernard^{1,2}

Andrea Lesavourey¹ Tuong-Huy Nguyen^{1,3} Adeline Roux-Langlois¹

THALES

¹Univ Rennes, CNRS, IRISA olivier.bernard@normalesup.org, {andrea.lesavourey, tuong-huy.nguyen, adeline.roux-langlois}@irisa.fr

> ²Thales, Gennevilliers ³DGA Maîtrise de l'Information, Bruz

Asiacrypt 2022 Taipei, 8th December 2022

Cryptanalysis of Ideal-SVP	S-unit attacks: Twisted-PHS	Towards medium dimensions	Related works and Perspectives
00000	00	00000	000
Outline			

1 Cryptanalysis of Ideal-SVP

S-unit attacks: Twisted-PHS

3 Towards medium dimensions

2

イロト イヨト イヨト イヨト

Cryptanalysis	of	Ideal-SVP
00000		

S-unit attacks: Twisted-PHS

Towards medium dimensions 00000 Related works and Perspectives 000

Svp and Cvp in Euclidean lattices

Definition (Lattice)

A lattice L is a discrete subgroup of \mathbb{R}^n (say a "Z-vector space").

Example: $\begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix}$ and $\begin{pmatrix} 13 & 5 \\ 17 & 6 \end{pmatrix}$ are two possible bases.

Given <i>L</i> , find the shortest $v \in v _2 = \lambda_1(L)$.	E <i>L</i> :
▶ NP-hard problem.	[Ajt98]

Approximate $\mathrm{Sv}_{\mathrm{P}\gamma}$

Given *L* and approximation factor γ , find $v \in L$ s.t. $||v||_2 \leq \gamma \cdot \lambda_1(L)$.

イロト イヨト イヨト

Still hard for $\gamma = poly(n)$?

Cryptanalysis of Ideal-SVP •0000 S-unit attacks: Twisted-PHS

Towards medium dimensions 00000 Related works and Perspectives 000

Svp and Cvp in Euclidean lattices

Definition (Lattice)

A lattice L is a discrete subgroup of \mathbb{R}^n (say a "Z-vector space").

Example: $\begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix}$ and $\begin{pmatrix} 13 & 5 \\ 17 & 6 \end{pmatrix}$ are two possible bases.

Shortest Vector Problem (Sv_P)			
Given <i>L</i> , find the shortest $v \in L$: $\ v\ _2 = \lambda_1(L)$.			
► NP-hard problem.	[Ajt98]		

Approximate SVP_{γ}

Given *L* and approximation factor γ , find $v \in L$ s.t. $||v||_2 \leq \gamma \cdot \lambda_1(L)$.

• Still hard for
$$\gamma = poly(n)$$
 ?

(日) (四) (日) (日) (日)

Cryptanalysis of Ideal-SVP	S-unit attacks: Twisted-PHS	Towards medium dimensions	Related works and Perspectives
0000	00	00000	000
Structured case: lo	deal lattices		

What is an ideal lattice ?

▶ Corresponds to an ideal in some number field

• For a long time, no algorithm for Ideal-SVP exploiting the structure.

- 2014: Quantum algorithm computing (S-)units, class groups in polynomial time ! [EHKS14,BS16]
- Induces a long series of cryptanalysis works. [CGS14,CDPR16,CDW17/21,PHS19,BR20,this work,BL21,BEFHY22]

э

イロト 不得 トイヨト イヨト

Cryptanalysis of Ideal-SVP	S-unit attacks: Twisted-PHS	Towards medium dimensions	Related works and Perspectives
0000	00	00000	000
Structured case: Ic	leal lattices		

What is an ideal lattice ?

Corresponds to an ideal in some number field

- For a long time, no algorithm for Ideal-SVP exploiting the structure.
- 2014: Quantum algorithm computing (*S*-)units, class groups in polynomial time ! [EHKS14.BS16]
- Induces a long series of cryptanalysis works. [CGS14,CDPR16,CDW17/21,PHS19,BR20,this work,BL21,BEFHY22]

イロト 不得 トイヨト イヨト

э

Cryptanalysis of Ideal-SVP	S-unit attacks: Twisted-PHS	Towards medium dimensions	Related works and Perspective
00000	00	00000	000
AL 1 1 .			

Algebraic cryptanalysis of Ideal-SVP: from Schnorr to S-unit attacks

Picture for Ideal-SVP:

▶ How threatening are S-unit attacks in practice ? (Say, given a quantum computer)

5 / 17

イロト イヨト イヨト

00000	00	00000	000
Cryptanalysis of Ideal-SVP	S-unit attacks: Twisted-PHS	Towards medium dimensions	Related works

Algebraic cryptanalysis of Ideal-SVP: from Schnorr to S-unit attacks

▶ How threatening are S-unit attacks in practice ? (Say, given a quantum computer)

5 / 17

イロト イヨト イヨト

and Perspectives

Cryptanalysis	of	Ideal-SVP
00000		

S-unit attacks: Twisted-PHS

Picture for Ideal-SVP: (cyclotomic fields)

Towards medium dimensions 00000 Related works and Perspectives 000

Algebraic cryptanalysis of Ideal-SVP: from Schnorr to S-unit attacks

▶ How threatening are S-unit attacks in practice ? (Say, given a quantum computer)

5 / 17

< ロ > < 同 > < 回 > < 回 >

Cryptanalysis	of	Ideal-SVP
00000		

S-unit attacks: Twisted-PHS

Towards medium dimensions 00000 Related works and Perspectives 000

Algebraic cryptanalysis of Ideal-SVP: from Schnorr to S-unit attacks

▶ How threatening are S-unit attacks in practice ? (Say, given a quantum computer)

• • • • • • • • • • • • • •

	1 1 2 11 12	. [DD00]	
00000	00	00000	000
Cryptanalysis of Ideal-SVP	S-unit attacks: Twisted-F	HS Towards medium dimensions	s Related works and Perspectives

Phenomena observed in small dimensions [BR20]

- Image: Second systemImage: Second systemImage: Second systemImage: Second systemImage: Second systemSecond systemSecond systemSecond systemImage: Second systemSecond systemSecond systemSecond
- Warning! Appearences can be very misleading in small dimensions. Need to gather more experimental observations before predicting things

Climbing degrees is classically HARD !!

		< □ →		æ	৩৫৫
Olivier BERNARD & al.	Using explicit Stickelberger generators		Asiacrypt 2022		6 / 17

Cryptanalysis of Ideal-SVP	S-unit attacks: Twisted-PHS	Towards medium dimensions	Related works and Perspectives
00000	00	00000	000
Our work			

Build full-rank family of S-units:

(cyclotomic fields, any conductor)

Real S-units \bigcup Explicit Stickelberger generators

▶ Effective Formula for index in full S-unit group, Short basis of Stickelberger ideal

Two applications:

- Remove (almost all) quantum steps in the CDW algorithm.
 - Remove random walk, explicit PIP step
- Simulate Twisted-PHS in medium dimensions up to 210:
 - ▶ Geometry of log-S-unit lattices as in [BR20] (cf. [BL21] for theory)

7 / 17

Cryptanalysis of Ideal-SVP	S-unit attacks: Twisted-PHS	Towards medium dimensions	Related works and Perspectives
00000	•0	00000	000
${\cal S}$ -unit attacks p	rinciple		

Let b be a challenge ideal (i.e., a structured lattice).

Principle:

Quantum (polynomial) step: decompose \mathfrak{b} on a factor base \mathcal{S} .

- All solutions modulo a multiplicative group, the S-unit group.
- Find a short solution (coset representative):
 - use some S-logarithmic embedding Log_S
 - Solve an Approx-CVP instance in the log-S-unit lattice
- Output the state of the stat

Some important parameters:

- Choice of S-logarithmic embedding (Tw-PHS: use number-theoretic weights)
- Choice of factor base

(Tw-PHS: maximize density)

イロト イボト イヨト イヨト

• Approx-CVP oracle

(Tw-PHS: randomized Babai's Nearest Plane)

8 / 17

Let b a challenge ideal.

- Quantum decomposition output Apply Log_S
- Short coset representative ?
- Object the second se

9 / 17

< □ > < □ > < □ > < □ > < □ >

Let \mathfrak{b} a challenge ideal.

- Quantum decomposition output Apply Log_S
- Short coset representative ?
- I Hope this is short in b

 $\langle \alpha_0 \rangle = \mathfrak{b} \cdot \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{\nu}$

9 / 17

イロト イヨト イヨト

Cryptanalysis of Ideal-SVP 0000
0
S-unit attacks: Twisted-PHS 0000
Cryptanalysis of Ideal-SVP Cryptanalys

Let \mathfrak{b} a challenge ideal.

- Quantum decomposition output Apply Log_S
- Short coset representative ?

Output is a short in b.

$$\langle \alpha_0 \rangle = \mathfrak{b} \cdot \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{\nu}$$

Let \mathfrak{b} a challenge ideal.

- Quantum decomposition output Apply Log_S
- Short coset representative ?

Output is a short in b.

$$\langle \alpha_0 \rangle = \mathfrak{b} \cdot \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{\nu}$$

Let \mathfrak{b} a challenge ideal.

- Quantum decomposition output Apply Log_S
- Short coset representative ?

Output is a short in b.

 $\begin{array}{l} \langle \alpha_0 \rangle = \mathfrak{b} \cdot \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{\nu} \\ \langle \mathfrak{s} \rangle = & \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{w} \end{array}$

化口水 化固水 化压水 化压水

1.1

SOR

Olivier Bernard & al.	Using explicit Stickelberger generators	Asiacrypt 2022	9 / 17

Olivier

Let \mathfrak{b} a challenge ideal.

- Quantum decomposition output Apply Log_S
- Short coset representative ?
- **③** Hope this is short in \mathfrak{b} .

$$\begin{aligned} \langle \alpha_0 \rangle &= \mathfrak{b} \cdot \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{\vee} \\ \langle \mathfrak{s} \rangle &= \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{w} \end{aligned} \\ \hline \langle \alpha_0 / \mathfrak{s} \rangle &= \mathfrak{b} \cdot \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{\vee - w} \end{aligned}$$

Bernard & al.	Using explicit Stickelberger generators		Asiacryp	t 2022	9 / 17
		1 L P	1 E P	1 E P .	 *) 4 (*

Cryptanalysis of Ideal-SVP	S-unit attacks: Twisted-PHS	Towards medium dimensions	Related works and Perspectives
00000	00	0000	000

A full-rank family of independent S-units

Let $K_m = \mathbb{Q}(\zeta_m)$ be the *m*th cyclotomic field

 $(m \not\equiv 2 \mod 4)$

Family of full-rank independent S-units: (S set of prime ideals above d split primes)

- Circular units
- 2 Real S-units (dim. n/2) of norm > 1
- Section 2 Stickelberger generators
- ▶ This is how we break the $n \le 80$ barrier to reach n = 210 !

Theorem (Stickelberger *S*-units index formula (informal))

These form a maximal set of independent S-units, generating a subgroup of index:

 $h_m^+ \cdot (h_m^-)^{d-1} \cdot 2^b \cdot \left(2^{\frac{\varphi(m)}{2}-1} \cdot 2^a\right)^d$, for explicitly defined a, b.

10 / 17

イロト 不得 トイヨト イヨト

Cryptanalysis of Ideal-SVP	S-unit attacks: Twisted-PHS	Towards medium dimensions	Related works and Perspectives
00000	00	0000	000

A full-rank family of independent S-units

Let $K_m = \mathbb{Q}(\zeta_m)$ be the *m*th cyclotomic field

 $(m \not\equiv 2 \mod 4)$

Family of full-rank independent S-units: (S set of prime ideals above d split primes)

- Circular units
- 2 Real S-units (dim. n/2) of norm > 1
- Section 2 Construction of the section of the sec
- ▶ This is how we break the $n \le 80$ barrier to reach n = 210 !

Theorem (Stickelberger S-units index formula (informal))

These form a maximal set of independent S-units, generating a subgroup of index:

 $h_m^+ \cdot (h_m^-)^{d-1} \cdot 2^b \cdot \left(2^{\frac{\varphi(m)}{2}-1} \cdot 2^a\right)^d$, for explicitly defined a, b.

► Huge index: use 2-saturation to remove powers of 2, ... Use short Stickelberger basis to unlock high dimensions in practice [BK21]

Olivier	Bernard	&	al.
---------	---------	---	-----

イロト 不得 トイヨト イヨト 二日

Cryptanalysis of Ideal-SVP	S-unit attacks: Twisted-PHS	Towards medium dimensions	Related works and Perspectives
00000	00	0000	000
Stickelberger idea	ıl		

Let
$$K_m = \mathbb{Q}(\zeta_m)$$
 be the *m*th cyclotomic field,
 $G_m = \operatorname{Gal}(K_m/\mathbb{Q}) = \{\sigma_s : \zeta_m \mapsto \zeta_m^s; (s, m) = 1\}.$
 $(m \neq 2)$

$$(m \not\equiv 2 \mod 4)$$

Definition (Stickelberger ideal)

Olivier

Let \mathcal{S}'_m be generated by $\{\theta_m(a); 0 < a < m\} \cup \{\frac{1}{2}N_m\}$, for:

$$\theta_m(a) = \sum_{s \in (\mathbb{Z}/m\mathbb{Z})^{\times}} \left\{ -\frac{as}{m} \right\} \cdot \sigma_s^{-1} \qquad \in \mathbb{Q}[G_m],$$

and $N_m = \sum_{\sigma \in G_m} \sigma$. The Stickelberger ideal is $S_m = S'_m \cap \mathbb{Z}[G_m]$.

- Don't look too hard at the definition.
- The Stickelberger ideal gives free relations in the class group.
- The proof is explicit! but coefficients grow FAST. [Was97, pf. Th. 6.10, p.99])

BERNARD & al. Using explicit Stickelberger generators	Asiacrypt 2022	11 / 17
	< □ > < 個 > < 图 > < 图 > < 图 > < 图 <	୬ବନ

Cryptanalysis of Ideal-SVP	S-unit attacks: Twisted-PHS	Towards medium dimensions	Related works and Perspectives
00000	00	00000	000
Short Stickelberge	er basis		

Short: $\beta = \sum_{\sigma} \varepsilon_{\sigma} \sigma \in \mathbb{Z}[G_m]$, with $\varepsilon_{\sigma} \in \{0, 1\}$.

Theorem (A family of short Stickelberger elements [BK21, Pr. 3.1])

Let a, b st. $m \nmid a, m \nmid b, m \nmid (a + b)$. Then:

$$\theta_{a,b} = \theta_m(a) + \theta_m(b) - \theta_m(a+b)$$

is short; moreover $\|\theta_{a,b}\|_2 = \sqrt{\varphi(m)/2}$.

- From these we can extract a short basis for any *m*. [BK21, Th.3
- Express corresponding generators by Jacobi sums.

[BK21, Th.3.6] [BK21, §5]

• Efficient computation, directly in $\mathbb{Q}[\zeta_m]$.

< ロ > < 同 > < 三 > < 三 > 、

Cryptanalysis of Ideal-SVP	\mathcal{S} -unit attacks: Twisted-PHS	Towards medium dimensions	Related works and Perspectives				
00000	00	00000	000				
Geometric characteristics							

Orthogonality of log-S-unit lattices:

- across all cyclotomic fields of degree \leq 210
- for all choices of factor base S, any sublattice
- ▶ This is a very general geometric phenomenon

(even in largest dimensions) (saturated or not) (see also [BL21])

Cryptanalysis	of	Ideal-SVP
00000		

S-unit attacks: Twisted-PHS

Towards medium dimensions 00000 Related works and Perspectives 000

Approximation factor upper bound

Upper bound on performance of S-unit attacks: (beyond degree 100)

- $\bullet\,$ Shows no catastrophic impact of $\mathcal S\text{-unit}$ attacks, neither reassuring
- Comparable to the volumetric lower bound of CDW
- Strong correlation between AF and density.

14 / 17

Cryptanalysis of Ideal-SVI	P	S-unit :	attacks: Twis	ted-PH	S	Towards medium dimensions	Related works and Perspectives
00000		00				00000	000
			_		-		

A recent conjecture by Bernstein & al.

Some issues:

- No formal paper, but some code / description online.
- Experimental evidence so far limited to $\mathbb{Q}(\zeta_p)$ for $p \leq 43$.

イロト イヨト イヨト

Cryptanalysis of Ideal-SVP	S-unit attacks: Twisted-PHS	Towards medium dimensions	Related works and Perspectives
00000	00	00000	000
Perspectives			

On-going work:

- One Densify log-S-unit sublattices: verify evolution of AF for several orbits
 - ▶ Saturation for all factors of h_m^- ($p \le 2^{93}$)
- 2 Build a practical simulator of S-unit attacks
 - Use extended data to reliably support finer heuristics and estimations.
 - Explain the strong connection between final AF and density.
- ▶ In particular, both allow to evaluate further previous conjecture.

イロト イヨト イヨト

Cryptanalysis of Ideal-SVP 00000	S-unit attacks: Twisted-PHS 00	Towards medium dimensions	Related works and Perspectives
Questions ?			

Thank you!

イロト イヨト イヨト イヨト

2