Short-lived ZK Proofs
and Signatures

Arasu Arun Joseph Bonneau Jeremy Clark

COURANT INSTITUTE o alidbiac it lahe, 0

OF MATHEMATICAL SCIENCES

oal: Proofs and signatures that naturally disappear

A signature on paper with disappearing ink will vanish after
some time.

What’s the cryptographic equivalent of disappearing?

!
N\ ' 4

’

oal: Proofs and signatures that naturally disappear

A signature on paper with disappearing ink will vanish after
some time.

What’s the cryptographic equivalent of disappearing?

!
N\ ' 4

O The loss of soundness.

’

Loss of soundness over time

Loss of soundness over time + deniability

v
Sound : Nogund
- s
0

time t

S

Y

O
Did you @/
sign this?

3

How? Allow slow forgeries

2L anc

are indistinguishable

How? Allow slow forgeries

But how do we establish when
a signature was created?
7 B
and _

are indistinguishable

Beacons establish non-interactive time

o b, b, b, € {0,1}°
B T 1
&

We assume a global beacon that periodically emits unpredictable randomness.

Possible beacons: Stock prices, blockchain blocks, distributed protocols...
T P -

@

drand

Use beacon values to specify expiration

The beacon &
emits b at time 0.

b e {0,1}>°
time O time t

after b is released

Use beacon values to specify expiration

The beacon & The latest beacon value b
emits b at time O. is specified in the signature.
b / Soundness is at time ¢
> regardless of when Alice signed.
b € {0,1}

time ¢
after b is released

[VOTE)

In this talk @

Applications: deniable email leaks and receipt-free voting
Tool: Verifiable Delay Functions (VDFs)
Constructions:

e Transforming NIZKs,) -protocols

e zkVDFs

Implementation

Mitigating Email Leaks

Email servers attach their signatures to
out-going emails for authentication. These signatures are only

required during transfers.

But they last forever and are
used to validate leaks.

= ltisreally \
from Google

Gmail Yahoo

DKIM signatures validate email leaks

A emall leaked by Wikileaks in 2016 that still has its One solution would be to have
signature from Google, thereby validating it. Google periodically refresh and

\ leak keys.

- WikiLeaks Leaks News About Partners Search Q Shop

This email has also been verified by Google DKIM 2048-
bit RSA key

Delivery Status Notification (Failure)

From:mailer-daemon@googlemail.com https://blog.cryptographyengineering.com/2020/11/16/

To: john.podesta+caf =johnpodestatemp=outlook.com@gmail.com ok-google-please-publish-your-dkim-secret-keys/
9

Short-lived sigs are a natural solution

Email is sent w/

short-lived signature. | @& W
Beacon & b

[<2
emits . k@‘ @’

time t

Anyone could’ve \
: forged this '
email’s signature

||||||||||||II \» |'t |S real |y -

ML from GOOQ le

Gmail Yahoo ;

Short-lived proofs can prevent

Receipt-free VOtlng cash-for-votes.

Voting Booth

proof that your vote
was included correctly

Short-lived proofs can prevent

Receipt-free VOtlng cash-for-votes.

Voting Booth

The proof is no longer convincing!

N\
\
]
b s
U4
- &

—>
proof that your vote

was included correctly

Related Work

O “Designated Verifier Proofs” [JSI96]; “Chameleon Signatures” [KROO]

* Designated verifier vs time-based deniabillity

o “Timed signatures” [BNOO]; "Time-capsule signatures” [DY05]
* Signatures are “locked” until time t; We solve the inverse problem.

o KeyForge and TimeForge [SPG21]
* Require further actions from signer while ours is natural based on VDFs.

o Proof of Knowledge or Work [BKZZ16]}

 Based on proof-of-work, which can be parallelized (and thus, not time-based)

12

Formalizing short-lived proofs

» Setup(4,1) — pp
e Prove(x,w,b) > &
o Verify(x,») — {0,1}

. (x,0) > &

Completeness: Prove runs in time o(?)
t-Forgeability: Forge runs in time [, (1 + €)¢]

Indistinguishability:
V x,w: {Prove(x,w,b)}~{ (x,b)}

ZK is implied as IS also a simulator!

t-Soundness: You can extract a withess
from a prover that produces proofs in time

less than t after the beacon emits 5.

13

Constructions via transformations

Transformations from generic NIZK and) -protocols to short-lived versions.

NIZK —— Short-lived NIZK
— | Short-lived) protocol

In our paper: 4 transformations for proofs and 2 more for signatures.

Our construction use Verifiable Delay Functions ().

14

Tool: Verifiable Delay Functions (VDFs)

 Setup(4,7) = pp

e Eval(x) » y, & — time O(7)

e Verify(x,y,7) — {0,1} tast

VDF security property: Given a

random input X, it’'s hard any to
convince the verifier in time less than t
(even when given polynomial-time
pre-computation).

15

Tool: Verifiable Delay Functions (VDFs)

Repeated Squaring VDFs:

» Setup(4,7) — pp
| x € G of unknown order

e Eval(x) » y, & — time O(7) 0

(eg: RSA2048 groups)
e Verify(x,y,7) — {0,1} fast

> V, proof
VDF security property: Given a y=Xx -

random input x, it’'s hard any to
convince the verifier in time less than t
(even when given polynomial-time

pre-computation). Eg: Wesolowski and Pietrzak VDFs

15

Takes 7 steps using the repeated
squaring algorithm.

Generic Construction: NIZK V VDF

Input: x

Verify Relation R: (x, w) \
Beacon: /
>
Witness: w, y, & VDF-Verify(b, v, 1)

16

Generic Construction: NIZK V VDF

Input: x

Verify Relation R: (x, w)
Beacon: »
OR
Witness: w, y, VDF-Verify(b, v, 1)

o Completeness: Honest prover can satisfy the original statement
O t-Forgeability: can compute VDF-Eval(bh) = y, &

— takes t steps from when b was emitted

16

Generic Construction: NIZK V VDF

Input: x

Verify Relation R: (x, w)
Beacon: »
OR
Witness: w, y, VDF-Verify(b, v, 1)

o Completeness: Honest prover can satisfy the original statement

O t-Forgeability: can compute VDF-Eval(bh) = y, &
— takes t steps from when b was emitted

© Indistinguishability & t-Soundness: reduces to NIZK A VDF security

16

Stronger notion: Reusable Forgeability

S S
© =aES f =
1 / | \
Beacon b ¢ / _|'_ 5

IS announced /
/ With reusable forgeability, only one long

/ computation per beacon value b required!

| I: Advice string for 5 Advice now helps forge

O signatures of any key

O and proofs of any statement.
17

Background: 2-protocols Relation R, input: x

Prove:
a
—_—
1. Compute and send a _
Withess: W Cha”enge C
2. Recelve challenge c —
3. Compute response 7 ;, Verify(x, a, ¢,)

1 a simulator such that Simulate(x) = a’, ¢’, z’ such that:

(1) Verify passes 2) (a’,c’, 7)) ~ (a, c,7) from an honest execution
18

Making 2 protocols short-lived

2R Input: x Proof: a. z, c
for relation R

19

Making 2 protocols short-lived

2R Input: x Proof: a. z, c
for relation R

\ Prover splits c = ¢; @ ¢,

Proof: a, z, ¢y, ¢,

Input: x
Beacon:)

19

Making 2 protocols short-lived

2R Input: x Proof: a. z, c
for relation R

\ Prover splits c = ¢; @ ¢,

Input: x
Beacon: /

Proof: a,z,¢(, ¢, V, 7@

“

Verifier checks: Yg.Verify(a,z,c;) /\ VDF-Verify(c, ® b, y,)

2

Cheat on) by
simulating It

19

Cheat on VDF by
pre-computing it

5%

Making 2 protocols short-lived

2R Input: x Proof: a. z, c
for relation R

\ Prover splits c = ¢; @ ¢,

Doesn’t have
reusable forgeability.

Input: x
Beacon: /

Proof: a,z,¢(, ¢, V, 7@

“

Verifier checks: Yg.Verify(a,z,c;) /\ VDF-Verify(c, @® b, y,)

2

Cheat on), by
simulating It

19

Cheat on VDF by
pre-computing it

5%

Zero-Knowledge VDFs (zkVDFs)

Prove knowledge of a VDF output without
revealing It.

O ZKVDF-Eval(x) = v, 7

x € @
(of unknown-order)

© zkVDEF-Verify(x, 7) — {0,1}

I’'m convinced
Alice knows y

;V e —_—
". -

20

Zero-Knowledge VDFs (zkVDFs)

Prove knowledge of a VDF output without
revealing It.

O ZKVDF-Eval(x) = v, 7

x € @
(of unknown-order)

I’'m convinced

O zkVDF-Verify(x,) — {0,1}

Eval
%) Alice knows y
zkVDFs can be written as a 2.-protocol with an
o . t p
efficient simulator. y = x2
 Simulate(x) = a’, ¢’, 7’ w/o knowledge of y! - < 1
Constructions are based on PoKE from BBF19. <

20

Construction 2: Using zkVDFs

S-OR

/

The classic)-OR composition works now. PO 2 L VDF
é

with input x with input »

Prove(x, w, b): @ Forge(x, b):
1. Simulate Simulate 2._;ypr W/0 Y Simulate 2., w/o witness
11
2. Honestly compute Run ZR using withess w Run szVDF slowly .

No more pre-computation; Supports reusable forgeabillity!

21

Construction 2: Using zkVDFs

S-OR

/

The classic)-OR composition works now. PO 2 L VDF
é

with input x | with input »

Prove(x, w, D): @ Forge(x, D): g
1. Simulate Simulate 2._;ypr W/0 Y Simulate 2., w/o witness
11
2. Honestly compute Run ZR using withess w Run szVDF slowly .

No more pre-computation; Supports|reusable forgeabillity!

21

Other constructions

Short-lived Proofs

O From generic NIZK
© 2. with precomputation
© 2 with rrVDF

O 2>-OR with

* has reusable forgeability

22

Short-lived Signatures %

Any proof construction can
double as a signature scheme.

More efficient constructions:

O Sign - trapdoor VDFs

*

o0 Sign - watermarkable VDFs

Implementation Using Wesolowski VDFs with RSA2048 group

SCHEME SIZE OVERHEAD PROVER TIME OVERHEAD
SNARK-OR w/ Groth16 * 0 ~ 60 sec
Y -precomp 544 Bytes precomp = O(t) + online = O(1)
> -rrVDF 544 Bytes time-space tradeoff: O(1) -- O(t)
>-zkVDF * 576 Bytes 120 ms
RSA Sig - trapdoor VDF 288 Bytes 10 ms
RSA Sig - watermark VDF * 288 Bytes 10 ms

* has reusable forgeability .

Conclusion

o Short-lived zk proofs and signatures naturally lose soundness

after some time.

11

o Achieved by allowing slow that require evaluating a VDF.

o Can be used to design deniable messaging and email to mitigates

the effects of leaks; and to design receipt-free e-voting schemes.
O Formalize re-randomizable VDFs and introduce zkVDFs.

o Making) -protocols and RSA signatures short-lived is practicall
24

Backup Slides

Short-lived X -protocols w/ pre-computation

Proof:a.z,c,CH, V. T
Input: x €2,

Beacon: » //
> p-Verify(a, z,c;) /\ VDF-Verify(c, ® b, y, @)

0. Pre-compute —_

1. Simulate —
2. Fix challenge

3. Honest step

20

Short-lived X -protocols w/ pre-computation

Proof:a.z,c,CH, V. T
Input: x €2,

Beacon: » //
> p-Verify(a, z,c;) /\ VDF-Verify(c, ® b, y, @)

0. Pre-compute | Pre-compute tuple y., 7 = VDF-Eval(x:) —

1. Simulate —

2. Fix challenge | Fix ¢, = x. @ b = ¢, is random

3. Honest step | Respond to), honestly using ¢; with w

Output proof: a, z, ¢y, ¢, V=, 7
26

Short-lived X -protocols w/ pre-computation

Proof: a,z,¢cy, G5, y, 7

Input: x
Beacon: /

0. Pre-compute

1. Simulate

2. Fix challenge

3. Honest step

/

> p-Verify(a, z,c;) /\ VDF-Verify(c, ® b, y, @)

Pre-compute tuple ys, 7. = VDF-Eval(x.)
Z

A\

Prove(x, b, witness: w) (-} Forge(x,)
a

Fix ¢, = x. @ b = ¢ is random

Respond to) » honestly using ¢; with w

Output proof: a, z, ¢y, ¢, V=, 7
26

Simulate » to get (a', 7/, ¢/)

Use above ¢; = ¢, Is random

Compute VDF-Eval(c, @ b) honestly

Output proof: o', z', ¢}, ¢5, ¥, &

Reusing pre-computation w/ rrVDFs

Proof 1: a, Z, ¢, ¢, y+, 1+ Pre-computation
cannot be re-used as
Proof 2: a', 7/, c{, ¢5, v+, m« it loses deniability.

5

27

Reusing pre-computation w/ rrVDFs

rr'VDFs support a
Proof 1: a, z, ¢{, Cy, y+, = Pre-computation “randomize” operation:
cannot be re-used as _ o
Proof 2: a’, 7', c{, ¢5, y«, m+ it loses deniability. Randomize(x,y,7) = x,y, @
 Much faster than Eval

* X,y,wlis valld =—
x',y', 7' is valid

5

Wesolowski and Pietrzak
are rrVDFs involving a
time-space tradeoft.

27

Reusing pre-computation w/ rrVDFs

rr'VDFs support a
Proof 1: a, z, ¢, Cy, V+, = Pre-computation randomize” operation:
cannot be re-used as _ o
Proof 2: a’, 7/, ¢y, ¢, v+, m+ it loses deniability. Randomize(x,y, 7) = x,y’, 7
 Much faster than Eval
0. Precompute Pre-compute tuple y-, 7. = VDF-Eval(x.) * X,y,wlis valld =—

[N\ / / / - "
Prove(x, b, witness: w, (X, Vs, 7)) "‘ X,y,m is valid

1. Randomize (x,y,) (Xsky Vieo TTx)

Wesolowski and Pietrzak
2. Fix challenge Fix c, = x @ b = ¢, is random are rrVVDFs involving a

| time-space tradeoft.
3. Honest step Respond to) , honestly using ¢;

27

