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Goal: Proofs and signatures that naturally disappear

A signature on paper with disappearing ink will vanish after 
some time.


What’s the cryptographic equivalent of disappearing?
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Goal: Proofs and signatures that naturally disappear

A signature on paper with disappearing ink will vanish after 
some time.


What’s the cryptographic equivalent of disappearing?


The loss of soundness.
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Loss of soundness over time

Sound

0 time t

Not sound
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Loss of soundness over time

Sound

0 time t

Not sound

Did you  
sign this?

Nope :)

+ deniability
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How? Allow slow forgeries

0

0 t

and

are indistinguishable
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How? Allow slow forgeries

0

0 t

and

are indistinguishable

But how do we establish when  
a signature was created? 
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Beacons establish non-interactive time

We assume a global beacon that periodically emits unpredictable randomness.


Possible beacons: Stock prices, blockchain blocks, distributed protocols…

ℬ time

Δ Δ

∈ {0,1}256bib1b0
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Use beacon values to specify expiration

time 0

∈ {0,1}256b

The beacon  
emits  at time 0.

ℬ
b

time  
after  is released

t
b
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Use beacon values to specify expiration

time 0

∈ {0,1}256b

The beacon  
emits  at time 0.

ℬ
b

b

time  
after  is released

t
b

Soundness is lost at time  
regardless of when Alice signed.

t

The latest beacon value  
is specified in the signature.

b
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In this talk
Applications: deniable email leaks and receipt-free voting


Tool: Verifiable Delay Functions (VDFs)


Constructions: 

• Transforming NIZKs, ∑-protocols


• zkVDFs


Implementation
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Mitigating Email Leaks
Email servers attach their signatures to 
out-going emails for authentication.


Gmail Yahoo

These signatures are only 
required during transfers.


But they last forever and are 
used to validate leaks.
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It is really 
from Google



A email leaked by Wikileaks in 2016 that still has its 
signature from Google, thereby validating it.


DKIM signatures validate email leaks

One solution would be to have 
Google periodically refresh and 
leak keys. 

https://blog.cryptographyengineering.com/2020/11/16/
ok-google-please-publish-your-dkim-secret-keys/
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Short-lived sigs are a natural solution

Gmail Yahoo

It is really 
from Google

time t

Anyone could’ve 
forged this 

email’s signature 
¯\_(ツ)_/¯
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b
Beacon   

emits .
ℬ

b

Email is sent w/  
short-lived signature.

b



Receipt-free Voting

proof that your vote  
was included correctly

Voting Booth

Vote

Short-lived proofs can prevent 
cash-for-votes.
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Receipt-free Voting

proof that your vote  
was included correctly

Voting Booth

Vote

The proof is no longer convincing!

Short-lived proofs can prevent 
cash-for-votes.
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Related Work
“Designated Verifier Proofs” [JSI96]; “Chameleon Signatures” [KR00]


• Designated verifier vs time-based deniability


“Timed signatures” [BN00]; "Time-capsule signatures” [DY05]


• Signatures are “locked” until time t; We solve the inverse problem.


KeyForge and TimeForge [SPG21]


• Require further actions from signer while ours is natural based on VDFs.


Proof of Knowledge or Work [BKZZ16]


• Based on proof-of-work, which can be parallelized (and thus, not time-based)
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Formalizing short-lived proofs

• Setup 


• Prove 


• Verify 


• Forge 


(λ, t) → pp

(x, w, b) → π

(x, b) → {0,1}

(x, b) → π

Indistinguishability:  
 :  Prove Forge∀ x, w { (x, w, b)}≈{ (x, b)}

t-Soundness: You can extract a witness 
from a prover that produces proofs in time 
less than t after the beacon emits .b

Completeness: Prove runs in time o(t)

t-Forgeability: Forge runs in time [t, (1 + ϵ)t]

ZK is implied as Forge is also a simulator!
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Constructions via transformations
Transformations from generic NIZK and ∑-protocols to short-lived versions.

NIZK Short-lived NIZK

∑ protocol Short-lived ∑ protocol

In our paper:  4 transformations for proofs and 2 more for signatures.

Our construction use Verifiable Delay Functions (VDFs).
14



Tool: Verifiable Delay Functions (VDFs)

• Setup 


• Eval 


• Verify 


(λ, t) → pp

(x) → y, π

(x, y, π) → {0,1}

VDF security property: Given a 
random input , it’s hard any to 
convince the verifier in time less than t 
(even when given polynomial-time 
pre-computation).

x

— time O(t)

— fast
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Tool: Verifiable Delay Functions (VDFs)

• Setup 


• Eval 


• Verify 


(λ, t) → pp

(x) → y, π

(x, y, π) → {0,1}

0

Eval

VDF security property: Given a 
random input , it’s hard any to 
convince the verifier in time less than t 
(even when given polynomial-time 
pre-computation).

x

proof y, π

— time O(t)

— fast

15

Repeated Squaring VDFs: 

 of unknown order


(eg: RSA2048 groups)

x ∈ 𝔾

y = x2t

Takes  steps using the repeated 
squaring algorithm.


Eg: Wesolowski and Pietrzak VDFs

t



Generic Construction: NIZK  VDF∨
Verify Relation R: (x, w)

VDF-Verify(b, y, π)
OR

Input: x

Witness: w, y, π

16

Beacon: b



Generic Construction: NIZK  VDF∨
Verify Relation R: (x, w)

VDF-Verify(b, y, π)
OR

Input: x

Witness: w, y, π

Completeness: Honest prover can satisfy the original statement

t-Forgeability: Forger can compute VDF-Eval   


— takes t steps from when  was emitted

(b) = y, π

b
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Beacon: b



Generic Construction: NIZK  VDF∨
Verify Relation R: (x, w)

VDF-Verify(b, y, π)
OR

Input: x

Witness: w, y, π

Completeness: Honest prover can satisfy the original statement

t-Forgeability: Forger can compute VDF-Eval   


— takes t steps from when  was emitted

(b) = y, π

b

Indistinguishability & t-Soundness: reduces to NIZK  VDF security∧
16

Beacon: b



Stronger notion: Reusable Forgeability

:  Advice string for  b

t

1
+

t + δBeacon   
is announced

b

With reusable forgeability, only one long 
computation per beacon value  required! 
Advice now helps forge


signatures of any key  

and proofs of any statement. 

b
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Background: -protocolsΣ

a

challenge c

 a simulator such that Simulate  such that:


(1) Verify passes           (2)  from an honest execution

∃ (x) = a′￼, c′￼, z′￼

(a′￼, c′￼, z′￼) ≈ (a, c, z)

Verify(x, a, c, z)

Relation R, input: x

z

Prove: 


1. Compute and send 


2. Receive challenge 


3. Compute response 

a

c

z

18

Witness: w



Making ∑ protocols short-lived

Input: x Proof: a, z, c∑   
for relation R

R

19



Making ∑ protocols short-lived

Input: x Proof: a, z, c

Input:  
Beacon: 

x
b Proof:  a, z, c1, c2

Prover splits c = c1 ⊕ c2

∑   
for relation R

R

Short-lived  
∑R

19



Making ∑ protocols short-lived

∑ .Verify(R a, z, c1)

Input: x Proof: a, z, c

Input:  
Beacon: 

x
b Proof:  a, z, c1, c2

Prover splits c = c1 ⊕ c2

VDF-Verify , (c2 ⊕ b y, π)⋀

∑   
for relation R

R

Short-lived  
∑R

Cheat on ∑  by 
simulating it


R Cheat on VDF by  
pre-computing it

, y, π

Verifier checks:
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Making ∑ protocols short-lived

∑ .Verify(R a, z, c1)

Input: x Proof: a, z, c

Input:  
Beacon: 

x
b Proof:  a, z, c1, c2

Prover splits c = c1 ⊕ c2

VDF-Verify , (c2 ⊕ b y, π)⋀

∑   
for relation R

R

Short-lived  
∑R

Cheat on ∑  by 
simulating it


R Cheat on VDF by  
pre-computing it

, y, π

Verifier checks:

19

Doesn’t have  
reusable forgeability.



 Zero-Knowledge VDFs (zkVDFs)
Prove knowledge of a VDF output without 
revealing it.


zkVDF-Eval 


zkVDF-Verify  

(x) → y, π

(x, π) → {0,1}

20

Eval

  
(of unknown-order)
x ∈ 𝔾

I’m convinced 
Alice knows y

y = x2t proof π



 Zero-Knowledge VDFs (zkVDFs)
Prove knowledge of a VDF output without 
revealing it.


zkVDF-Eval 


zkVDF-Verify  

(x) → y, π

(x, π) → {0,1}

zkVDFs can be written as a -protocol with an 
efficient simulator.


• Simulate  w/o knowledge of !

Σ

(x) = a′￼, c′￼, z′￼ y

20

Eval

a

  
(of unknown-order)
x ∈ 𝔾

I’m convinced 
Alice knows y

y = x2t

c

zConstructions are based on PoKE from BBF19.



Construction 2: Using zkVDFs

        ΣR

21

No more pre-computation; Supports reusable forgeability!

with input x with input b

1. Simulate   

2. Honestly compute

Prove :(x, w, b) Forge :(x, b)

Simulate  w/o ΣzkVDF y

Run  using witness ΣR w

Simulate  w/o witnessΣR

Run  slowlyΣzkVDF

The classic ∑-OR composition works now.

∑-OR 

        ΣzkVDF



Construction 2: Using zkVDFs

        ΣR

21

No more pre-computation; Supports reusable forgeability!

with input x with input b

1. Simulate   

2. Honestly compute

Prove :(x, w, b) Forge :(x, b)

Simulate  w/o ΣzkVDF y

Run  using witness ΣR w

Simulate  w/o witnessΣR

Run  slowlyΣzkVDF

The classic ∑-OR composition works now.

∑-OR 

        ΣzkVDF



Other constructions

From generic NIZK


 with precomputation


 with rrVDF


-OR with zkVDF

Σ

Σ

Σ

Any proof construction can 
double as a signature scheme.


More efficient constructions:


Sign - trapdoor VDFs


Sign - watermarkable VDFs

Short-lived Proofs Short-lived Signatures

* has reusable forgeability

**

*
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Implementation 
SCHEME SIZE OVERHEAD PROVER TIME OVERHEAD

SNARK-OR w/ Groth16 * 0 ~ 60 sec

∑-precomp 544 Bytes precomp = O(t) + online = O(1) 

∑-rrVDF 544 Bytes time-space tradeoff: O(1) -- O(t)

∑-zkVDF * 576 Bytes 120 ms

RSA Sig - trapdoor VDF 288 Bytes 10 ms

RSA Sig - watermark VDF * 288 Bytes 10 ms

* has reusable forgeability

Using Wesolowski VDFs with RSA2048 group 
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Conclusion
Short-lived zk proofs and signatures naturally lose soundness 
after some time.


Achieved by allowing slow forgeries that require evaluating a VDF.


Can be used to design deniable messaging and email to mitigates 
the effects of leaks; and to design receipt-free e-voting schemes.


Formalize re-randomizable VDFs and introduce zkVDFs.


Making ∑-protocols and RSA signatures short-lived is practical!
24



Backup Slides
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0. Pre-compute   —

1. Simulate  —

2. Fix challenge

3. Honest step 

Short-lived ∑-protocols w/ pre-computation
Input:   
Beacon: 

x
b

Proof: , a, z, c1 c2, y, π

VDF-Verify , (c2 ⊕ b y, π)⋀

26

∑ .Verify(R a, z, c1)



0. Pre-compute   —

1. Simulate  —

2. Fix challenge

3. Honest step 

Short-lived ∑-protocols w/ pre-computation
Input:   
Beacon: 

x
b

Proof: , a, z, c1 c2, y, π

VDF-Verify , (c2 ⊕ b y, π)⋀

Fix      is randomc2 = x* ⊕ b ⟹ c1

Respond to ∑  honestly using  with R c1 w

26

Prove , witness: (x, b w)

 Pre-compute tuple y*, π* = VDF-Eval(x*)

∑ .Verify(R a, z, c1)

Output proof: , , a, z, c1 c2 y*, π*



0. Pre-compute   —

1. Simulate  —

2. Fix challenge

3. Honest step 

Short-lived ∑-protocols w/ pre-computation
Input:   
Beacon: 

x
b

Proof: , a, z, c1 c2, y, π

VDF-Verify , (c2 ⊕ b y, π)⋀

Fix      is randomc2 = x* ⊕ b ⟹ c1

Respond to ∑  honestly using  with R c1 w Compute VDF-Eval ) honestly(c2 ⊕ b

Simulate ∑  to get R (a′￼, z′￼, c′￼1)

Use above    is randomc1 ⟹ c2

26

Prove , witness: (x, b w) Forge(x, b)

 Pre-compute tuple y*, π* = VDF-Eval(x*)

∑ .Verify(R a, z, c1)

Output proof: , , a, z, c1 c2 y*, π* Output proof: , , a′￼, z′￼, c′￼1 c2 y, π



Reusing pre-computation w/ rrVDFs

27

Proof 1: , a, z, c1 c2, y*, π* Pre-computation 
cannot be re-used as 
it loses deniability.Proof 2: , a′￼, z′￼, c′￼1 c′￼2, y*, π*



Reusing pre-computation w/ rrVDFs

Randomize    (x, y, π) → x′￼, y′￼, π′￼

• Much faster than Eval


•  is valid  
 is valid  

x, y, π ⟹
x′￼, y′￼, π′￼

27

Wesolowski and Pietrzak 
are rrVDFs involving a 
time-space tradeoff.

Proof 1: , a, z, c1 c2, y*, π* Pre-computation 
cannot be re-used as 
it loses deniability.Proof 2: , a′￼, z′￼, c′￼1 c′￼2, y*, π*

rrVDFs support a 
“randomize” operation:



Reusing pre-computation w/ rrVDFs

0. Precompute

1. Randomize

2. Fix challenge

3. Honest step 

Fix      is randomc2 = x ⊕ b ⟹ c1

Respond to ∑  honestly using R c1

Pre-compute tuple y*, π* = VDF-Eval(x*)

Randomize(x, y, π) ← (x*, y*, π*)

Randomize    (x, y, π) → x′￼, y′￼, π′￼

• Much faster than Eval


•  is valid  
 is valid  

x, y, π ⟹
x′￼, y′￼, π′￼

27

Wesolowski and Pietrzak 
are rrVDFs involving a 
time-space tradeoff.

Prove , witness: , (x, b w (x*, y*, π*))

Proof 1: , a, z, c1 c2, y*, π* Pre-computation 
cannot be re-used as 
it loses deniability.Proof 2: , a′￼, z′￼, c′￼1 c′￼2, y*, π*

rrVDFs support a 
“randomize” operation:


