
Public-Coin 3-Round Zero-Knowledge
from Learning with Errors and

Keyless Multi-Collision-Resistant Hash

Susumu Kiyoshima

1/17



Zero-knowledge (ZK) arguments

statement: x ∈ L

P V
w

▶ Completeness: x ∈ L⇒ V accepts a proof created by honest P
▶ Soundness: x < L⇒ V rejects a proof created by  malicious P
▶ ZK: x ∈ L⇒  malicious V cannot learn anything beyond x ∈ L

2/17



Zero-knowledge (ZK) arguments

statement: x ∈ L

P V
w

Our focus:
3-round constructions

▶ Completeness: x ∈ L⇒ V accepts a proof created by honest P
▶ Soundness: x < L⇒ V rejects a proof created by  malicious P
▶ ZK: x ∈ L⇒  malicious V cannot learn anything beyond x ∈ L

2/17



3-round ZK arguments

Optimal in terms of round complexity
• 2-round is impossible (even w/ non-black-box simulation) [Goldreich–Oren94]

Difficult to obtain
• 3-round ZK with black-box simulation is impossible [Goldreich–Krawczyk96]
• Until recently, 3-round ZK had been obtained only under:

- unfalsifiable assumptions (e.g., knowledge-of-exponent assumptions)
[Hada–Tanaka98, Bellare–Palacio04, Canetti–Dakdouk08, ...]

- weak definitions (e.g., super-poly simulation, bounded non-uniformity, weak ZK, ...)
[Pass03, Bitansky–Canetti–Paneth–Rosen14, Bitansky–Brakerski–Kalai–Paneth–Vaikuntanathan16,

Bitansky–Khurana–Paneth19,...]

3/17



3-round ZK by [Bitansky–Kalai–Paneth18 (BKP18)]

Theorem [BKP18]

3-round ZK argument can be obtained by relying on:
(1) quasi-poly hardness of LWE (or FHE + standard crypto), and
(2) slightly super-poly hardness of keyless multi-collision-resistant
hash function

4/17



3-round ZK by [Bitansky–Kalai–Paneth18 (BKP18)]

Theorem [BKP18]

3-round ZK argument can be obtained by relying on:
(1) quasi-poly hardness of LWE (or FHE + standard crypto), and
(2) slightly super-poly hardness of keyless multi-collision-resistant
hash function

▶ n-collision: distinct x1, . . . , xn s.t. H(x1) = · · · = H(xn)
▶ N-collision resistance: any adversary with non-uniform advice
of size s cannot find N(s)-collision for N(s)≫ s (e.g., N(s)=poly(s))

4/17



3-round ZK by [Bitansky–Kalai–Paneth18 (BKP18)]

Theorem [BKP18]

3-round ZK argument can be obtained by relying on:
(1) quasi-poly hardness of LWE (or FHE + standard crypto), and
(2) slightly super-poly hardness of keyless multi-collision-resistant
hash function

▶ n-collision: distinct x1, . . . , xn s.t. H(x1) = · · · = H(xn)

▶ N-collision resistance: any adversary with non-uniform advice
of size s cannot find N(s)-collision for N(s)≫ s (e.g., N(s)=poly(s))

4/17



3-round ZK by [Bitansky–Kalai–Paneth18 (BKP18)]

Theorem [BKP18]

3-round ZK argument can be obtained by relying on:
(1) quasi-poly hardness of LWE (or FHE + standard crypto), and
(2) slightly super-poly hardness of keyless multi-collision-resistant
hash function

▶ n-collision: distinct x1, . . . , xn s.t. H(x1) = · · · = H(xn)
▶ N-collision resistance: any adversary with non-uniform advice
of size s cannot find N(s)-collision for N(s)≫ s (e.g., N(s)=poly(s))

4/17



3-round ZK by [Bitansky–Kalai–Paneth18 (BKP18)]

Theorem [BKP18]

3-round ZK argument can be obtained by relying on:
(1) quasi-poly hardness of LWE (or FHE + standard crypto), and
(2) slightly super-poly hardness of keyless multi-collision-resistant
hash function

3-round ZK from simple & falsifiable assumptions!

4/17



Our result
Theorem
Public-coin 3-round ZK argument can be obtained by relying on:
(1) sub-exponential hardness of LWE, and
(2) slightly super-poly hardness of keyless multi-collision-resistant
hash function

5/17



Our result
Theorem
Public-coin 3-round ZK argument can be obtained by relying on:
(1) sub-exponential hardness of LWE, and
(2) slightly super-poly hardness of keyless multi-collision-resistant
hash function

P V$

5/17



Our result
Theorem
Public-coin 3-round ZK argument can be obtained by relying on:
(1) sub-exponential hardness of LWE, and
(2) slightly super-poly hardness of keyless multi-collision-resistant
hash function

P V$
theoretically natural target

5/17



Our result
Theorem
Public-coin 3-round ZK argument can be obtained by relying on:
(1) sub-exponential hardness of LWE, and
(2) slightly super-poly hardness of keyless multi-collision-resistant
hash function

P V$
theoretically natural target

useful properties
– public verifiabilty
– leakage resislience about V’s state

5/17



Our result
Theorem
Public-coin 3-round ZK argument can be obtained by relying on:
(1) sub-exponential hardness of LWE, and
(2) slightly super-poly hardness of keyless multi-collision-resistant
hash function

▶ Comparison with 3-round ZK of [BKP18]
public-coin construction
slightly stronger assumptions
(sub-exponentially hard LWE rather than quasi-poly hard LWE)

5/17



Overview of techniques

6/17



Prior approach [BKP18]

7/17



Prior approach [BKP18]

LWE
(2-round)

oracle memory
delegation

7/17



Prior approach [BKP18]

LWE
(2-round)

oracle memory
delegation

(2-round)
memory
delegation

keyless
multi-CR hash

7/17



Prior approach [BKP18]

LWE
(2-round)

oracle memory
delegation

(2-round)
memory
delegation

3-round
ZK argument

keyless
multi-CR hash

Barak’s
non-BB tech∗

∗ memory delegation is used
as universal argument

7/17



Prior approach [BKP18]

LWE
(2-round)

oracle memory
delegation

(2-round)
memory
delegation

3-round
ZK argument

keyless
multi-CR hash

Barak’s
non-BB tech∗

∗ memory delegation is used
as universal argument

private coin

7/17



Prior approach [BKP18]

LWE
(2-round)

oracle memory
delegation

(2-round)
memory
delegation

3-round
ZK argument

keyless
multi-CR hash

Barak’s
non-BB tech∗

∗ memory delegation is used
as universal argument

private coin private coin private coin

7/17



Our approach

LWE
(2-round)

oracle memory
delegation

(2-round)
memory
delegation

3-round
ZK argument

keyless
multi-CR hash

Barak’s
non-BB tech∗

∗ memory delegation is used
as universal argument

public coin public coin public coin

8/17



Our approach

LWE
(2-round)

oracle memory
delegation

(2-round)
memory
delegation

3-round
ZK argument

keyless
multi-CR hash

Barak’s
non-BB tech∗

∗ memory delegation is used
as universal argument

public coin public coin public coin

8/17



Oracle memory delegation [BKP18]

P V
memory: x

▶ Goal: V delegates (heavy) computation on the memory x to P

9/17



Oracle memory delegation [BKP18]

P V
memory: x

▶ Goal: V delegates (heavy) computation on the memory x to P

9/17



Oracle memory delegation [BKP18]

P V
f, ch

memory: x

▶ Goal: V delegates (heavy) computation on the memory x to P

9/17



Oracle memory delegation [BKP18]

P V
f, ch

y = f (x), π

memory: x

▶ Goal: V delegates (heavy) computation on the memory x to P

9/17



Oracle memory delegation [BKP18]

P V
f, ch

y = f (x), π

memory: x

X̂ = Encode(x)

▶ Goal: V delegates (heavy) computation on the memory x to P

9/17



Oracle memory delegation [BKP18]

P V
f, ch

y = f (x), π

memory: x

X̂ = Encode(x)

▶ Efficiency: V runs in polynomial time in the security parameter λ
even for memory x of slightly super-poly length (e.g., λlog log λ)

▶ Soundness (intuition): Once X̂ is fixed,  malicious P can give
an accepting proof π for at most a single y

9/17



Oracle memory delegation [BKP18]

P V
f, ch

y = f (x), π

memory: x

X̂ = Encode(x)

▶ Efficiency: V runs in polynomial time in the security parameter λ
even for memory x of slightly super-poly length (e.g., λlog log λ)

▶ Soundness (intuition): Once X̂ is fixed,  malicious P can give
an accepting proof π for at most a single y

9/17



Our goal

LWE
(2-round)

oracle memory
delegation

public coin

10/17



Our goal

LWE
(2-round)

oracle memory
delegation

public coin

public-coin 2-round delegation
(= SNARG in common random string model)

[Jawale–Kalai–Khurana–Zhang21, Holmgren–Lombardi–Rothblum21,
Choudhuri–Jain–Jin21]

10/17



Building block #1

public-coin 2-round delegation of
[Jawale–Kalai–Khurana–Zhang21 (JKKZ21), Holmgren–Lombardi–Rothblum21 (HLR21)]

11/17



Building block #1
public-coin 2-round delegation of

[Jawale–Kalai–Khurana–Zhang21 (JKKZ21), Holmgren–Lombardi–Rothblum21 (HLR21)]

11/17



Building block #1
public-coin 2-round delegation of

[Jawale–Kalai–Khurana–Zhang21 (JKKZ21), Holmgren–Lombardi–Rothblum21 (HLR21)]

▶ Construction: Fiat-Shamir + succinct proof of [Goldwasser–Kalai–Rothblum08]

▶ Assumption: Sub-exponential hardness of LWE

▶ Key property: V only needs to read a small part of an encoding of x (as in
oracle memory delegation)

P V
f, ch

y = f (x), π

x

X̂ = Encode(x)

11/17



Building block #1
public-coin 2-round delegation of

[Jawale–Kalai–Khurana–Zhang21 (JKKZ21), Holmgren–Lombardi–Rothblum21 (HLR21)]

can be converted to public-coin oracle memory delegation easily
only works for a limited class of computations
• bounded-depth computations with a certain form of succinct descriptions

P V
f, ch

y = f (x), π

x

X̂ = Encode(x)

11/17



Building block #2

public-coin 2-round RAM delegation of [Choudhuri–Jain–Jin21 (CJJ21)]

12/17



Building block #2

public-coin 2-round RAM delegation of [Choudhuri–Jain–Jin21 (CJJ21)]

▶ Assumption: λω(1)-hardness of LWE for proofs about λω(1)-time computations

▶ Key property: V does not need to be have x in the clear (as in oracle memory
delegation)

P V
f, ch

y = f (x), π

x rt

where rt = MerkleHashh(x)

12/17



Building block #2

public-coin 2-round RAM delegation of [Choudhuri–Jain–Jin21 (CJJ21)]

works for all λω(1)-time computations
cannot be converted to oracle memory delegation easily
• How should V obtain Merkle hash of x in oracle memory delegation?

P V
f, ch

y = f (x), π

x rt

where rt = MerkleHashh(x)

12/17



What should we do?

delegation of [JKKZ21,HLR21]
can be converted to oracle
memory delegation

works for a limited class of
computations (bounded-depth
circuit w/ succinct descriptions)

RAM delegation of [CJJ21]
works for all λω(1)-time
computations

cannot be converted to oracle
memory delegation (V needs to
have Merkle hash of memory x)

13/17



What should we do?

delegation of [JKKZ21,HLR21]
can be converted to oracle
memory delegation

works for a limited class of
computations (bounded-depth
circuit w/ succinct descriptions)

RAM delegation of [CJJ21]
works for all λω(1)-time
computations

cannot be converted to oracle
memory delegation (V needs to
have Merkle hash of memory x)

Let’s combine these two!

13/17



Our public-coin oracle memory delegation

P V
x

14/17



Our public-coin oracle memory delegation

P V
h

rt

ch

π

proof about
rt = MerkleHashh(x)

x

X̂ = Encode(x)
Step 1: use delegation of [JKKZ21,HLR21]
for Merkle-hash computation

14/17



Our public-coin oracle memory delegation

P V
h

rt

ch

π

proof about
rt = MerkleHashh(x)

x

X̂ = Encode(x)
Step 1: use delegation of [JKKZ21,HLR21]
for Merkle-hash computation

delegation of [JKKZ21,HLR21]
can be converted

to oracle memory delegation
works for bounded-depth

circuit w/ succinct descriptions

Recall

14/17



Our public-coin oracle memory delegation

P V
h

rt

ch

π

f, ch

y, π

proof about
rt = MerkleHashh(x)

proof about
y = f (x)

x

X̂ = Encode(x)
Step 2: use delegation of [CJJ21]
to prove any computation on x

14/17



Our public-coin oracle memory delegation

P V
h

rt

ch

π

f, ch

y, π

proof about
rt = MerkleHashh(x)

proof about
y = f (x)

x

X̂ = Encode(x)
Step 2: use delegation of [CJJ21]
to prove any computation on x

delegation of [CJJ21]
for all λω(1)-time

computations
V needs to have

Merkle hash of x

Recall

14/17



Our public-coin oracle memory delegation

P V
h

rt

ch

π

f, ch

y, π

proof about
rt = MerkleHashh(x)

proof about
y = f (x)

Soundness of π holds since rt is proved to be correct!

x

X̂ = Encode(x)
Step 2: use delegation of [CJJ21]
to prove any computation on x

14/17



Roadmap to public-coin 3-round ZK

LWE
(2-round)

oracle memory
delegation

public coin

15/17



Roadmap to public-coin 3-round ZK

LWE
(2-round)

oracle memory
delegation

(2-round)
memory
delegation

3-round
ZK argument

keyless
multi-CR hash

Barak’s
non-BB tech∗

∗ memory delegation is used
as universal argument

public coin public coin public coin

15/17



Conclusion

16/17



Conclusion
Theorem
Public-coin 3-round ZK argument can be obtained by relying on:
(1) sub-exponential hardness of LWE, and
(2) slightly super-poly hardness of keyless multi-collision-resistant
hash function

Public-coin 3-round ZK from simple & falsifiable assumptions!

17/17



Conclusion
Theorem
Public-coin 3-round ZK argument can be obtained by relying on:
(1) sub-exponential hardness of LWE, and
(2) slightly super-poly hardness of keyless multi-collision-resistant
hash function

▶ Open questions:
• from quasi-polynomial hardness of LWE?
• from more standard assumptions (compared with keyless multi-CR hash)?

Thank You!

17/17



Conclusion
Theorem
Public-coin 3-round ZK argument can be obtained by relying on:
(1) sub-exponential hardness of LWE, and
(2) slightly super-poly hardness of keyless multi-collision-resistant
hash function

▶ Open questions:
• from quasi-polynomial hardness of LWE?
• from more standard assumptions (compared with keyless multi-CR hash)?

Thank You!
17/17


	Introduction
	Our Result
	Techniques
	Conclusion

