Public-Coin 3-Round Zero-Knowledge from Learning with Errors and Keyless Multi-Collision-Resistant Hash

Susumu Kiyoshima

Zero-knowledge (ZK) arguments

- **Completeness:** $x \in L \Rightarrow V$ accepts a proof created by honest *P*
- **Soundness:** $x \notin L \Rightarrow V$ rejects a proof created by PPT malicious P
- **ZK:** $x \in L \Rightarrow$ PPT malicious V cannot learn anything beyond $x \in L$

Zero-knowledge (ZK) arguments

- **Completeness:** $x \in L \Rightarrow V$ accepts a proof created by honest *P*
- **Soundness:** $x \notin L \Rightarrow V$ rejects a proof created by PPT malicious P
- **ZK:** $x \in L \Rightarrow$ PPT malicious V cannot learn anything beyond $x \in L$

3-round ZK arguments

Optimal in terms of round complexity

• 2-round is impossible (even w/ non-black-box simulation) [Goldreich–Oren94]

🐵 Difficult to obtain

- 3-round ZK with black-box simulation is impossible [Goldreich-Krawczyk96]
- Until recently, 3-round ZK had been obtained only under:
 - unfalsifiable assumptions (e.g., knowledge-of-exponent assumptions) [Hada-Tanaka98, Bellare-Palacio04, Canetti-Dakdouk08, ...]
 - weak definitions (e.g., super-poly simulation, bounded non-uniformity, weak ZK, ...) [Pass03, Bitansky–Canetti–Paneth–Rosen14, Bitansky–Brakerski–Kalai–Paneth–Vaikuntanathan16, Bitansky–Khurana–Paneth19,...]

Theorem [BKP18]

3-round ZK argument can be obtained by relying on:

- (1) quasi-poly hardness of LWE (or FHE + standard crypto), and
- (2) slightly super-poly hardness of keyless multi-collision-resistant hash function

Theorem [BKP18]

3-round ZK argument can be obtained by relying on:

- (1) quasi-poly hardness of LWE (or FHE + standard crypto), and
- (2) slightly super-poly hardness of keyless multi-collision-resistant hash function

Theorem [BKP18]

3-round ZK argument can be obtained by relying on:

- (1) quasi-poly hardness of LWE (or FHE + standard crypto), and
- (2) slightly super-poly hardness of keyless multi-collision-resistant hash function

• *n*-collision: distinct x_1, \ldots, x_n s.t. $H(x_1) = \cdots = H(x_n)$

Theorem [BKP18]

3-round ZK argument can be obtained by relying on:

- (1) quasi-poly hardness of LWE (or FHE + standard crypto), and
- (2) slightly super-poly hardness of keyless multi-collision-resistant hash function
 - *n*-collision: distinct x_1, \ldots, x_n s.t. $H(x_1) = \cdots = H(x_n)$

N-collision resistance: any adversary with non-uniform advice of size s cannot find N(s)-collision for N(s) >> s (e.g., N(s) = poly(s))

Theorem [BKP18]

3-round ZK argument can be obtained by relying on: (1) quasi-poly hardness of LWE (or FHE + standard crypto), and

(2) slightly super-poly hardness of keyless multi-collision-resistant hash function

3-round ZK from simple & falsifiable assumptions!

Theorem

Public-coin 3-round ZK argument can be obtained by relying on:

- (1) sub-exponential hardness of LWE, and
- (2) slightly super-poly hardness of keyless multi-collision-resistant hash function

Theorem

Public-coin 3-round ZK argument can be obtained by relying on:

- (1) sub-exponential hardness of LWE, and
- (2) slightly super-poly hardness of keyless multi-collision-resistant hash function

Theorem

Public-coin 3-round ZK argument can be obtained by relying on:

- (1) sub-exponential hardness of LWE, and
- (2) slightly super-poly hardness of keyless multi-collision-resistant hash function

© theoretically natural target

Theorem

Public-coin 3-round ZK argument can be obtained by relying on:

- (1) sub-exponential hardness of LWE, and
- (2) slightly super-poly hardness of keyless multi-collision-resistant hash function

© theoretically natural target

- © useful properties
- public verifiabilty
- leakage resislience about V's state

Theorem

- Public-coin 3-round ZK argument can be obtained by relying on:
- (1) sub-exponential hardness of LWE, and
- (2) slightly super-poly hardness of keyless multi-collision-resistant hash function

Comparison with 3-round ZK of [BKP18]

- © public-coin construction
- Slightly stronger assumptions

(sub-exponentially hard LWE rather than quasi-poly hard LWE)

Overview of techniques

Our approach

Our approach

memory: *x*

P

 \boldsymbol{V}

memory: x

P V

• Efficiency: V runs in polynomial time in the security parameter λ even for memory x of slightly super-poly length (e.g., $\lambda^{\log \log \lambda}$)

• Efficiency: V runs in polynomial time in the security parameter λ even for memory x of slightly super-poly length (e.g., $\lambda^{\log \log \lambda}$)

Soundness (intuition): Once \hat{X} is fixed, PPT malicious P can give an accepting proof π for at most a single y

public-coin 2-round delegation of

[Jawale-Kalai-Khurana-Zhang21 (JKKZ21), Holmgren-Lombardi-Rothblum21 (HLR21)]

public-coin 2-round delegation of

[Jawale-Kalai-Khurana-Zhang21 (JKKZ21), Holmgren-Lombardi-Rothblum21 (HLR21)]

- Construction: Fiat-Shamir + succinct proof of [Goldwasser-Kalai-Rothblum08]
- Assumption: Sub-exponential hardness of LWE
- Key property: V only needs to read a small part of an encoding of x (as in oracle memory delegation)

 x̂ = Encode(x)

$$P \xrightarrow{f, ch} V$$

public-coin 2-round delegation of

[Jawale-Kalai-Khurana-Zhang21 (JKKZ21), Holmgren-Lombardi-Rothblum21 (HLR21)]

can be converted to public-coin oracle memory delegation easily
 only works for a limited class of computations

• bounded-depth computations with a certain form of succinct descriptions

public-coin 2-round RAM delegation of [Choudhuri–Jain–Jin21 (CJJ21)]

public-coin 2-round RAM delegation of [Choudhuri–Jain–Jin21 (CJJ21)]

- Assumption: $\lambda^{\omega(1)}$ -hardness of LWE for proofs about $\lambda^{\omega(1)}$ -time computations
- Key property: V does not need to be have x in the clear (as in oracle memory delegation)

$$P \xrightarrow{f, ch} V \xrightarrow{rt} where rt = MerkleHash_h(x)$$

public-coin 2-round RAM delegation of [Choudhuri–Jain–Jin21 (CJJ21)]

- \odot works for all $\lambda^{\omega(1)}$ -time computations
- cannot be converted to oracle memory delegation easily
 - How should V obtain Merkle hash of x in oracle memory delegation?

$$P \xrightarrow{f, ch} V \xrightarrow{rt} where rt = MerkleHash_h(x)$$

delegation of [JKKZ21,HLR21]

- can be converted to oracle memory delegation
- works for a limited class of computations (bounded-depth circuit w/ succinct descriptions)

RAM delegation of [CJJ21]

- works for all $\lambda^{\omega(1)}$ -time computations
- Cannot be converted to oracle memory delegation (V needs to have Merkle hash of memory x)

delegation of [JKKZ21,HLR21]

- can be converted to oracle memory delegation
- works for a limited class of computations (bounded-depth circuit w/ succinct descriptions)

RAM delegation of [CJJ21]

- works for all $\lambda^{\omega(1)}$ -time computations
- Cannot be converted to oracle memory delegation (V needs to have Merkle hash of memory x)

Let's combine these two!

 \boldsymbol{V}

Step 1: use delegation of [JKKZ21,HLR21] for Merkle-hash computation

Step 1: use delegation of [JKKZ21,HLR21] for Merkle-hash computation

Soundness of π_{CJJ} holds since rt is proved to be correct!

Roadmap to public-coin 3-round ZK

Roadmap to public-coin 3-round ZK

Theorem

Public-coin 3-round ZK argument can be obtained by relying on:

- (1) sub-exponential hardness of LWE, and
- (2) slightly super-poly hardness of keyless multi-collision-resistant hash function

Public-coin 3-round ZK from simple & falsifiable assumptions!

Theorem

Public-coin 3-round ZK argument can be obtained by relying on:

- (1) sub-exponential hardness of LWE, and
- (2) slightly super-poly hardness of keyless multi-collision-resistant hash function

Open questions:

- from quasi-polynomial hardness of LWE?
- from more standard assumptions (compared with keyless multi-CR hash)?

Theorem

Public-coin 3-round ZK argument can be obtained by relying on:

- (1) sub-exponential hardness of LWE, and
- (2) slightly super-poly hardness of keyless multi-collision-resistant hash function

Open questions:

- from quasi-polynomial hardness of LWE?
- from more standard assumptions (compared with keyless multi-CR hash)?

Thank You!