Public-Coin 3-Round Zero-Knowledge
from Learning with Errors and
Keyless Multi-Collision-Resistant Hash

Susumu Kiyoshima

(®) NTTResearch

Zero-knowledge (ZK) arguments

statement: x € L

Cp—y

>

» Completeness: x € L = V accepts a proof created by honest P
» Soundness: x ¢ L = V rejects a proof created by PPT malicious P
» ZK: x € L = PPT malicious V cannot learn anything beyond x € L

(® NTTResearch 217

Zero-knowledge (ZK) arguments

statement: x € L Our focus:

@ 3-round constructions
~ >
P - V

>

» Completeness: x € L = V accepts a proof created by honest P
» Soundness: x ¢ L = V rejects a proof created by PPT malicious P
» ZK: x € L = PPT malicious V cannot learn anything beyond x € L

(® NTTResearch 2117

3-round ZK arguments

© Optimal in terms of round complexity
- 2-round is impossible (even w/ non-black-box simulation) [Goldreich-Oren94]

® Difficult to obtain

+ 3-round ZK with black-box simulation is impossible [Goldreich-Krawczyk96]
- Until recently, 3-round ZK had been obtained only under:

- unfalsifiable assumptions (e.g., knowledge-of-exponent assumptions)
[Hada-Tanaka98, Bellare-Palacio04, Canetti-Dakdouk0s8, ...]

- weak definitions (e.g., super-poly simulation, bounded non-uniformity, weak ZK, ...)
[Pass03, Bitansky-Canetti-Paneth—-Rosen14, Bitansky-Brakerski—Kalai-Paneth-Vaikuntanathan16,
Bitansky—Khurana—Paneth19,...]

(® NTTResearch 317

3-round ZK by [Bitansky—Kalai-Paneth18 (BKP18)]

Theorem [BKP18]
3-round ZK argument can be obtained by relying on:
(1) quasi-poly hardness of LWE (or FHE + standard crypto), and

(2) slightly super-poly hardness of keyless multi-collision-resistant
hash function

(® NTTResearch 4

3-round ZK by [Bitansky—Kalai-Paneth18 (BKP18)]

Theorem [BKP18]
3-round ZK argument can be obtained by relying on:
(1) quasi-poly hardness of LWE (or FHE + standard crypto), and

(2) slightly super-poly hardness of keyless multi-collision-resistant
hash function Y

(® NTTResearch 4

3-round ZK by [Bitansky—Kalai-Paneth18 (BKP18)]

Theorem [BKP18]
3-round ZK argument can be obtained by relying on:
(1) quasi-poly hardness of LWE (or FHE + standard crypto), and

(2) slightly super-poly hardness of keyless multi-collision-resistant
hash function Y

» n-collision: distinct xq,...,x,s.t. H(x;) = --- = H(x,)

(® NTTResearch 4

3-round ZK by [Bitansky—Kalai-Paneth18 (BKP18)]

Theorem [BKP18]
3-round ZK argument can be obtained by relying on:
(1) quasi-poly hardness of LWE (or FHE + standard crypto), and

(2) slightly super-poly hardness of keyless multi-collision-resistant
hash function Y

» n-collision: distinct xq,...,x,s.t. H(x;) = --- = H(x,)

> N-collision resistance: any adversary with non-uniform advice
of size s cannot find N(s)-collision for N(s)>>s (e.g.. N(s) = poly(s))

(® NTTResearch 4

3-round ZK by [Bitansky—Kalai-Paneth18 (BKP18)]

Theorem [BKP18]
3-round ZK argument can be obtained by relying on:
(1) quasi-poly hardness of LWE (or FHE + standard crypto), and

(2) slightly super-poly hardness of keyless multi-collision-resistant
hash function

3-round ZK from simple & falsifiable assumptions!

(® NTTResearch 4

Public-coin 3-round ZK argument can be obtained by relying on:

(1) sub-exponential hardness of LWE, and
(2) slightly super-poly hardness of keyless multi-collision-resistant
hash function

(©® NTTResearch 5117

Public-coin 3-round ZK argument can be obtained by relying on:

(1) sub-exponential hardness of LWE, and
(2) slightly super-poly hardness of keyless multi-collision-resistant
hash function

P—V

(©® NTTResearch 5117

Public-coin 3-round ZK argument can be obtained by relying on:

(1) sub-exponential hardness of LWE, and
(2) slightly super-poly hardness of keyless multi-collision-resistant
hash function

P—V

(® NTTResearch 5117

© theoretically natural target

Public-coin 3-round ZK argument can be obtained by relying on:

(1) sub-exponential hardness of LWE, and
(2) slightly super-poly hardness of keyless multi-collision-resistant
hash function

© theoretically natural target

>
P - 3 ‘ / © useful properties
> - public verifiabilty

- leakage resislience about V's state

(® NTTResearch 5117

Public-coin 3-round ZK argument can be obtained by relying on:

(1) sub-exponential hardness of LWE, and
(2) slightly super-poly hardness of keyless multi-collision-resistant
hash function

» Comparison with 3-round ZK of [BKP18]

© public-coin construction
@ slightly stronger assumptions
(sub-exponentially hard LWE rather than quasi-poly hard LWE)

(©® NTTResearch 5117

Overview of techniques

(® NTTResearch

Prior approach [BKP18]

(® NTTResearch

Prior approach [BKP18]

(2-round)
LWE —>» oracle memory
delegation

(® NTTResearch 77

Prior approach [BKP18]

(2-round) (2-round)
LWE —»| oracle memory —| memory
delegation |-> delegation

keyless
multi-CR hash

(®) NTTResearch 7/17

Prior approach [BKP18]

(2-round) (2-round)
LWE —»| oracle memory —| memory |—p

delegation |-> delegation |->

3-round
ZK argument

keyless Barak's
multi-CR hash | | non-BB tech”

* memory delegation is used
as universal argument

(®) NTTResearch 7/17

Prior approach [BKP18]

private coin

/4

(2-round) (2-round)
LWE —>»| oracle memory —| memory |—p

delegation |-> delegation |->

3-round
ZK argument

keyless Barak's
multi-CR hash | | non-BB tech”

* memory delegation is used
as universal argument

(®) NTTResearch 7/17

Prior approach [BKP18]

LWE

(® NTTResearch

private coin private coin private coin
/4 /L /4
(2-round) (2-round)

oracle memory —»| mMmemory —p

3-round
ZK argument

delegation |-> delegation |->

keyless
multi-CR hash

Barak's
non-BB tech*

* memory delegation is used
as universal argument

7/17

Our approach

public coin

/4

public coin public coin

/4 /4

LWE

(® NTTResearch

(2-round)

oracle memory —»

delegation

(2-round)

ZK argument

|-> delegation |->

keyless

multi-CR hash | | non-BB tech

Barak's

* memory delegation is used
as universal argument

8/17

Our approach

public coin

/4

public coin public coin

/4

/

(2-round)

delegation

: [LWE —>| oracle memory —

(2-round)
memory

3-round

™ ZK argument

l-:» delegation

:

keyless

multi-CR hash

Barak's
non-BB tech*

(® NTTResearch

* memory delegation is used

as universal argument

8/17

Oracle memory delegation [BKP18]

memory: x

P V

(® NTTResearch 917

Oracle memory delegation [BKP18]

memory: x

P V

» Goal: V delegates (heavy) computation on the memory x to P

(® NTTResearch 917

Oracle memory delegation [BKP18]

memory: x

< fsch

P V

» Goal: V delegates (heavy) computation on the memory x to P

(® NTTResearch 917

Oracle memory delegation [BKP18]

memory: x

< fsch

P y=fx),n V

>

» Goal: V delegates (heavy) computation on the memory x to P

(® NTTResearch 917

Oracle memory delegation [BKP18]

X = Encode(x)

memory: x HEEEEEEEEEEEN
fsch

-

P y=fx),n V

>

» Goal: V delegates (heavy) computation on the memory x to P

(® NTTResearch 917

Oracle memory delegation [BKP18]

X = Encode(x)

memory: x HEEEEEEEEEEEN
fsch

-

P y=fx),n V

>

» Efficiency: V runs in polynomial time in the security parameter A
even for memory x of slightly super-poly length (e.g., Al°81084)

(®) NTTResearch 9/17

Oracle memory delegation [BKP18]
X = Encode(x)

memory: x HEEEEEEEEEEEN
fsch

4
P y=fx),n V

>

» Efficiency: V runs in polynomial time in the security parameter A
even for memory x of slightly super-poly length (e.g., Al°81084)

» Soundness (intuition): Once X is fixed, PpT malicious P can give
an accepting proof & for at most a single y

(® NTTResearch

9/17

public coin

/4
(2-round)
LWE »| oracle memory
delegation

(® NTTResearch 10/17

public coin

4
(2-round)
LWE —-| oracle memory
delegation

public-coin 2-round delegation

(= SNARG in common random string model)
[Jawale—Kalai-Khurana-Zhang21, Holmgren-Lombardi—-Rothblum21,

Choudhuri-Jain-Jin21]
(®) NTTResearch 10/17

Building block #1

(® NTTResearch 11/17

Building block #1

public-coin 2-round delegation of
[Jawale-Kalai-Khurana-Zhang21 (JKKZ21), Holmgren-Lombardi-Rothblum21 (HLR21)]

(® NTTResearch 11/17

Building block #1

public-coin 2-round delegation of
[Jawale-Kalai-Khurana-Zhang21 (JKKZ21), Holmgren-Lombardi-Rothblum21 (HLR21)]

» Construction: Fiat-Shamir + succinct proof of [Goldwasser—Kalai-Rothblum08]
» Assumption: Sub-exponential hardness of LWE

» Key property: V only needs to read a small part of an encoding of x (as in
oracle memory delegation) X = Encode(x)

||||w
@ » f.ch

P y=fwx_ V

(® NTTResearch 11/17

Building block #1

public-coin 2-round delegation of
[Jawale-Kalai-Khurana-Zhang21 (JKKZ21), Holmgren-Lombardi-Rothblum21 (HLR21)]

© can be converted to public-coin oracle memory delegation easily
® only works for a limited class of computations

- bounded-depth computations with a certain form of succinct descriptions
X = Encode(x)

LT IW_I
@ » f.ch
P y=fwx_ V

(® NTTResearch 11/17

Building block #2

public-coin 2-round RAM delegation of [Choudhuri-Jain-Jin21 (CJJ21)]

(® NTTResearch 12/17

Building block #2

public-coin 2-round RAM delegation of [Choudhuri-Jain-Jin21 (CJJ21)]

» Assumption: 1°V-hardness of LWE for proofs about 2*-time computations

> Key property: V does not need to be have x in the clear (as in oracle memory
delegation)

@ » f>ch

P y = f(x), @ . V where rt = MerkleHash(x)

(® NTTResearch 12/17

Building block #2

public-coin 2-round RAM delegation of [Choudhuri-Jain-Jin21 (CJJ21)]

© works for all 2*V-time computations
@ cannot be converted to oracle memory delegation easily
- How should V obtain Merkle hash of x in oracle memory delegation?

@ » f>ch

P y = f(x), @ . V where rt = MerkleHash(x)

(® NTTResearch 12/17

What should we do?

(delegation of [JKKZ21,HLR21])

© can be converted to oracle
memory delegation

® works for a limited class of
computations (bounded-depth

circuit w/ succinct descriptions)
/

.

(® NTTResearch

(RAM delegation of [C1]21]

© works for all 2“M-time
computations

® cannot be converted to oracle

have Merkle hash of memory x)

memory delegation (V needs to

13/17

What should we do?

(delegation of [JKKZ21,HLR21])

© can be converted to oracle
memory delegation

® works for a limited class of
computations (bounded-depth

circuit w/ succinct descriptions)
/

.

(RAM delegation of [C1]21]
© works for all 2°®-time
computations

® cannot be converted to oracle
memory delegation (V needs to

have Merkle hash of memory x)

(.

Let’s combine these two!

(® NTTResearch

13/17

Our public-coin oracle memory delegation

(® NTTResearch 14/17

Our public-coin oracle memory delegation

Step 1: use delegation of [JKKZ21,HLR21] A
for Merkle-hash computation X = Encode(x)

HEEEEEEEREEEN
@ 4h <Ch1|<|<z

P rt KKz V

> — >

proof about
rt = MerkleHash;(x)

(® NTTResearch 14/17

Our public-coin oracle memory delegation

Step 1: use delegation of [JKKZ21,HLR21]

for Merkle-hash computation

@ < h <Ch1|<|<z
P

Tz

A

proof about
rt = MerkleHash;(x)

(® NTTResearch

X = Encode(x)

-

.

delegation of [JKKZ21,HLR21

© can be converted
to oracle memory delegation

® works for bounded-depth
circuit w/ succinct descriptions

14/17

Our public-coin oracle memory delegation

Step 2: use delegation of [C]]21] A
to prove any computation on x X = Encode(x)

HEEEEEEEREEEN
@ < h <Ch1|<|<z < J>che;

P rt KKz Yy TTen V

> — > N

proof about proof about
rt = MerkleHash,(x) | |y = f(x)

(® NTTResearch 14/17

Our public-coin oracle memory delegation

Step 2: use delegation of [C1]21] A
to prove any computation on x X = Encode(x)

@ < h <Ch1|<|<z < S5 che,
P rt KKz Yy TTen V

> > >
A A _

proof about proof about delegation of [C]]21

rt = MerkleHash,(x) | |y = f(x) © for all 2*M-time

computations

® V needs to have
Merkle hash of x

(® NTTResearch 14/17

Our public-coin oracle memory delegation

Step 2: use delegation of [CJ1]21]

to prove any computation on x X = Encode(x)
HEEEEEEEEEEEE
h ch fsche
CCSQP‘ Sz o J>CRen
rt TTykKz Ys Ty ‘
> > >
i A
proof about proof about

rt = MerkleHash,(x) | |y = f(x)

Soundness of zr¢;; holds since rt is proved to be correct!

(® NTTResearch 14/17

Roadmap to public-coin 3-round ZK

public coin

/4
(2-round)
LWE —| oracle memory
delegation

(® NTTResearch 15/17

Roadmap to public-coin 3-round ZK

public coin public coin public coin
/7 /7 /7
(2-round) (2-round) 2-round
LWE —{ oracle memory —»| memory |—p ZK argument

delegation |-> delegation |->

keyless Barak's
multi-CR hash | | non-BB tech”

* memory delegation is used
as universal argument

(® NTTResearch 15/17

Conclusion

O NTTResearch e

Conclusion

Public-coin 3-round ZK argument can be obtained by relying on:

(1) sub-exponential hardness of LWE, and
(2) slightly super-poly hardness of keyless multi-collision-resistant
hash function

Public-coin 3-round ZK from simple & falsifiable assumptions!

(® NTTResearch 17/17

Conclusion

Public-coin 3-round ZK argument can be obtained by relying on:

(1) sub-exponential hardness of LWE, and
(2) slightly super-poly hardness of keyless multi-collision-resistant
hash function

» Open questions:

- from quasi-polynomial hardness of LWE?
- from more standard assumptions (compared with keyless multi-CR hash)?

(® NTTResearch 17/17

Conclusion

Public-coin 3-round ZK argument can be obtained by relying on:

(1) sub-exponential hardness of LWE, and
(2) slightly super-poly hardness of keyless multi-collision-resistant
hash function

» Open questions:

- from quasi-polynomial hardness of LWE?
- from more standard assumptions (compared with keyless multi-CR hash)?

Thank You!

(® NTTResearch 17/17

	Introduction
	Our Result
	Techniques
	Conclusion

