Efficient NIZKs and Signatures from Commit-and-Open Protocols in the QROM

Jelle Don, Serge Fehr, Christian Majenz and Christian Schaffner

Technical University of Denmark

Research Center for Quantum Software

Universiteit van Amsterdam

Outline

- The Problem
- Our Results
- Commit-and-Open Protocols
- The QROM extractor
- Main Result
- The CHFL21 Framework
- Improved Unruh Transform

The Problem

Are there Fiat-Shamir NIZKs/DSS with a tight security proof?

 $x \in \mathscr{L}$, witness relation R

 $V(x, y, c, z) \in \{\text{accept, reject}\}\$

 $x \in \mathscr{L}$, witness relation R

Fiat-Shamir: c := H(x, y)

 $V(x, y, c, z) \in \{\text{accept, reject}\}\$

Extractability

FS of	Prover success probability	Extractor success probability
Arbitrary Σ , ROM	р	p²/q or p/q
Commit-and-Open, ROM	р	p-negl _q (n)
Arbitrary Σ , QROM	р	p ³ /q ⁶ or p/q ²
Commit-and-Open, QROM	р	p/q ²

 Σ -protocols with collapsingness

q=number of (Q)RO queries

n=security parameter

FS of	Prover success probability	Extractor success probability
Arbitrary Σ , ROM	р	p²/q or p/q
Commit-and-Open, ROM	р	p-negl _q (n)
Arbitrary Σ , QROM	р	p ³ /q ⁶ or p/q ²
Commit-and-Open, QROM	р	p/q ²

 Σ -protocols with collapsingness

q=number of (Q)RO queries

n=security parameter

Our Results

Online-extractability for some Fiat-Shamir-NIZKs in the QROM

We...

- construct an online extractor for the Fiat-Shamir transform of commit-and-open protocols in the QROM
- extend the technique to Merkle-tree commitments
- modularize and improve the Unruh transform
- apply our result to the Picnic signature scheme

- Chailloux (eprint '21): same result, but under schemespecific assumption
- Chiesa, Manohar, Spooner (TCC '19): Analysis of a specific SNARG construction.
 - Quite similar to our Merkle tree commitment result
 - Was somehow missed in the analysis of, e.g, Picnic until now

Commit-and-Open Protocols

A special class of Σ -protocols

Commit-and-Open (C&O) Protocols

 $x \in \mathscr{L}$, witness relation R

 $egin{aligned} V(x,\mathbf{m}_c) \in \{ ext{accept, reject}\} \ &orall i \in c: H(m_i) = y_i \end{aligned}$

Commit-and-Open (C&O) Protocols

 $x \in \mathscr{L}$, witness relation R

Fiat-Shamir: $c := H(x, \mathbf{y})$

 $egin{aligned} V(x,\mathbf{m}_c) \in \{ ext{accept, reject}\} \ &orall i \in c: H(m_i) = y_i \end{aligned}$

Merkle tree commitments with octopus opening

- First message in C&O protocols: $H(m_1), \ldots, H(m_\ell)$
- Third message: $(m_i)_{i \in c}$ for $c \in \{1, ..., \ell\}$

Merkle tree commitments with octopus opening

- First message in C&O protocols: $H(m_1), \ldots, H(m_\ell)$
- Third message: $(m_i)_{i \in c}$ for $c \in \{1, ..., \ell\}$

⇒ Any commitment allowing for opening a subset of messages works

Merkle tree commitments with octopus opening

- First message in C&O protocols: $H(m_1), \ldots, H(m_\ell)$
- Third message: $(m_i)_{i \in c}$ for $c \in \{1, ..., \ell\}$

⇒ Any commitment allowing for opening a subset of messages works

In Picnic: Merkle tree commitment

It's (usually) easy to produce \mathbf{y} and a valid \mathbf{m}_c for **one** value of c...

 \mathscr{A} : Adversary against FS transform of special-sound C&O protocol

For simplicity: $\mathscr{C} = \text{subsets of size } r$

х

 \mathscr{A} : Adversary against FS transform of special-sound C&O protocol

For simplicity: $\mathscr{C} = \text{subsets of size } r$

 \mathscr{A} that succeeds such that \mathscr{E} does not needs to perform an "artificial" oracle search task:

Problem: Find valid $(\mathbf{y}, \mathbf{m}_{H(x,\mathbf{y})})$ without querying any valid m such that $H(m) = y_i$ for some $i \notin H(x, \mathbf{y})$ \mathscr{A} that succeeds such that \mathscr{E} does not needs to perform an "artificial" oracle search task:

Problem: Find valid
$$(\mathbf{y}, \mathbf{m}_{H(x,\mathbf{y})})$$
 without querying
any valid m such that $H(m) = y_i$ for some
 $i \notin H(x, \mathbf{y})$

This is a hard oracle search task!

FS of	Prover success probability	Extractor success probability
Arbitrary Σ , ROM	р	p²/q or p/q
Commit-and-Open, ROM	р	p-negl _q (n)
Arbitrary Σ , QROM	р	p ³ /q ⁶ or p/q ²
Commit-and-Open, QROM	р	p/q²

 Σ -protocols with collapsingness

q=number of (Q)RO queries

n=security parameter

The QROM extractor

"Just use a compressed oracle!"

 \mathscr{A} that succeeds such that \mathscr{E} does not needs to perform an "artificial" compressed-oracle search task:

Problem: Find valid $(\mathbf{y}, \mathbf{m}_{D(x,\mathbf{y})})$ such that (m, y_i) for valid *m* is not in the database *D* for $i \notin D(x, \mathbf{y})$.

 ${\mathscr A}$ that succeeds such that ${\mathscr E}$ does not needs to perform an "artificial" compressed-oracle search task:

Problem: Find valid
$$(\mathbf{y}, \mathbf{m}_{D(x,\mathbf{y})})$$
 such that (m, y_i) for valid m is not in the database D for $i \notin D(x, \mathbf{y})$.

Query lower bounds for compressed oracles: plenty.

 \mathscr{A} that succeeds such that \mathscr{E} does not needs to perform an "artificial" compressed-oracle search task:

Problem: Find valid $(\mathbf{y}, \mathbf{m}_{D(x,\mathbf{y})})$ such that (m, y_i) for valid *m* is not in the database *D* for $i \notin D(x, y)$.

Query lower bounds for compressed oracles: plenty.

But not if the predicate needs to read the compressed oracle database!

Main Result

Online-extractability in the QROM via artificial compressed-oracle tasks

Theorem (Don, Fehr, M, Schaffner 22, informal): For the FS transformation of a C&O protocol with any of a very general class of special-soundness-like properties there exists an online extractor that extracts a witness whenever the prover succeeds, except with negligible error, in the QROM.

This also works in case a Merkle tree commitment is used.

Theorem (Don, Fehr, M, Schaffner 22, informal): For the FS transformation of a C&O protocol with any of a very general class of special-soundness-like properties there exists an online extractor that extracts a witness whenever the prover succeeds, except with negligible error, in the QROM.

This also works in case a Merkle tree commitment is used.

For the proof, we generalize the compressed-oracle query lower bound framework of Chung, Fehr, Huang, Liao (Eurocrypt '21).

Result: Online-extractability of NIZK from C&O

FS of	Prover success probability	Extractor success probability
Arbitrary Σ , ROM	р	p²/q or p/q
Commit-and-Open, ROM	р	p-negl _q (n)
Arbitrary Σ , QROM	р	p ³ /q ⁶ or p/q ²
Commit-and-Open, QROM	р	p-negl _q (n)

 $\Sigma\text{-}protocols$ with collapsingness

q=number of (Q)RO queries

n=security parameter

• Provably secure in the QROM, based on security of the underlying block cipher (and a couple more primitives)

- Provably secure in the QROM, based on security of the underlying block cipher (and a couple more primitives)
- Previously: Very much non-tight security proof with both power loss, q^c loss

- Provably secure in the QROM, based on security of the underlying block cipher (and a couple more primitives)
- Previously: Very much non-tight security proof with both power loss, q^c loss
- Our result ⇒ multiplicatively tight reduction, additive error terms essentially match collision- and preimage attacks on hash function.

The CFHL21 Framework

A query lower bound framework for oracle search tasks

Query lower bounds for compressed oracles

Lemma (Zhandry '18): If there's no pair $(x, y) \in R$ in the compressed oracle database, the oracle algorithm can't output such a pair.

Query lower bounds for compressed oracles

Lemma (Zhandry '18): If there's no pair $(x, y) \in R$ in the compressed oracle database, the oracle algorithm can't output such a pair.

Generalizes to relations on tuples of input-output pairs. Write $D \in R$

 \Rightarrow Bounds for (multi)collision, space-time trade-offs, chain-of-values,...

• Classical TC: Maximum probability that a fresh pair (x, y) with random y puts D into R

- Classical TC: Maximum probability that a fresh pair (x, y) with random y puts D into R
- Quantum TC: Maximum amplitude that the compressed oracle unitary converts $D \notin R$ into $D \in R$

- Classical TC: Maximum probability that a fresh pair (x, y) with random y puts D into R
- Quantum TC: Maximum amplitude that the compressed oracle unitary converts $D \notin R$ into $D \in R$

Theorem (Chung, Fehr, Huang, Liao, Eurocrypt '21, very informal): There's a closed-form quantum query bound for the task of satisfying a relation R with input-output pairs of a QRO in terms of the quantum TC.

Removing one technical restriction allows application to our artificial search task!

Improved Unruh transform

Any Σ -protocol can become a C&O protocol!

Unruh Transform

- Less efficient than FS, but first NIZK provably secure in the QROM
- Online extractable, can be applied to any sigma-protocol
- Prover commits to a response for every possible challenge
- Requires length preserving hash for the commitment

Unruh Transform

- Less efficient than FS, but first NIZK provably secure in the QROM
- Online extractable, can be applied to any sigma-protocol
- Prover commits to a response for every possible challenge
- Requires length preserving hash for the commitment

Unruh Transform

- Less efficient than FS, but first NIZK provably secure in the QROM
- Online extractable, can be applied to any sigma-protocol
- Prover commits to a response for every possible challenge
- Requires length preserving hash for the commitment
- Can use Merkle tree commitment

 $egin{aligned} V(x,a,z_i) \in \{ ext{accept, reject}\}\ & H(z_i||r_i) = y_i \end{aligned}$

Summary

• We give the first tight QROM reduction of Fiat-Shamir NIZKs for

the subclass of C&O protocols

- The reduction works on Merkle-C&O
- ⇒Tight QROM reduction for the Picnic signature scheme
- More efficient Unruh transform

The End!

Questions?

