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Motivation

@ The supersingular isogeny problem is the foundational problem in
isogeny-based cryptography, conjectured to be post-quantum secure.
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Motivation

@ The supersingular isogeny problem is the foundational problem in
isogeny-based cryptography, conjectured to be post-quantum secure.

@ The security of SQISign (signature scheme) and B-SIDH (key
exchange) relies on its difficulty.

@ The best known classical attack against this general problem is the
Delfs—Galbraith algorithm.
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Contributions

Our contributions:

@ Provide an optimised implementation of the Delfs—Galbraith
algorithm: Solver.
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Contributions

Our contributions:

@ Provide an optimised implementation of the Delfs—Galbraith
algorithm: Solver.

o Develop an efficient method to detect if a polynomial f(X) € F,a[X]
has a root in IFp,.
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Contributions

Our contributions:

@ Provide an optimised implementation of the Delfs—Galbraith
algorithm: Solver.

o Develop an efficient method to detect if a polynomial f(X) € F,a[X]
has a root in IFp,.

@ Use this to introduce an improved attack, SuperSolver, with lower
concrete complexity.
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Elliptic Curves and j-invariants

An elliptic curve E over F 2 (p # 2,3) is a smooth curve given by the
equation

E:y?>=x3>+ax+b,
where a,b € F > and 423 +27b% £ 0.
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An elliptic curve E over F 2 (p # 2,3) is a smooth curve given by the
equation

E:y?>=x3>+ax+b,

where a,b € F > and 42> + 27b° # 0. We consider supersingular elliptic
curves.

We label our elliptic curves using j-invariants.
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Elliptic Curves and j-invariants

An elliptic curve E over F 2 (p # 2,3) is a smooth curve given by the
equation

E:y?>=x3>+ax+b,

where a,b € F > and 42> + 27b° # 0. We consider supersingular elliptic
curves.

We label our elliptic curves using j-invariants.

Definition
Let E : y?> = x3 + ax + b supersingular. Then, the j-invariant of E is
3

(E) = 172
J(E) 8,

a
' cFp.
PR P
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Isogenies

Definition

Let E and E’ be two elliptic curves, and let ¢ : E — E’ be a map between
them. Then, ¢ is an isogeny if it is non-constant and ¢(Ofg) = Og/.

Isogenies are group homomorphisms, meaning that for P, @ € E we have

(P @E Q) = ¢(P) & ¢(Q).
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Isogenies are group homomorphisms, meaning that for P, @ € E we have

o(P @ Q) = ¢(P) ©er ¢(Q).

For (seperable) isogenies, the degree deg(¢) = #ker(¢).
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Isogenies

Definition

Let E and E’ be two elliptic curves, and let ¢ : E — E’ be a map between
them. Then, ¢ is an isogeny if it is non-constant and ¢(Ofg) = Og/.

Isogenies are group homomorphisms, meaning that for P, @ € E we have

o(P @ Q) = ¢(P) ©er ¢(Q).

For (seperable) isogenies, the degree deg(¢) = #ker(¢). We call an
isogeny of degree £ an (-isogeny.
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The Supersingular Isogeny Problem

In its most general form, the supersingular isogeny problem asks to find an
isogeny
(25 B — E2,

between two given supersingular elliptic curves £ /F 2 and Ep/F 2.
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The Supersingular Isogeny Problem

In its most general form, the supersingular isogeny problem asks to find an

isogeny

¢ZE1—>E2,

between two given supersingular elliptic curves £ /F 2 and Ep/F 2.

We do not assume:
@ torsion point information
@ degree of the isogeny

@ starting curve is of a special form
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The Supersingular Isogeny Graph X (F), ¢)

Let p be a large prime, p /.

o°©
O

Vertices: Isomorphism classes of
supersingular elliptic curves E

represented by a j-invariant in 2.
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The Supersingular Isogeny Graph X (F,, ()

Let p be a large prime, p /.
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Properties:

e A random walk of log(p) steps is almost as good as uniformly sampling
vertices (Expander property)

e Path finding conjectured to be hard for classical and quantum computers
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The Supersingular Isogeny Graph X (F,, ()

Let p be a large prime, p /.

o

O
(e]e]
o]

o

8o

[e)
o
o

©)

o
(®)
000

Vertices: Isomorphism classes of
00~ | supersingular elliptic curves E
represented by a j-invariant in 2.
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Properties:

e A random walk of log(p) steps is almost as good as uniformly sampling
vertices (Expander property)

e Path finding conjectured to be hard for classical and quantum computers

Finding a path between two nodes j1, j2 = Finding an isogeny between E7, Es
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Key Observation

O i(B) €Fpe\F,

are easy to find

Paths

Finding paths — is the bottleneck
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The Delfs—Galbraith Algorithm
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The Delfs—Galbraith Algorithm

O(p) nodes with
O J(E) e ]FPQ\]FP QJ(E) € Fp2\F,
j(E) €F, O(y/p) nodes with
O iE) ek, 00 0B eF,
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respectively.
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The Delfs—Galbraith Algorithm

QO j(E) € F,2\F,
O J(E) €Ty O O

Step 2: Find a path fromp O O
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Taking a step in X(F,, ()

To take a self-avoiding step in X'(F,, ), we use modular polynomials.
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Taking a step in X(F,, ()

To take a self-avoiding step in X'(F,, ), we use modular polynomials.
The modular polynomial ®,(X, Y) € Z[X, Y] is symmetric of degree Ny in
both X and Y where

Ny = H(E,- +1)¢571, for prime decomposition Hﬁf" of /.
i=1 i=1

Ny = £+ 1 for £ prime.
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To take a self-avoiding step in X'(F,, ), we use modular polynomials.
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Ny = H((; +1)¢571, for prime decomposition Hﬁf" of /.
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Taking a step in X(F,, ()

To take a self-avoiding step in X'(F,, ), we use modular polynomials.
The modular polynomial ®,(X, Y) € Z[X, Y] is symmetric of degree Ny in
both X and Y where

Ny = H(E,- +1)¢571, for prime decomposition Hﬁf" of /.
i=1 i=1

Ny = £+ 1 for £ prime.

®y(j1,52) =0 <= j1,/o are j-invariants of (-isogenous elliptic curves. J

This tells us that the roots of ®,(X, j) are neighbours of j in X(F,, ¢).
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Taking a step in X(F,, ()

To take a self-avoiding step in X'(F,, ), we use modular polynomials.
The modular polynomial ®,(X, Y) € Z[X, Y] is symmetric of degree Ny in
both X and Y where

Ny = H(E,- +1)¢571, for prime decomposition Hﬁf" of /.
i=1 i=1

Ny = £+ 1 for £ prime.

®y(j1,52) =0 <= j1,/o are j-invariants of (-isogenous elliptic curves. J

This tells us that the roots of ®,(X, j) are neighbours of j in X(F,, ¢).
Reducing coefficients modp we can work with &, ,(X,Y) € F,[X, Y].
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Taking a step in X(F),, ¢)

1. Store the current and previous j-invariants j. and jp.
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Taking a step in X(F),, ¢)

2. Find the Ny — 1 roots of @y (X, jc)/(X — jp)-

11/26

Accelerating the Delfs—Galbraith Algorithm CRYPTO 2022

Maria Corte-Real Santos (UCL)



Taking a step in X(F),, ¢)

3. Choose one of these and walk to the corresponding node.
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Concrete Complexity of Delfs—Galbraith

We use our optimised implementation of the Delfs—Galbraith algorithm,
Solver, to determine the concrete complexity of the first (bottleneck) step.
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Concrete Complexity of Delfs—Galbraith

We use our optimised implementation of the Delfs—Galbraith algorithm,
Solver, to determine the concrete complexity of the first (bottleneck) step.

Experimentally, given a node j € 2\, the average number of I,
multiplications needed to find a path to a node j' € F,, is

(o \/E . |Og2 P,
with 0.75 < ¢ < 1.05.
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SuperSolver Overview

SuperSolver is a new attack that improves on the concrete complexity of
the Delfs—Galbraith algorithm.
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SuperSolver Overview

SuperSolver is a new attack that improves on the concrete complexity of
the Delfs—Galbraith algorithm. It changes the first step: the subfield
search.
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SuperSolver Overview

SuperSolver is a new attack that improves on the concrete complexity of
the Delfs—Galbraith algorithm. It changes the first step: the subfield
search.

Key Observation

At each step, the precise values of the ¢-isogenous neighbours do not need
to be known, only whether it lies in [Fp,.
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SuperSolver Overview

SuperSolver is a new attack that improves on the concrete complexity of
the Delfs—Galbraith algorithm. It changes the first step: the subfield
search.

Key Observation

At each step, the precise values of the ¢-isogenous neighbours do not need
to be known, only whether it lies in [Fp,.

At each step, we want to know if the current node j. is /-isogenous to a
J € Fp.
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SuperSolver Overview

At each step of the random walk in X(IF‘,,,Q), SuperSolver inspects the
l-isogeny graph with fast subfield root detection for £ in a carefully chosen
set, to efficiently detect whether j. has an /-isogenous neighbour in [Fp,.
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SuperSolver Overview

At each step of the random walk in X(IF‘,,,Q), SuperSolver inspects the
l-isogeny graph with fast subfield root detection for £ in a carefully

chosen set, to efficiently detect whether j. has an /-isogenous neighbour in
Fp.

Maria Corte-Real Santos (UCL) Accelerating the Delfs—Galbraith Algorithm CRYPTO 2022 14 /26



SuperSolver Overview

At each step of the random walk in X(IF‘,,,2), SuperSolver inspects the
l-isogeny graph with fast subfield root detection for £ in a carefully
chosen set, to efficiently detect whether j. has an (-isogenous neighbour

in Fp.
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Fast Subfield Root Detection

We give a fast way of detecting whether it has a root in F, without
finding roots.
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Fast Subfield Root Detection

We give a fast way of detecting whether it has a root in F, without
finding roots.

Lemma

Let 7 : a — aP be the p-power Frobenius map and f a polynomial in
F2[X].
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Fast Subfield Root Detection

We give a fast way of detecting whether it has a root in F, without
finding roots.
Lemma

Let 7 : a — aP be the p-power Frobenius map and f a polynomial in
F2[X].

o If deg (ged(f,m(f))) =1, f has a root in F,.
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Fast Subfield Root Detection

We give a fast way of detecting whether it has a root in F, without
finding roots.

Lemma

Let 7 : a — aP be the p-power Frobenius map and f a polynomial in
F2[X].

o If deg (ged(f,m(f))) =1, f has a root in F,.
o If deg (ged(f,m(f))) =0, f does not have a root in F,.
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Fast Subfield Root Detection

We give a fast way of detecting whether it has a root in F, without
finding roots.

Lemma

Let 7 : a — aP be the p-power Frobenius map and f a polynomial in
F2[X].

o If deg (ged(f,m(f))) =1, f has a root in F,.
o If deg (ged(f,m(f))) =0, f does not have a root in F,.

We also show how to transform f,7(f) € F2[X] to give g1, g € Fp[X]
with the same gcd and avoid all costly multiplications in [F ..
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List of Optimal ¢'s

Though the inspection of the neighbours of j. in the /-isogeny graph

increases the total number of I, multiplications at each step, more nodes
are checked.
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List of Optimal ¢'s

Though the inspection of the neighbours of j. in the /-isogeny graph

increases the total number of I, multiplications at each step, more nodes

are checked.

o o)
0-00
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0950 0 ©p 000
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o OOOOOOOO 0 00
26 000 OOOOOOOOO
© 26%0020,° 00
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002 90 0©
@] 0 0000 00
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List of Optimal ¢'s

Though the inspection of the neighbours of j. in the /-isogeny graph

increases the total number of I, multiplications at each step, more nodes

are checked.

O @)
0-00
OO OOOO(())OOOOOO
00000 Y500 000
0Y505 0700 15
o OOOOOOOO 0 00
26 000 OOOOOOOOO
© 5203200200
0o e) (OhgoNe)
000 900 0©
@] OOOOO O O

We compute the list of optimal £'s to minimise the number of I,
multiplications per node revealed.
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List of Optimal ¢'s

Though the inspection of the neighbours of j. in the /-isogeny graph

increases the total number of I, multiplications at each step, more nodes
are checked.

We compute the list of optimal £'s to minimise the number of I,

multiplications per node revealed. The key is that calculating the list of
optimal ¢'s can be done in precomputation.
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Results

Experiments on small primes and many j-invariants.
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Results

Experiments on small primes and many j-invariants. SuperSolver finds

a subfield node with much fewer (on average, half) F, multiplications and
by visiting less nodes.
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Results

Experiments on small primes and many j-invariants. SuperSolver finds
a subfield node with much fewer (on average, half) F, multiplications and
by visiting less nodes.

Example: For p = 2%* — 3, averaging over 5000 pseudo-random
supersingular j-invarants in 2, we get:

Solver used 112878 F,, multiplications and walked on 1897 nodes.
SuperSolver used 53900 IF, multiplications and walked on 318 nodes.
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Results

Experiments on small primes and many j-invariants. SuperSolver finds

a subfield node with much fewer (on average, half) F, multiplications and
by visiting less nodes.

Experiments on cryptographic sized primes and one j-invariant. We
ran SuperSolver and Solver until the number of I, multiplications used
exceeded 108, recording the total number of nodes covered.
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Results

Experiments on small primes and many j-invariants. SuperSolver finds
a subfield node with much fewer (on average, half) F, multiplications and
by visiting less nodes.

Experiments on cryptographic sized primes and one j-invariant. We
ran SuperSolver and Solver until the number of I, multiplications used
exceeded 108, recording the total number of nodes covered.

Examples:
For p = 259 — 27, SuperSolver covers between 3 and 4 times the
number of nodes that Solver does.
For p = 2890 _ 105, SuperSolver covers between 18 and 19 times the
number of nodes.
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Conclusions

What does this mean for isogeny-based cryptography?

@ We improve the concrete complexity of Delfs—Galbraith - asymptotic
complexity is unchanged.
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Conclusions

What does this mean for isogeny-based cryptography?

@ We improve the concrete complexity of Delfs—Galbraith - asymptotic
complexity is unchanged.

@ Affects schemes such as B-SIDH and SQISign, which have
Delfs—Galbraith as their best attack.

For more details, see our full paper at eprint/2021/1488
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Additional Slides
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Worked Example

Let p = 229 — 3. Sample our start and end node:
Start Node: j; = 129007« + 818380
End Node: j> = 97589« + 660383

?
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Worked Example: Solver

Path from j; = 129007« + 818380 to subfield node.

?
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Worked Example: Solver

Path from j; = 129007« + 818380 to subfield node j; = 760776.

21 steps

[:
1027930
+ 498080

[

348684«
+ 935077

2 2

2 2

174188«
+ 794346

263095c
+ 184707

971263
+ 725197

175225
+ 937858
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Worked Example: Solver

Path from jo, = 97589a + 660383 to subfield node.

?
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Worked Example: Solver

Path from j» = 97589« + 660383 to subfield node j; = 35387.

21 steps

[:
219960c
+ 646080

[

4408400
+ 706619

2

2

657423
+ 286117

289439
+ 170877
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Worked Example: Solver

Path between subfield nodes ji = 760776 and j;, = 35387.

In total, the path has 21 + 21 4+ 8 = 50 steps.
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Worked Example: SuperSolver

The list of optimal ¢'s is precomputed as L = {3,5}.
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Worked Example: SuperSolver

The list of optimal ¢'s is precomputed as L = {3,5}.
Path from j; = 129007« + 818380 to subfield node.

?
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Worked Example: SuperSolver

The list of optimal ¢'s is precomputed as L = {3,5}.
Path from j; = 129007« + 818380 to subfield node j; = 35387.

3-isogenous neighbour in F,?

D3 (X, 2192470 + 863507) = X* + (212814 + 479338) X3 + (4082500 + 920025) X 2
+ (8117390 + 93038) X + 9423360 + 847782
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Worked Example: SuperSolver

The list of optimal ¢'s is precomputed as L = {3,5}.
Path from j; = 129007« + 818380 to subfield node j; = 35387.

3-isogenous neighbour in F,?

g1 = X* +479338X3 + 920025X 2 + 93038X + 847782
g2 = 425628 X2 + 816500X 2 + 574905X + 836099
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Worked Example: SuperSolver

The list of optimal ¢'s is precomputed as L = {3,5}.
Path from j; = 129007« + 818380 to subfield node j; = 35387.

3-isogenous neighbour in F,?

g1 = X* +479338X3 + 920025X 2 + 93038X + 847782
g2 = 425628 X2 + 816500X 2 + 574905X + 836099

ged(g1, g2) = 1 = no 3-isogenous neighbour in [,
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Worked Example: SuperSolver

The list of optimal ¢'s is precomputed as L = {3,5}.
Path from j; = 129007« + 818380 to subfield node j; = 35387.

m ? 219247a+
863507

3-isogenous neighbour in F,? No.
Similarly, no 5-isogenous neighbour in F,,.
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Worked Example: SuperSolver

The list of optimal ¢'s is precomputed as L = {3,5}.
Path from j; = 129007« + 818380 to subfield node j; = 35387.

@ ; 5 489342+
219247aF 132142
863507

3-isogenous neighbour in F,?
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Worked Example: SuperSolver

The list of optimal ¢'s is precomputed as L = {3,5}.
Path from j; = 129007« + 818380 to subfield node j; = 35387.

4893420+
132142

3-isogenous neighbour in F,?

B3 (X, 4893420 + 132142) = X* + (872004a + 13960) X* + (1031755a + 822066) X2
+ (969683c; + T47785) X + 8130100 + 255391.
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Worked Example: SuperSolver

The list of optimal ¢'s is precomputed as L = {3,5}.
Path from j; = 129007« + 818380 to subfield node j; = 35387.

@ ; 5 489342+
219247aF 132142
863507

3-isogenous neighbour in F,?

g1 = X* +13960X3 + 822066 X2 + 747785X + 255391
go = 695435X3 + 1014937X2 + 890793 X + 577447

ged(g1,92) = X + 1013186 = 3-isogenous neighbour in F,
—1013186 = 35387
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Worked Example: SuperSolver

The list of optimal ¢'s is precomputed as L = {3,5}.
Path from j; = 129007« + 818380 to subfield node j; = 35387.

@ » , 4893420+ 3
219247aF 132142
863507

3 steps
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Worked Example: SuperSolver

The list of optimal ¢'s is precomputed as L = {3,5}.
Path from j> = 97589« + 660383 to subfield node j5 = 292917.

@ : , 252807 :
8674950 41011175
+ 9220256
3 steps
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Worked Example: SuperSolver

The list of optimal ¢'s is precomputed as L = {3,5}.
Path between subfield nodes j; = 35387 and j; = 292917.

658300

In total, the path has 34 3 + 5 = 11 steps.
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Concrete Complexity of Delfs—Galbraith

Solver is an optimised implementation of the Delfs—Galbraith algorithm.

Choice of ¢ = 2: Taking a step in X(Fp,2) means computing a
square root.

Square root finding in F>: Use Scott’s “Tricks of the trade’ paper
to find square roots in IF ;> with only two IF, exponentiations (and a
few F, multiplications).

Random walks in 2-isogeny graph: Depth-first search with
bounded depth.

We use Solver to find the concrete complexity of Delfs—Galbraith.

Experimentally, given a node j € F,2\[F,, the average number of I,
multiplications needed to find a path to a node j/ € F}, is

c: \/I3 : |Og2 P,
with 0.75 < ¢ < 1.05.
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Fast Subfield Root Detection

Recall to take a step in X(F,,¢) we find the roots of
d)f,p(Xajc) € IE‘p2 [X]

We want a fast way of detecting whether it has a root in F, without
finding roots.

Lemma

Let 7 : a+—> aP be the p-power Frobenius map and f a polynomial in

F2[X]. Then, gcd(f,m(f)) is the largest divisor of f defined over F,.
In particular, if

1, f hasarootinFF,

deg (ged(f, w(f))) = {

0, f does not have a root in F,,
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Fast Subfield Root Detection

Problem: In general f,7(f) € F,2[X] and we want to avoid costly
multiplications in F 2.

Observation
For polynomials fi, f, € F2[X], if

g1 = afi + bf, and g = cfy + df,

with a, b, ¢, d € F > such that ad — bc # 0 with we have gcd(f;, f2) =

ged(g1, 82).

Solution: Let o € F2 be such that F» = F,(a). For
f(X) = ®rp(X, jc), if

1 «
g1 = E(f+7r(f)), and g = §(f—7r(f)>,
then g1, g € Fp[X] and ged(f, 7(f)) = ged(g1, &2)-
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List of Optimal ¢'s

Though the inspection of the neighbours of j. in the /-isogeny graph
increases the total number of I, multiplications at each step, more nodes
are checked.

We compute the list of £'s that minimise #IF, multiplications per node
inspected.

© Determine the cost per node revealed of taking a step in the
2-isogeny graph: costy

@ Determine the cost per node inspected in the {-isogeny graph: costy.
© Determine a list L = [¢1,...,£,] of ¢; > 2 with costy < costp
@ Find the subset of L that minimises the total cost of each step:

total # of I, multiplications
cost =
total # of nodes revealed

Calculating the list of optimal £'s can be done in precomputation.
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