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Motivation

The supersingular isogeny problem is the foundational problem in
isogeny-based cryptography, conjectured to be post-quantum secure.

The security of SQISign (signature scheme) and B-SIDH (key
exchange) relies on its difficulty.

The best known classical attack against this general problem is the
Delfs–Galbraith algorithm.
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Contributions

Our contributions:

Provide an optimised implementation of the Delfs–Galbraith
algorithm: Solver.

Develop an efficient method to detect if a polynomial f (X ) ∈ Fpd [X ]
has a root in Fp.

Use this to introduce an improved attack, SuperSolver, with lower
concrete complexity.
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Elliptic Curves and j-invariants

An elliptic curve E over Fp2 (p 6= 2, 3) is a smooth curve given by the
equation

E : y2 = x3 + ax + b,

where a, b ∈ Fp2 and 4a3 + 27b2 6= 0.

We consider supersingular elliptic
curves.

We label our elliptic curves using j-invariants.

Definition

Let E : y2 = x3 + ax + b supersingular. Then, the j-invariant of E is

j(E ) = 1728
4a3

4a3 + 27b2
∈ Fp2 .
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Isogenies

Definition

Let E and E ′ be two elliptic curves, and let φ : E → E ′ be a map between
them. Then, φ is an isogeny if it is non-constant and φ(OE ) = OE ′ .

Isogenies are group homomorphisms, meaning that for P,Q ∈ E we have
φ(P ⊕E Q) = φ(P)⊕E ′ φ(Q).

For (seperable) isogenies, the degree deg(φ) = #ker(φ). We call an
isogeny of degree ` an `-isogeny.
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The Supersingular Isogeny Problem

In its most general form, the supersingular isogeny problem asks to find an
isogeny

φ : E1 −→ E2,

between two given supersingular elliptic curves E1/Fp2 and E2/Fp2 .

We do not assume:

torsion point information

degree of the isogeny

starting curve is of a special form
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The Supersingular Isogeny Graph X (F̄p, `)

Let p be a large prime, p 6 | `.
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Key Observation
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The Delfs–Galbraith Algorithm
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The Delfs–Galbraith Algorithm
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Taking a step in X (F̄p, `)

To take a self-avoiding step in X (F̄p, `), we use modular polynomials.

The modular polynomial Φ`(X ,Y ) ∈ Z[X ,Y ] is symmetric of degree N` in
both X and Y where

N` :=
n∏

i=1

(`i + 1)`ei−1i , for prime decomposition
n∏

i=1

`eii of `.

N` = `+ 1 for ` prime.

Φ`(j1, j2) = 0 ⇐⇒ j1, j2 are j-invariants of `-isogenous elliptic curves.

This tells us that the roots of Φ`(X , j) are neighbours of j in X (F̄p, `).
Reducing coefficients modp we can work with Φ`,p(X ,Y ) ∈ Fp[X ,Y ].
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Concrete Complexity of Delfs–Galbraith

We use our optimised implementation of the Delfs–Galbraith algorithm,
Solver, to determine the concrete complexity of the first (bottleneck) step.

Experimentally, given a node j ∈ Fp2\Fp, the average number of Fp

multiplications needed to find a path to a node j ′ ∈ Fp is

c · √p · log2 p,

with 0.75 ≤ c ≤ 1.05.

Maria Corte-Real Santos (UCL) Accelerating the Delfs–Galbraith Algorithm CRYPTO 2022 12 / 26



Concrete Complexity of Delfs–Galbraith

We use our optimised implementation of the Delfs–Galbraith algorithm,
Solver, to determine the concrete complexity of the first (bottleneck) step.

Experimentally, given a node j ∈ Fp2\Fp, the average number of Fp

multiplications needed to find a path to a node j ′ ∈ Fp is

c · √p · log2 p,

with 0.75 ≤ c ≤ 1.05.

Maria Corte-Real Santos (UCL) Accelerating the Delfs–Galbraith Algorithm CRYPTO 2022 12 / 26



SuperSolver Overview

SuperSolver is a new attack that improves on the concrete complexity of
the Delfs–Galbraith algorithm.

It changes the first step: the subfield
search.

Key Observation

At each step, the precise values of the `-isogenous neighbours do not need
to be known, only whether it lies in Fp.

At each step, we want to know if the current node jc is `-isogenous to a
j ∈ Fp.
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SuperSolver Overview

At each step of the random walk in X (F̄p, 2), SuperSolver inspects the
`-isogeny graph with fast subfield root detection for ` in a carefully chosen
set, to efficiently detect whether jc has an `-isogenous neighbour in Fp.
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Fast Subfield Root Detection

We give a fast way of detecting whether it has a root in Fp without
finding roots.

Lemma

Let π : a 7→ ap be the p-power Frobenius map and f a polynomial in
Fp2 [X ].

If deg
(

gcd(f , π(f ))
)

= 1, f has a root in Fp.

If deg
(

gcd(f , π(f ))
)

= 0, f does not have a root in Fp.

We also show how to transform f , π(f ) ∈ Fp2 [X ] to give g1, g2 ∈ Fp[X ]
with the same gcd and avoid all costly multiplications in Fp2 .
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List of Optimal `’s

Though the inspection of the neighbours of jc in the `-isogeny graph
increases the total number of Fp multiplications at each step, more nodes
are checked.
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We compute the list of optimal `’s to minimise the number of Fp

multiplications per node revealed.
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List of Optimal `’s

Though the inspection of the neighbours of jc in the `-isogeny graph
increases the total number of Fp multiplications at each step, more nodes
are checked.

We compute the list of optimal `’s to minimise the number of Fp

multiplications per node revealed. The key is that calculating the list of
optimal `’s can be done in precomputation.
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Results

Experiments on small primes and many j-invariants.

SuperSolver finds
a subfield node with much fewer (on average, half) Fp multiplications and
by visiting less nodes.

Experiments on cryptographic sized primes and one j-invariant. We
ran SuperSolver and Solver until the number of Fp multiplications used
exceeded 108, recording the total number of nodes covered.
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Results

Experiments on small primes and many j-invariants. SuperSolver finds
a subfield node with much fewer (on average, half) Fp multiplications and
by visiting less nodes.

Example: For p = 224 − 3, averaging over 5000 pseudo-random
supersingular j-invarants in Fp2 , we get:

Solver used 112878 Fp multiplications and walked on 1897 nodes.

SuperSolver used 53900 Fp multiplications and walked on 318 nodes.

Experiments on cryptographic sized primes and one j-invariant. We
ran SuperSolver and Solver until the number of Fp multiplications used
exceeded 108, recording the total number of nodes covered.
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Results

Experiments on small primes and many j-invariants. SuperSolver finds
a subfield node with much fewer (on average, half) Fp multiplications and
by visiting less nodes.

Experiments on cryptographic sized primes and one j-invariant. We
ran SuperSolver and Solver until the number of Fp multiplications used
exceeded 108, recording the total number of nodes covered.

Examples:

For p = 250 − 27, SuperSolver covers between 3 and 4 times the
number of nodes that Solver does.

For p = 2800 − 105, SuperSolver covers between 18 and 19 times the
number of nodes.
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Conclusions

What does this mean for isogeny-based cryptography?

We improve the concrete complexity of Delfs–Galbraith - asymptotic
complexity is unchanged.

Affects schemes such as B-SIDH and SQISign, which have
Delfs–Galbraith as their best attack.

For more details, see our full paper at eprint/2021/1488
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Additional Slides
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Worked Example

Let p = 220 − 3. Sample our start and end node:

Start Node: j1 = 129007α + 818380
End Node: j2 = 97589α + 660383
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Worked Example: Solver

Path from j1 = 129007α + 818380 to subfield node.
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Worked Example: Solver

Path from j1 = 129007α + 818380 to subfield node j ′1 = 760776.
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Worked Example: Solver

Path from j2 = 97589α + 660383 to subfield node.
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Worked Example: Solver

Path from j2 = 97589α + 660383 to subfield node j ′2 = 35387.
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Worked Example: Solver

Path between subfield nodes j ′1 = 760776 and j ′2 = 35387.

In total, the path has 21 + 21 + 8 = 50 steps.
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Worked Example: SuperSolver

The list of optimal `’s is precomputed as L = {3, 5}.
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Worked Example: SuperSolver

The list of optimal `’s is precomputed as L = {3, 5}.
Path from j2 = 97589α + 660383 to subfield node j ′2 = 292917.
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Worked Example: SuperSolver

The list of optimal `’s is precomputed as L = {3, 5}.
Path between subfield nodes j ′1 = 35387 and j ′2 = 292917.

In total, the path has 3 + 3 + 5 = 11 steps.
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Concrete Complexity of Delfs–Galbraith

Solver is an optimised implementation of the Delfs–Galbraith algorithm.

Choice of ` = 2: Taking a step in X (Fp, 2) means computing a
square root.

Square root finding in Fp2 : Use Scott’s ‘Tricks of the trade’ paper
to find square roots in Fp2 with only two Fp exponentiations (and a
few Fp multiplications).

Random walks in 2-isogeny graph: Depth-first search with
bounded depth.

We use Solver to find the concrete complexity of Delfs–Galbraith.

Experimentally, given a node j ∈ Fp2\Fp, the average number of Fp

multiplications needed to find a path to a node j ′ ∈ Fp is

c · √p · log2 p,

with 0.75 ≤ c ≤ 1.05.
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Fast Subfield Root Detection

Recall to take a step in X (F̄p, `) we find the roots of

Φ`,p(X , jc) ∈ Fp2 [X ].

We want a fast way of detecting whether it has a root in Fp without
finding roots.

Lemma

Let π : a 7→ ap be the p-power Frobenius map and f a polynomial in
Fp2 [X ]. Then, gcd(f , π(f )) is the largest divisor of f defined over Fp.
In particular, if

deg
(

gcd(f , π(f ))
)

=

{
1, f has a root in Fp

0, f does not have a root in Fp

.
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Fast Subfield Root Detection

Problem: In general f , π(f ) ∈ Fp2 [X ] and we want to avoid costly
multiplications in Fp2 .

Observation

For polynomials f1, f2 ∈ Fp2 [X ], if

g1 = af1 + bf2, and g2 = cf1 + df2,

with a, b, c , d ∈ Fp2 such that ad − bc 6= 0 with we have gcd(f1, f2) =
gcd(g1, g2).

Solution: Let α ∈ Fp2 be such that Fp2 = Fp(α). For
f (X ) := Φ`,p(X , jc), if

g1 =
1

2

(
f + π(f )

)
, and g2 =

α

2

(
f − π(f )

)
,

then g1, g2 ∈ Fp[X ] and gcd(f , π(f )) = gcd(g1, g2).

We can avoid all multiplications over Fp2 : if we write the coefficients of

f (X ) as a
(1)
k + a

(2)
k α (say α2 = −1), then

g1(X ) =
n∑

k=0

a
(1)
k X k , and g2(X ) =

n∑
k=0

a
(2)
k X k .
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List of Optimal `’s

Though the inspection of the neighbours of jc in the `-isogeny graph
increases the total number of Fp multiplications at each step, more nodes
are checked.
We compute the list of `’s that minimise #Fp multiplications per node
inspected.

1 Determine the cost per node revealed of taking a step in the
2-isogeny graph: cost2

2 Determine the cost per node inspected in the `-isogeny graph: cost`.

3 Determine a list L = [`1, . . . , `n] of `i > 2 with cost` < cost2
4 Find the subset of L that minimises the total cost of each step:

cost =
total # of Fp multiplications

total # of nodes revealed
.

Calculating the list of optimal `’s can be done in precomputation.
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