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2. Salted soundness

3. Reasonable  and   ( query complexity) as functions of 𝑞𝑃 𝑞𝑉 𝑃 /𝑉  𝑛
All known (non-contrived) constructions are natural



Proof size for natural constructions

11

This work

Micali

Lower bound

CY’21

Ω(log
𝑡
𝜖

⋅ log𝑡/ 𝐥𝐨𝐠𝒒𝑷)

Ω(log
𝑡
𝜖 )

Θ((log
𝑡
𝜖 )

2

⋅ log𝑛)
Θ(log

𝑡
𝜖

⋅ log𝑡 ⋅ 𝐥𝐨𝐠𝒏)



Lower bound on ROM SubVector Commitment
Subvector commitment (SVC) – non-interactive cmt with local opening.

12



Lower bound on ROM SubVector Commitment
Subvector commitment (SVC) – non-interactive cmt with local opening.

• -binding in ROM(𝑡, 𝜖)

12



Lower bound on ROM SubVector Commitment
Subvector commitment (SVC) – non-interactive cmt with local opening.

• -binding in ROM(𝑡, 𝜖)
•  – commitment  length𝛼

12



Lower bound on ROM SubVector Commitment
Subvector commitment (SVC) – non-interactive cmt with local opening.

• -binding in ROM(𝑡, 𝜖)
•  – commitment  length𝛼
•  – length of opening  elements.𝛽(𝑚) 𝑚

12



Lower bound on ROM SubVector Commitment
Subvector commitment (SVC) – non-interactive cmt with local opening.

• -binding in ROM(𝑡, 𝜖)
•  – commitment  length𝛼
•  – length of opening  elements.𝛽(𝑚) 𝑚

Thm: Assuming rnd ETH, any “natural”  ROM-SVC of  

-binding has 

(𝑆, 𝑅) 

(𝑡, 𝜖) 𝛼 + 𝛽(log
𝑡
𝜖 ) ∈ Ω(log

𝑡
𝜖

⋅ log 𝑡/log𝑞𝑆)

12



Lower bound on ROM SubVector Commitment
Subvector commitment (SVC) – non-interactive cmt with local opening.

• -binding in ROM(𝑡, 𝜖)
•  – commitment  length𝛼
•  – length of opening  elements.𝛽(𝑚) 𝑚

Thm: Assuming rnd ETH, any “natural”  ROM-SVC of  

-binding has 

(𝑆, 𝑅) 

(𝑡, 𝜖) 𝛼 + 𝛽(log
𝑡
𝜖 ) ∈ Ω(log

𝑡
𝜖

⋅ log 𝑡/log𝑞𝑆)
• Tight bound upto  term  (  is commited string length) log n ⋅ log q𝑆 n

12



Lower bound on ROM SubVector Commitment
Subvector commitment (SVC) – non-interactive cmt with local opening.

• -binding in ROM(𝑡, 𝜖)
•  – commitment  length𝛼
•  – length of opening  elements.𝛽(𝑚) 𝑚

Thm: Assuming rnd ETH, any “natural”  ROM-SVC of  

-binding has 

(𝑆, 𝑅) 

(𝑡, 𝜖) 𝛼 + 𝛽(log
𝑡
𝜖 ) ∈ Ω(log

𝑡
𝜖

⋅ log 𝑡/log𝑞𝑆)
• Tight bound upto  term  (  is commited string length) log n ⋅ log q𝑆 n

• How to prove: SVC + PCP  SNARG  →

12



Lower bound on ROM SubVector Commitment
Subvector commitment (SVC) – non-interactive cmt with local opening.

• -binding in ROM(𝑡, 𝜖)
•  – commitment  length𝛼
•  – length of opening  elements.𝛽(𝑚) 𝑚

Thm: Assuming rnd ETH, any “natural”  ROM-SVC of  

-binding has 

(𝑆, 𝑅) 

(𝑡, 𝜖) 𝛼 + 𝛽(log
𝑡
𝜖 ) ∈ Ω(log

𝑡
𝜖

⋅ log 𝑡/log𝑞𝑆)
• Tight bound upto  term  (  is commited string length) log n ⋅ log q𝑆 n

• How to prove: SVC + PCP  SNARG  →

12



Salted Soundness

13

Malicious  prover can resample queries, and choose the answers he likes



Salted Soundness

13

𝑥 

Malicious  prover can resample queries, and choose the answers he likes



Salted Soundness

13

𝑥 

𝑦 

Malicious  prover can resample queries, and choose the answers he likes



Salted Soundness

13

𝑥 

𝑦 

Malicious  prover can resample queries, and choose the answers he likes

𝑥 



Salted Soundness

13

𝑥 

𝑦 

Malicious  prover can resample queries, and choose the answers he likes

𝑥 

𝑦′  



Salted Soundness

13

𝑥 

𝑦 

𝜋

Malicious  prover can resample queries, and choose the answers he likes

𝑥 

𝑦′  



Salted Soundness

13

𝑥 

𝑦 

𝜋

Malicious  prover can resample queries, and choose the answers he likes

𝑥 

𝑦′  



Salted Soundness

13

𝑥 

𝑦 

𝜋

Malicious  prover can resample queries, and choose the answers he likes

…
𝑥 

𝑦′  



Salted Soundness

13

𝑥 

𝑦 

𝜋

Malicious  prover can resample queries, and choose the answers he likes
• All known constructions have salted soundness

…
𝑥 

𝑦′  



Salted Soundness

13

𝑥 

𝑦 

𝜋

Malicious  prover can resample queries, and choose the answers he likes
• All known constructions have salted soundness
• Easy to construct a SNARG that has no salted soundness

…
𝑥 

𝑦′  



Salted Soundness

13

𝑥 

𝑦 

𝜋
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by uniform sampling with some probability 
𝑉 ≈ |𝜋 | /𝛾

• The probability  guesses correctly the important queries is small, yet nontrivial as 
 is small

𝑉
|𝜋 |

• This yields completeness slightly larger than the soundness error, 𝜖
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• We conclude by showing that the expected size of  is 𝐵 𝑂(ℓ/𝛾)
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