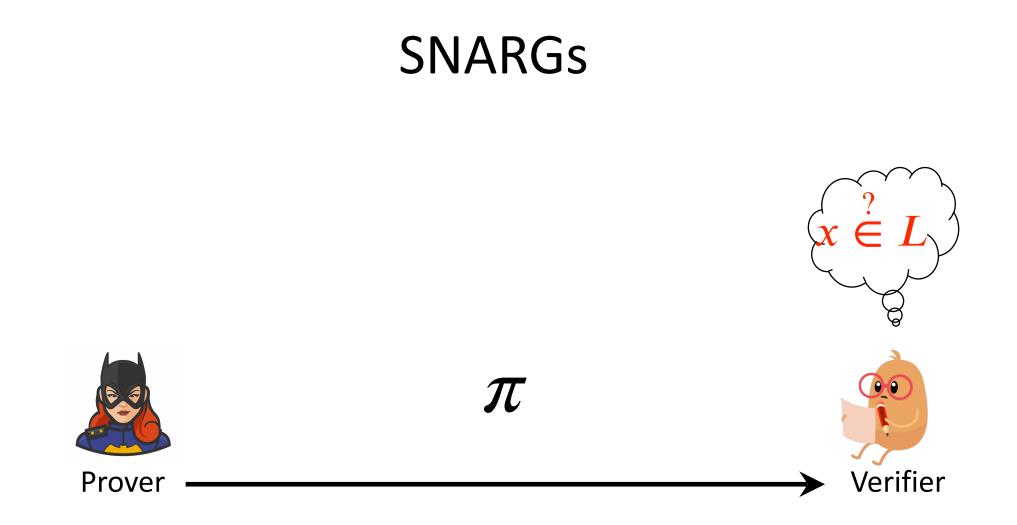
Lower Bound on SNARGs in the Random Oracle Model

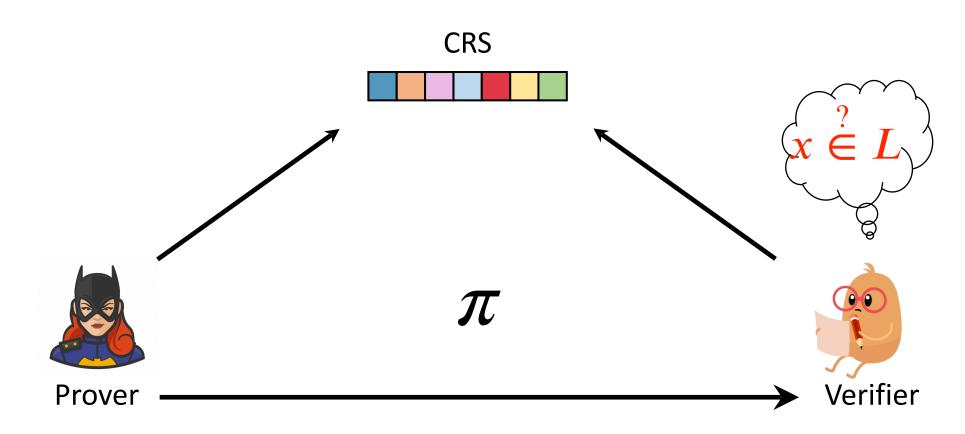
Daniel Nukrai

Joint work with Iftach Haitner & Eylon Yogev

SNARGS



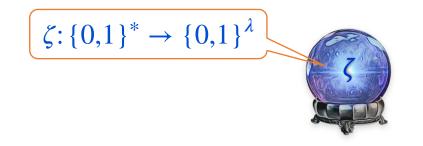
SNARGs



SNARG: Succinct Non-interactive Argument ROM: Random Oracle Model

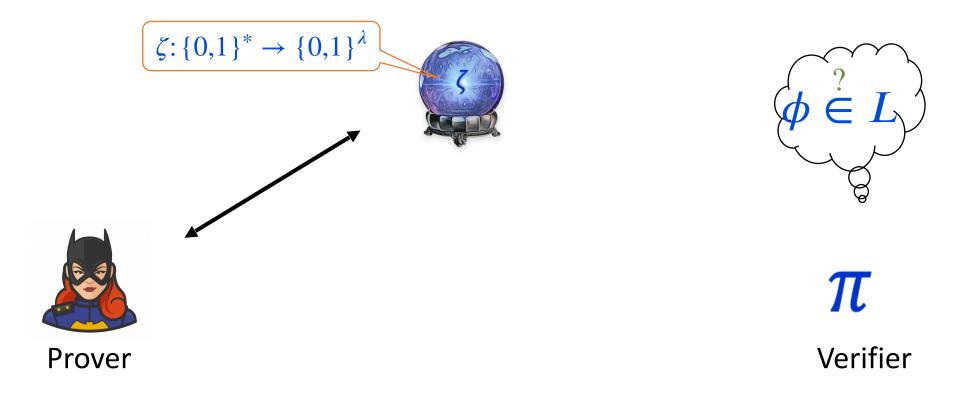
π Verifier

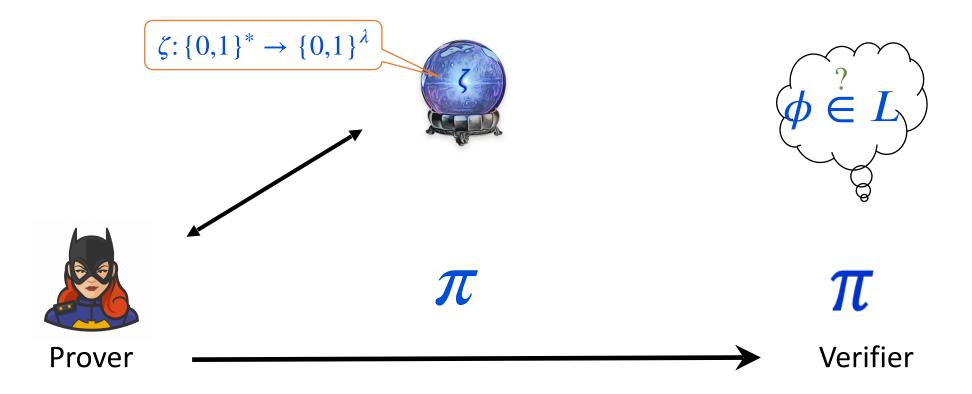
SNARG: Succinct Non-interactive Argument ROM: Random Oracle Model

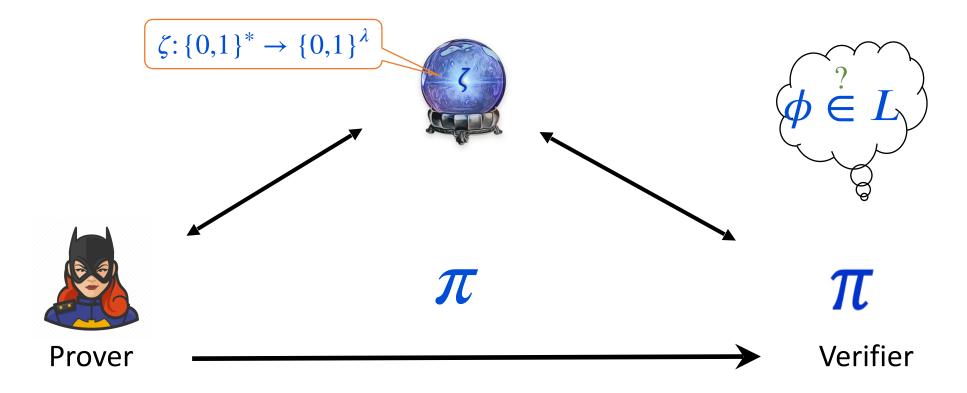


π

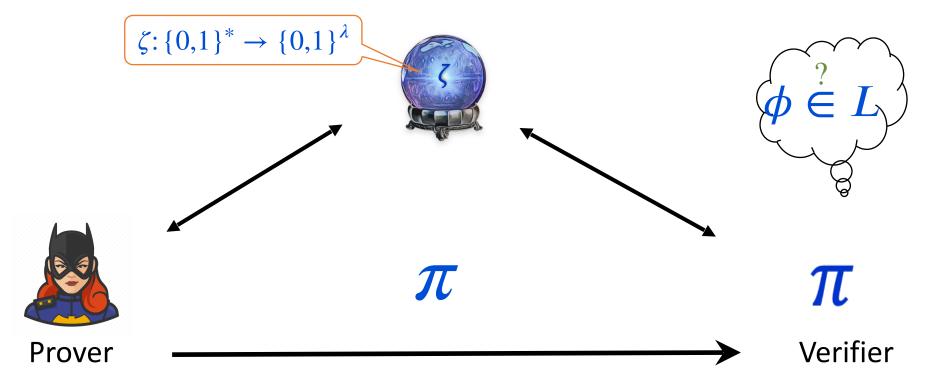
Verifier



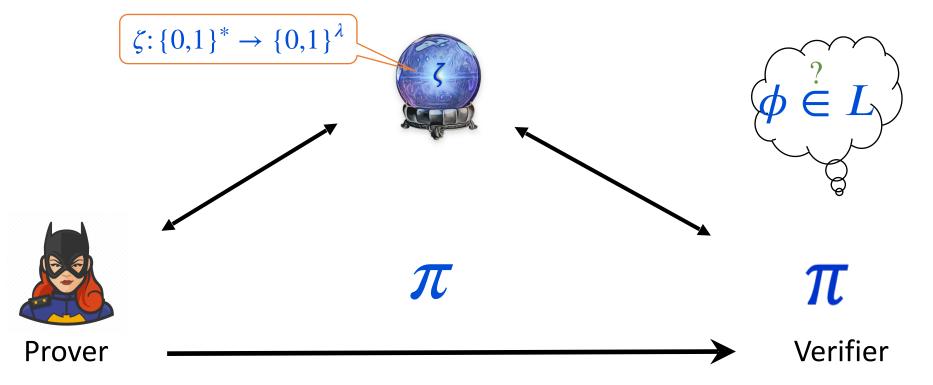




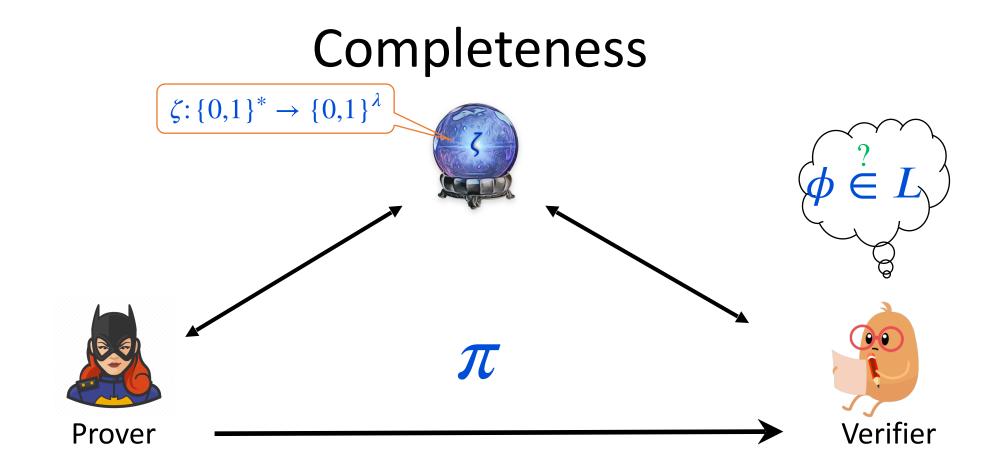
SNARG: Succinct Non-interactive Argument ROM: Random Oracle Model

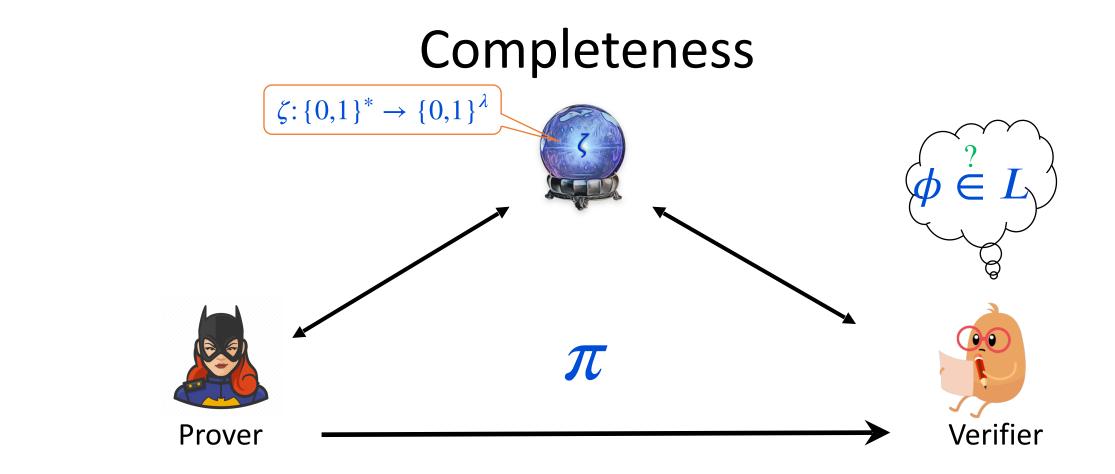


• Soundness against (computationally unbounded) query bounded provers



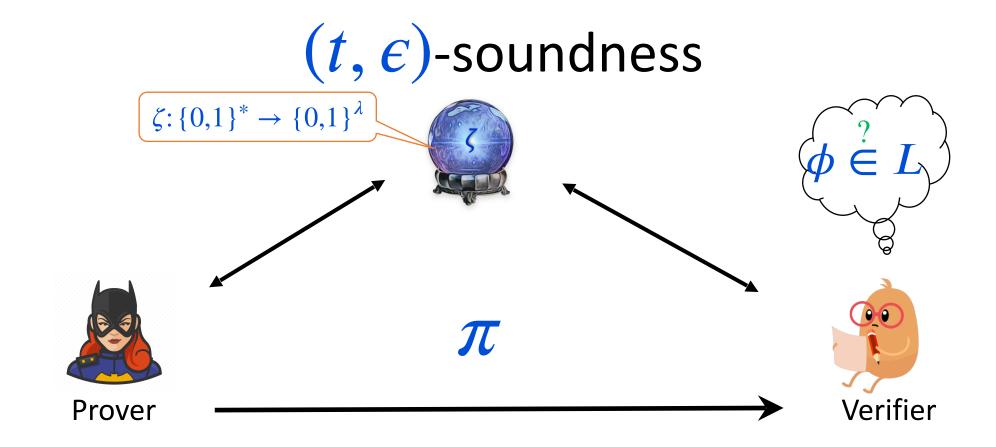
- Soundness against (computationally unbounded) query bounded provers
- $2^{\lambda} \gg \text{instance size } (n) \text{ and cheating prover running time } (t)$

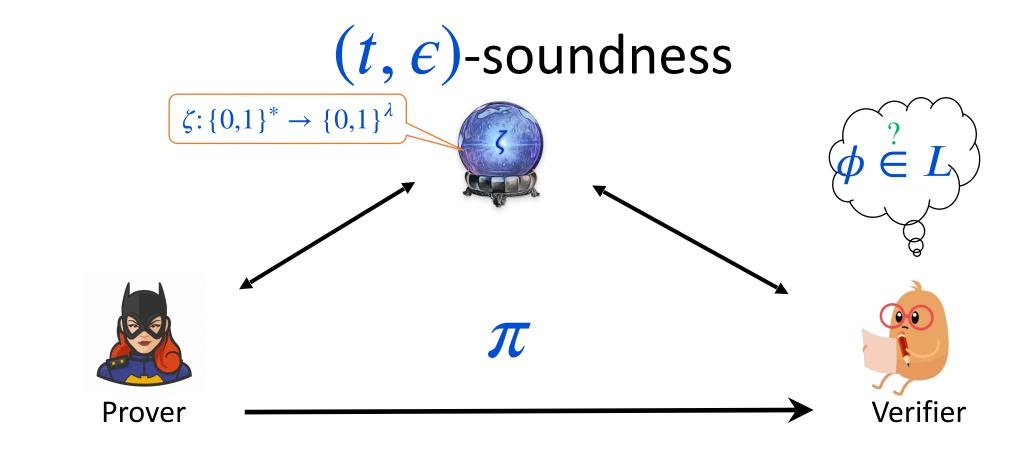




\alpha-completeness: for every $\phi \in L$:

$$\Pr_{\zeta} \Big[V^{\zeta} \big(\phi, \pi \big) = 1 : \pi \leftarrow P^{\zeta} \Big] \ge \alpha$$





 (t, ϵ) -soundness: for any $\phi \notin L$ and t-query (comp. unbounded) \tilde{P} :

$$\Pr_{\zeta} \left[V^{\zeta} (\phi, \pi) = 1 : \pi \leftarrow \widetilde{P}^{\zeta} \right] \leq \epsilon$$

- Simple information-theoretic model
- Supports many well-known constructions

- Simple information-theoretic model
- Supports many well-known constructions
- Supports many well-known lower bounds

- Simple information-theoretic model
- Supports many well-known constructions
- Supports many well-known lower bounds
- ROM huristic: ROM is instantiated via lightweight crypto (e.g. SHA-256)

- Simple information-theoretic model
- Supports many well-known constructions
- Supports many well-known lower bounds
- ROM huristic: ROM is instantiated via lightweight crypto (e.g. SHA-256)

- Simple information-theoretic model
- Supports many well-known constructions
- Supports many well-known lower bounds
- ROM huristic: ROM is instantiated via lightweight crypto (e.g. SHA-256)

Constructions in ROM huristic are:

• Fast to compute

- Simple information-theoretic model
- Supports many well-known constructions
- Supports many well-known lower bounds
- ROM huristic: ROM is instantiated via lightweight crypto (e.g. SHA-256)

- Fast to compute
- No trusted setup

- Simple information-theoretic model
- Supports many well-known constructions
- Supports many well-known lower bounds
- ROM huristic: ROM is instantiated via lightweight crypto (e.g. SHA-256)

- Fast to compute
- No trusted setup
- Potentially post-quantum ...

- Simple information-theoretic model
- Supports many well-known constructions
- Supports many well-known lower bounds
- ROM huristic: ROM is instantiated via lightweight crypto (e.g. SHA-256)

- Fast to compute
- No trusted setup
- Potentially post-quantum ...
- Widely used in practice

• Micali'94, BCS'16:

• Proof length:
$$O\left(\left(\log \frac{t}{\epsilon}\right)^2 \cdot \log n\right)$$

• # verifier queries: $\Theta\left(\log \frac{t}{\epsilon}\right)$

• Micali'94, BCS'16:

• Proof length:
$$O\left(\left(\log \frac{t}{\epsilon}\right)^2 \cdot \log n\right)$$

• # verifier queries: $\Theta\left(\log \frac{t}{\epsilon}\right)$

• Proof length:
$$O\left(\log \frac{t}{\epsilon} \cdot \log t \cdot \log n\right)$$

• # verifier queries: $\Theta\left(\log \frac{t}{\epsilon}\right)$

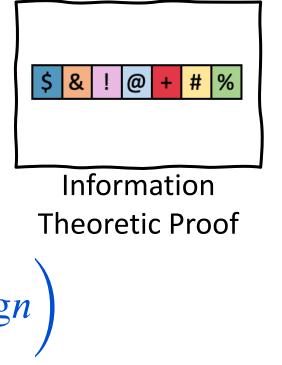
• Micali'94, BCS'16:

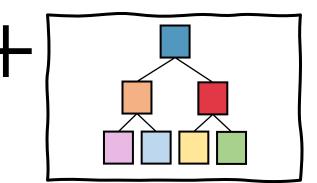
• Proof length:
$$O\left(\left(\log\frac{t}{\epsilon}\right)^2 \cdot \log n\right)$$

• # verifier queries: $\Theta\left(\log\frac{t}{\epsilon}\right)$

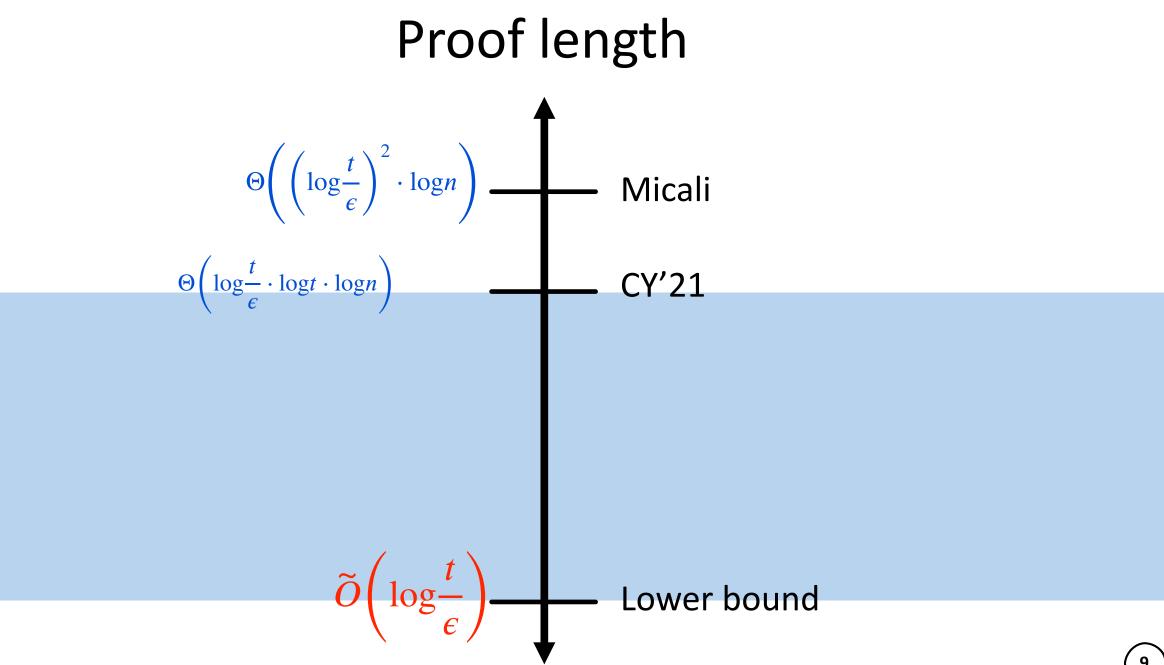
• Proof length:
$$O\left(\log \frac{t}{\epsilon} \cdot \log t \cdot \log n\right)$$

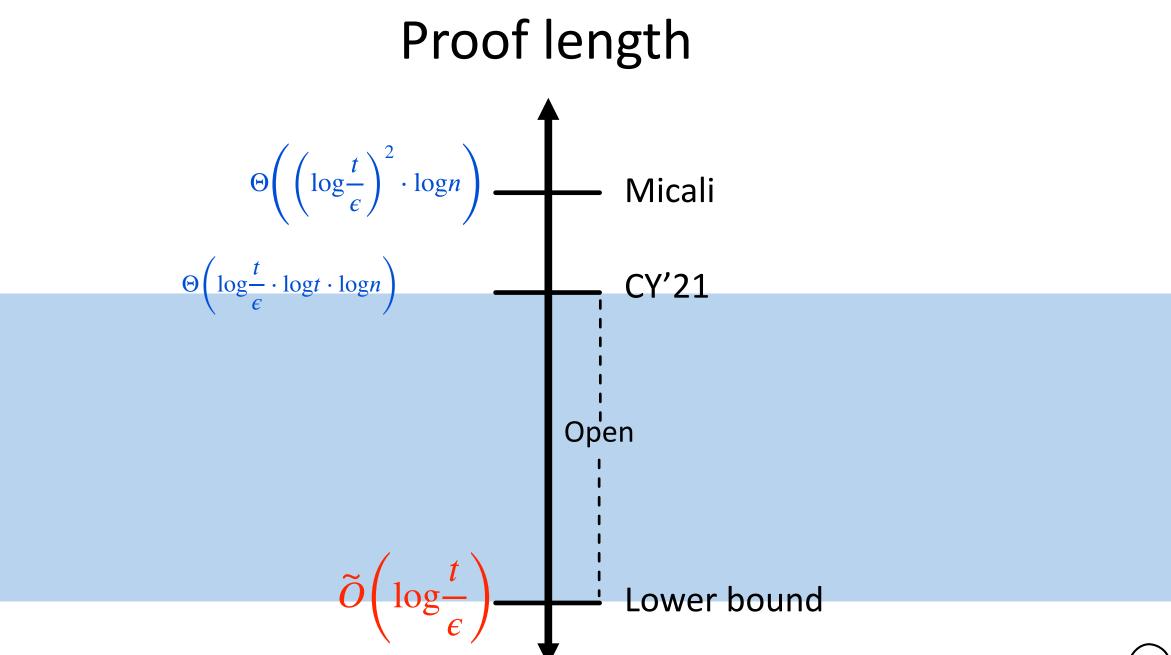
• # verifier queries: $\Theta\left(\log \frac{t}{\epsilon}\right)$





Cryptographic Commitment Scheme





Thm: Assuming rnd ETH, any "natural" ROM-SNARG (P, V) of

 (t, ϵ) -soundness has proof size $\Omega\left(\log \frac{t}{\epsilon} \cdot \log t / \log q_P\right)$

Tight up to $\log n \cdot \log q_P$ term ([CY'21] proof size is $\Theta\left(\log \frac{t}{\epsilon} \cdot \log t \cdot \log n\right)$)

Thm: Assuming rnd ETH, any "natural" ROM-SNARG (P, V) of

 (t, ϵ) -soundness has proof size $\Omega\left(\log \frac{t}{\epsilon} \cdot \log t / \log q_P\right)$

Tight up to $\log n \cdot \log q_P$ term ([CY'21] proof size is $\Theta\left(\log \frac{t}{\epsilon} \cdot \log t \cdot \log n\right)$)

Natural constructions:

Thm: Assuming rnd ETH, any "natural" ROM-SNARG (P, V) of

 (t, ϵ) -soundness has proof size $\Omega\left(\log \frac{t}{\epsilon} \cdot \log t / \log q_P\right)$

Tight up to $\log n \cdot \log q_P$ term ([CY'21] proof size is $\Theta\left(\log \frac{t}{\epsilon} \cdot \log t \cdot \log n\right)$)

Natural constructions:

1. Non-adaptive deterministic verifier

Thm: Assuming rnd ETH, any "natural" ROM-SNARG (P, V) of

 (t, ϵ) -soundness has proof size $\Omega\left(\log \frac{t}{\epsilon} \cdot \log t / \log q_P\right)$

Tight up to $\log n \cdot \log q_P$ term ([CY'21] proof size is $\Theta\left(\log \frac{t}{\epsilon} \cdot \log t \cdot \log n\right)$)

Natural constructions:

- 1. Non-adaptive deterministic verifier
- 2. Salted soundness

Our lower bound

Thm: Assuming rnd ETH, any "natural" ROM-SNARG (P, V) of

 (t, ϵ) -soundness has proof size $\Omega\left(\log \frac{t}{\epsilon} \cdot \log t / \log q_P\right)$

Tight up to $\log n \cdot \log q_P$ term ([CY'21] proof size is $\Theta\left(\log \frac{t}{\epsilon} \cdot \log t \cdot \log n\right)$)

Natural constructions:

- 1. Non-adaptive deterministic verifier
- 2. Salted soundness
- 3. Reasonable q_P and q_V (P/V query complexity) as functions of n

Our lower bound

Thm: Assuming rnd ETH, any "natural" ROM-SNARG (P, V) of

 (t, ϵ) -soundness has proof size $\Omega\left(\log \frac{t}{\epsilon} \cdot \log t / \log q_P\right)$

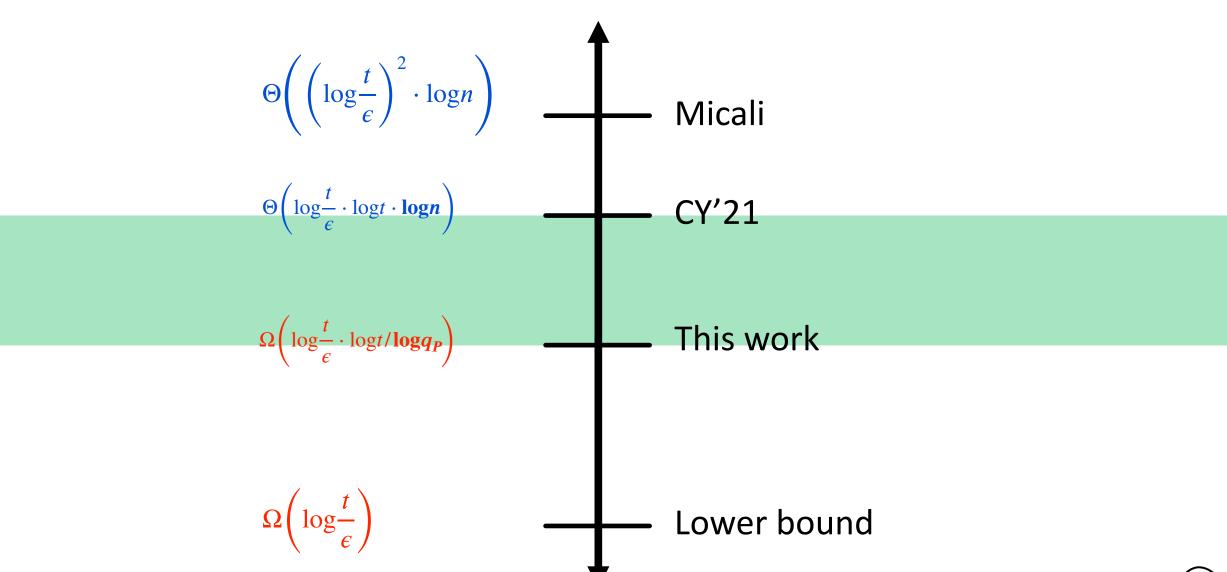
Tight up to $\log n \cdot \log q_P$ term ([CY'21] proof size is $\Theta\left(\log \frac{t}{\epsilon} \cdot \log t \cdot \log n\right)$)

Natural constructions:

- 1. Non-adaptive deterministic verifier
- 2. Salted soundness
- 3. Reasonable q_P and q_V (P/V query complexity) as functions of n

All known (non-contrived) constructions are natural

Proof size for natural constructions



Subvector commitment (SVC) – **non-interactive** cmt with local opening.

Subvector commitment (SVC) – **non-interactive** cmt with local opening.

• (t, ϵ) -binding in ROM

Subvector commitment (SVC) – **non-interactive** cmt with local opening.

- (t, ϵ) -binding in ROM
- α commitment length

Subvector commitment (SVC) – **non-interactive** cmt with local opening.

- (t, ϵ) -binding in ROM
- α commitment length
- $\beta(m)$ length of opening *m* elements.

Subvector commitment (SVC) – **non-interactive** cmt with local opening.

- (t, ϵ) -binding in ROM
- α commitment length
- $\beta(m)$ length of opening *m* elements.

Thm: Assuming rnd ETH, any "natural" ROM-SVC (S, R) of (t, ϵ) -binding has $\alpha + \beta \left(\log \frac{t}{\epsilon} \right) \in \Omega \left(\log \frac{t}{\epsilon} \cdot \log t / \log q_S \right)$

Subvector commitment (SVC) – **non-interactive** cmt with local opening.

- (t, ϵ) -binding in ROM
- α commitment length
- $\beta(m)$ length of opening *m* elements.

Thm: Assuming rnd ETH, any "natural" ROM-SVC (S, R) of (t, ϵ) -binding has $\alpha + \beta \left(\log \frac{t}{\epsilon} \right) \in \Omega \left(\log \frac{t}{\epsilon} \cdot \log t / \log q_S \right)$

• Tight bound upto $\log n \cdot \log q_S$ term (n is committed string length)

Subvector commitment (SVC) – **non-interactive** cmt with local opening.

- (t, ϵ) -binding in ROM
- α commitment length
- $\beta(m)$ length of opening *m* elements.

Thm: Assuming rnd ETH, any "natural" ROM-SVC (S, R) of (t, ϵ) -binding has $\alpha + \beta \left(\log \frac{t}{\epsilon} \right) \in \Omega \left(\log \frac{t}{\epsilon} \cdot \log t / \log q_S \right)$

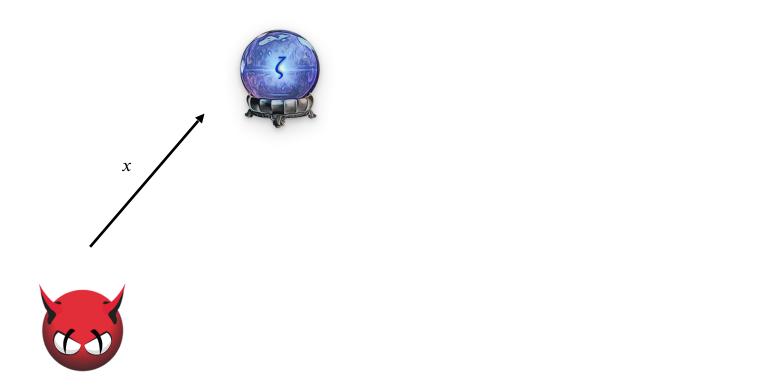
- Tight bound upto $\log n \cdot \log q_S$ term (n is committed string length)
- How to prove: SVC + PCP \rightarrow SNARG

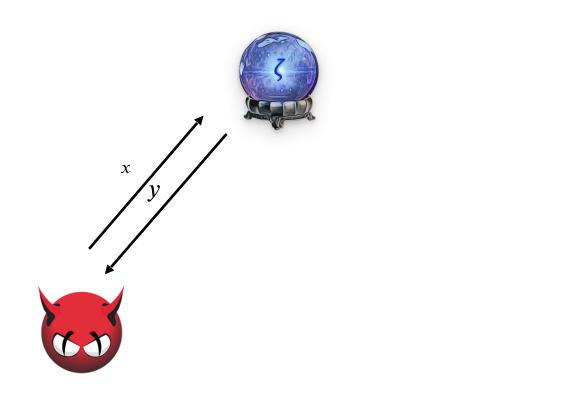
Subvector commitment (SVC) – **non-interactive** cmt with local opening.

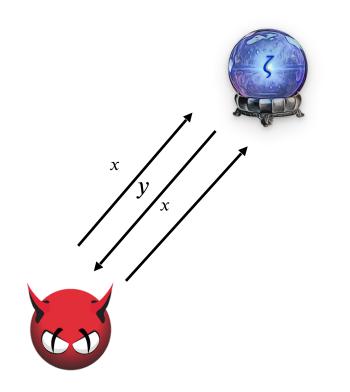
- (t, ϵ) -binding in ROM
- α commitment length
- $\beta(m)$ length of opening *m* elements.

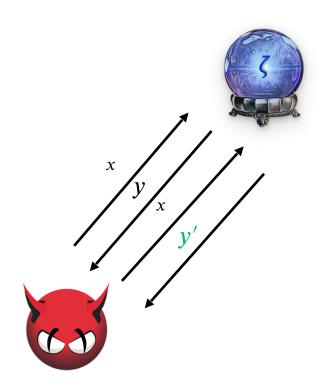
Thm: Assuming rnd ETH, any "natural" ROM-SVC (S, R) of (t, ϵ) -binding has $\alpha + \beta \left(\log \frac{t}{\epsilon} \right) \in \Omega \left(\log \frac{t}{\epsilon} \cdot \log t / \log q_S \right)$

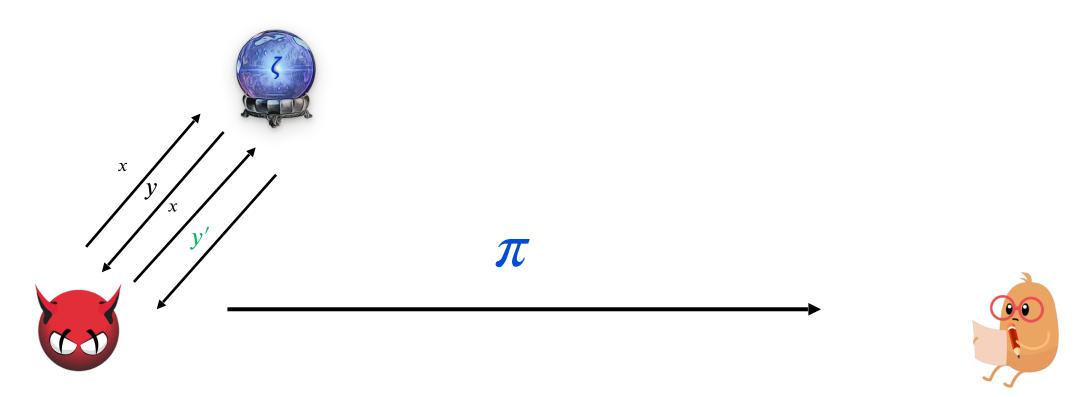
- Tight bound upto $\log n \cdot \log q_S$ term (n is committed string length)
- How to prove: SVC + PCP \rightarrow SNARG

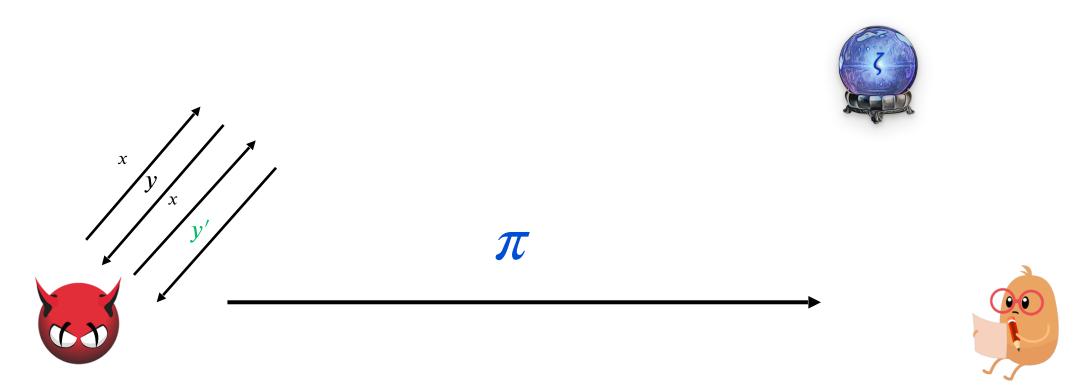


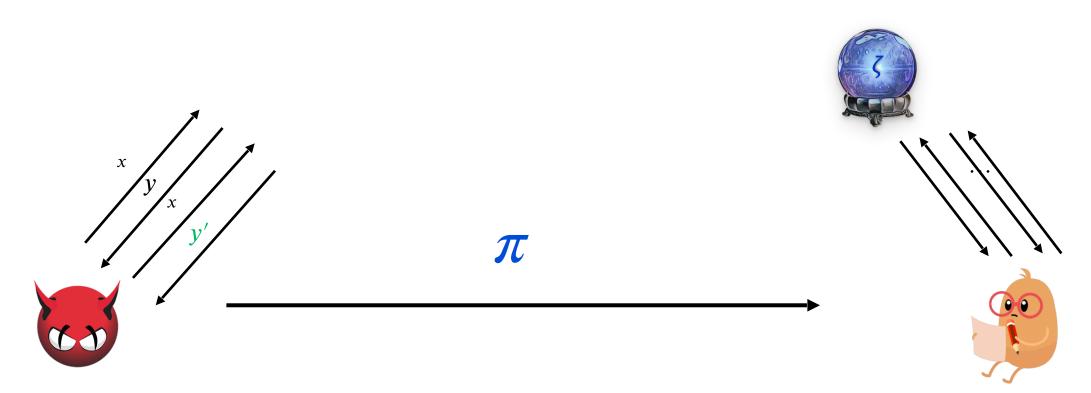


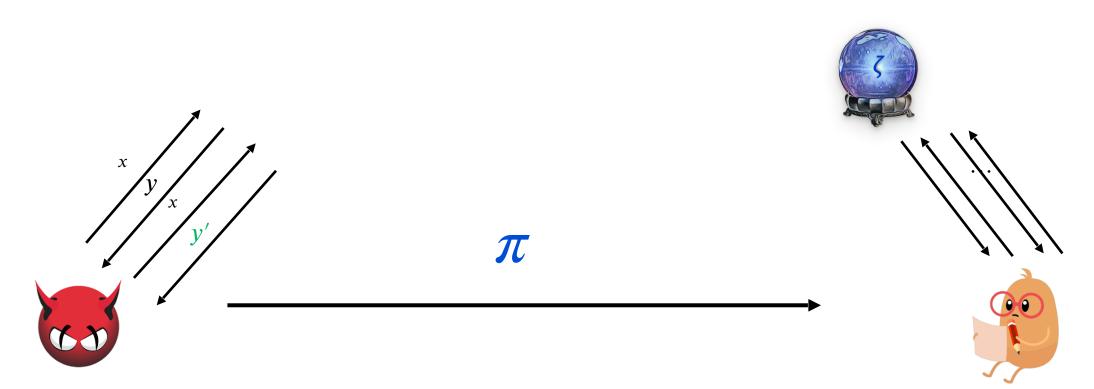






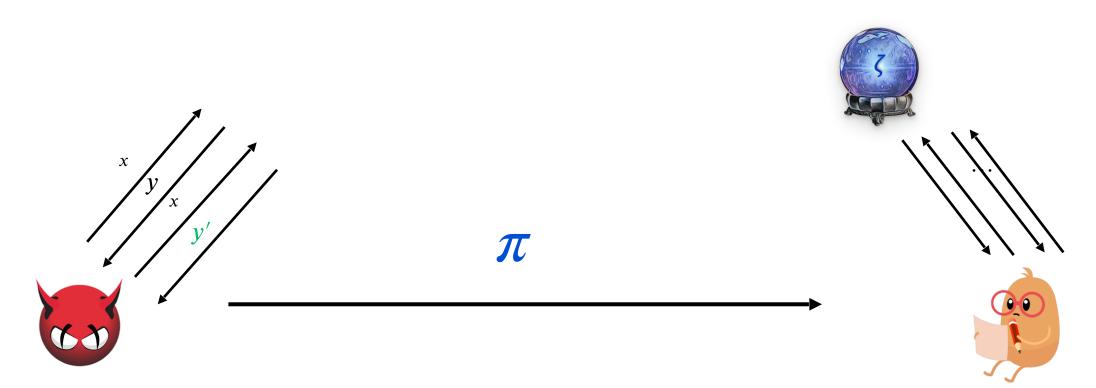




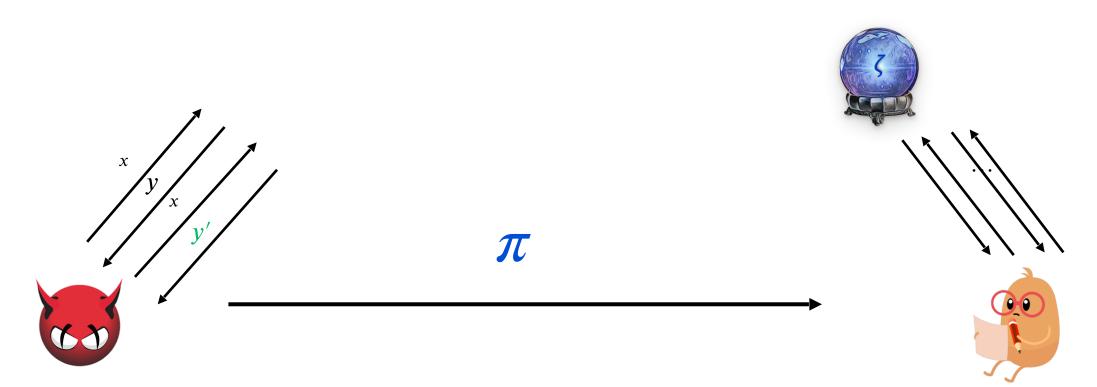


Malicious prover can resample queries, and choose the answers he likes

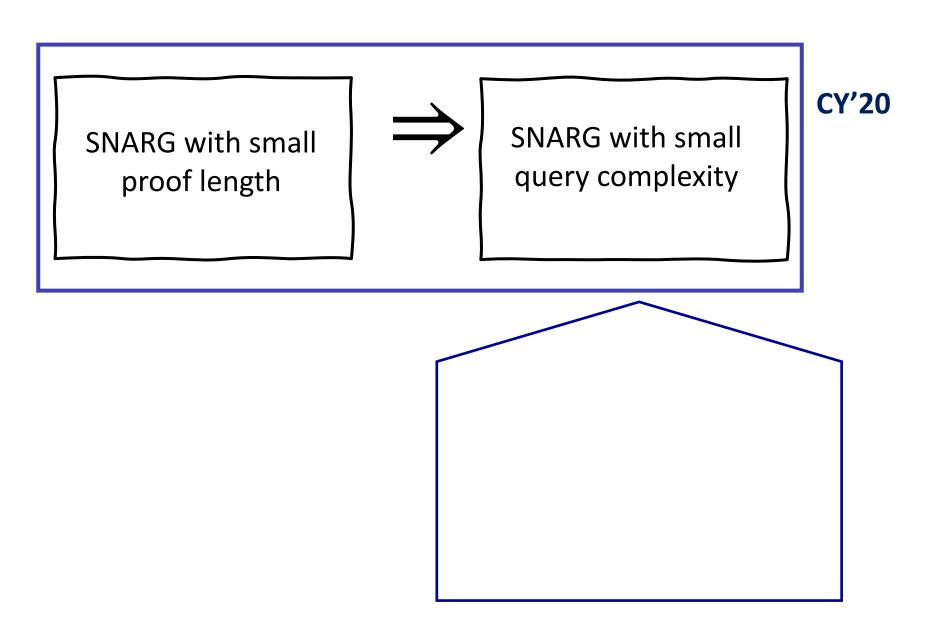
• All known constructions have salted soundness

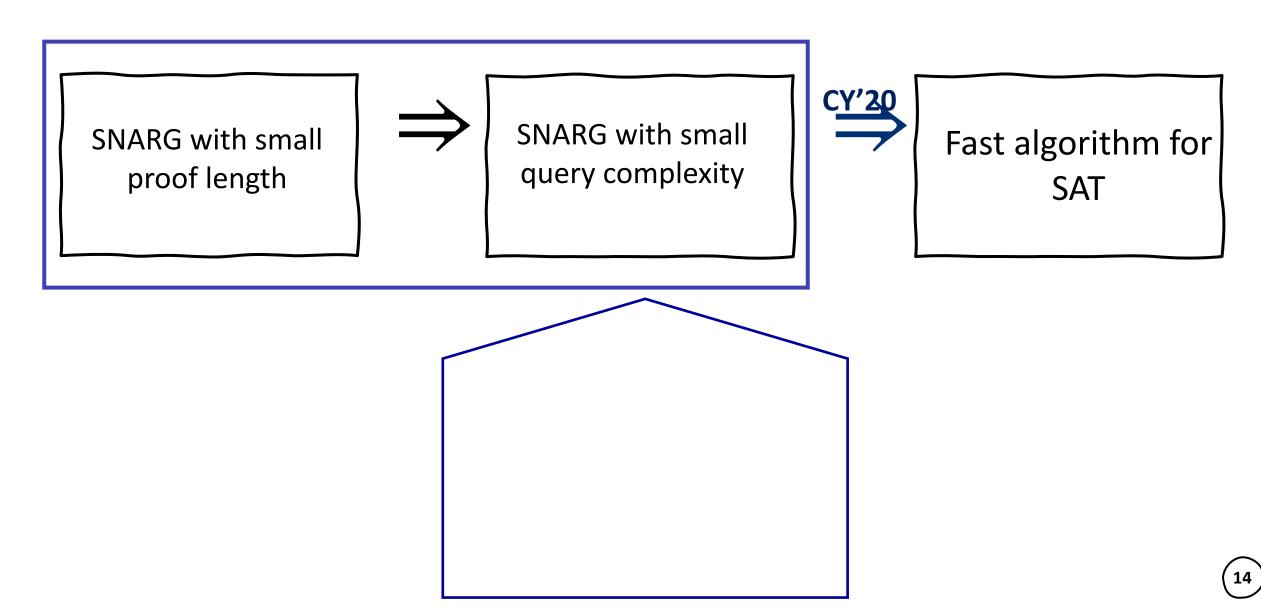


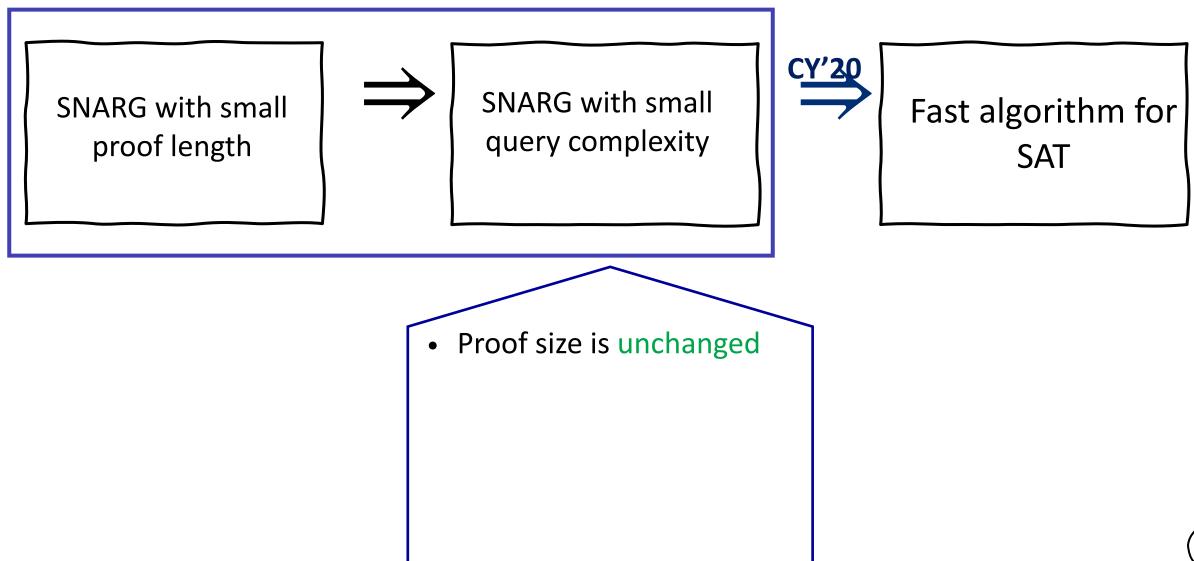
- All known constructions have salted soundness
- Easy to construct a SNARG that has no salted soundness

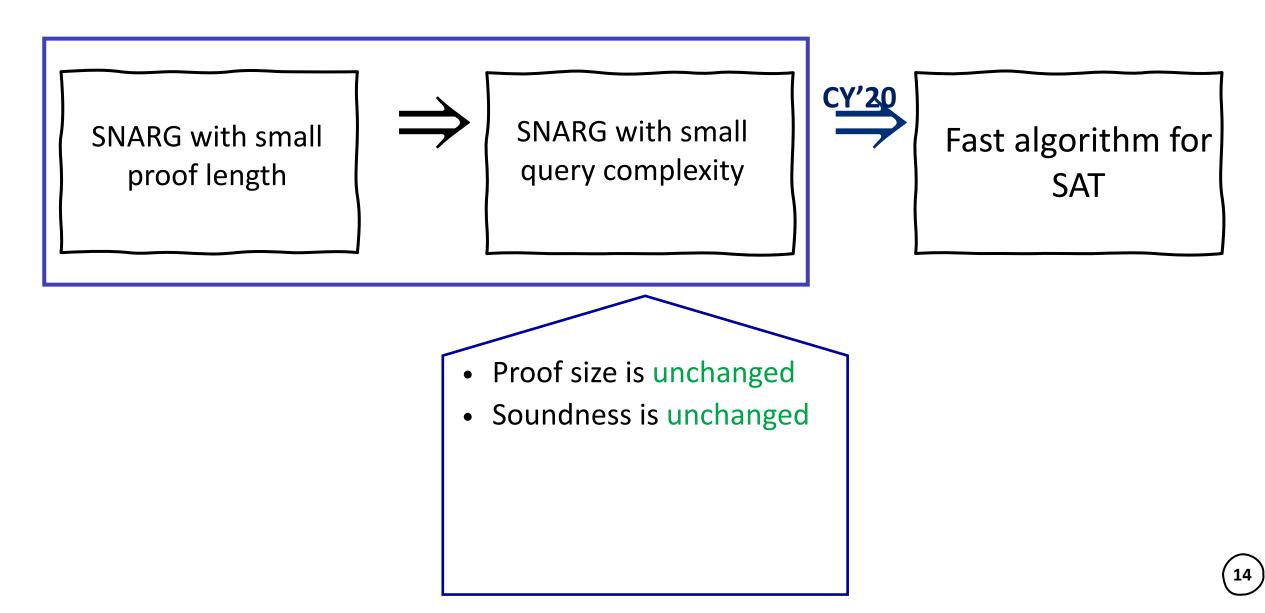


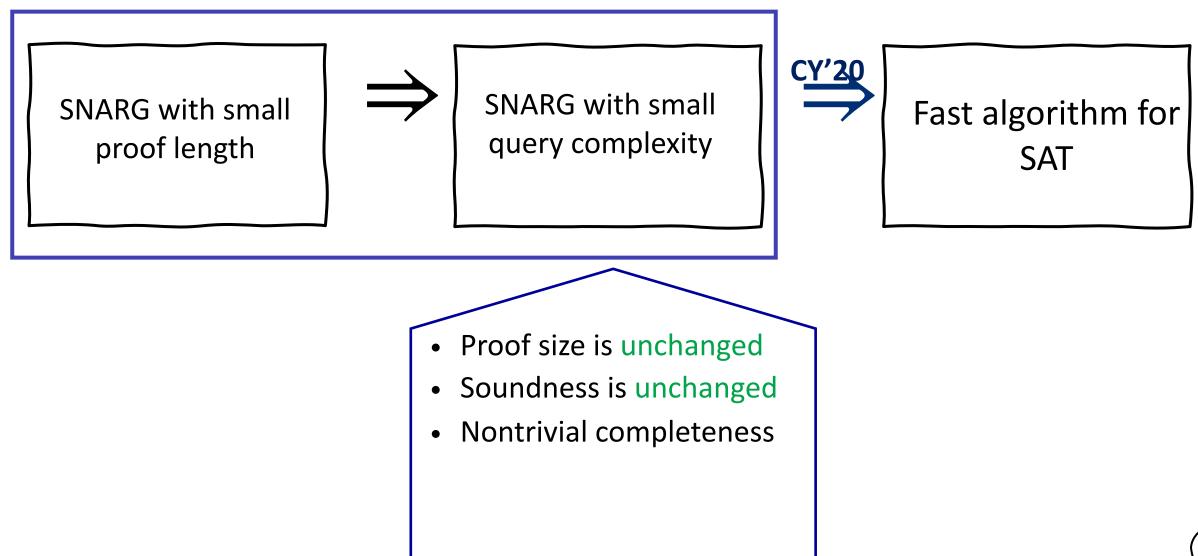
- All known constructions have salted soundness
- Easy to construct a SNARG that has no salted soundness
- Seems hard to get rid of w/o making the verifier adaptive

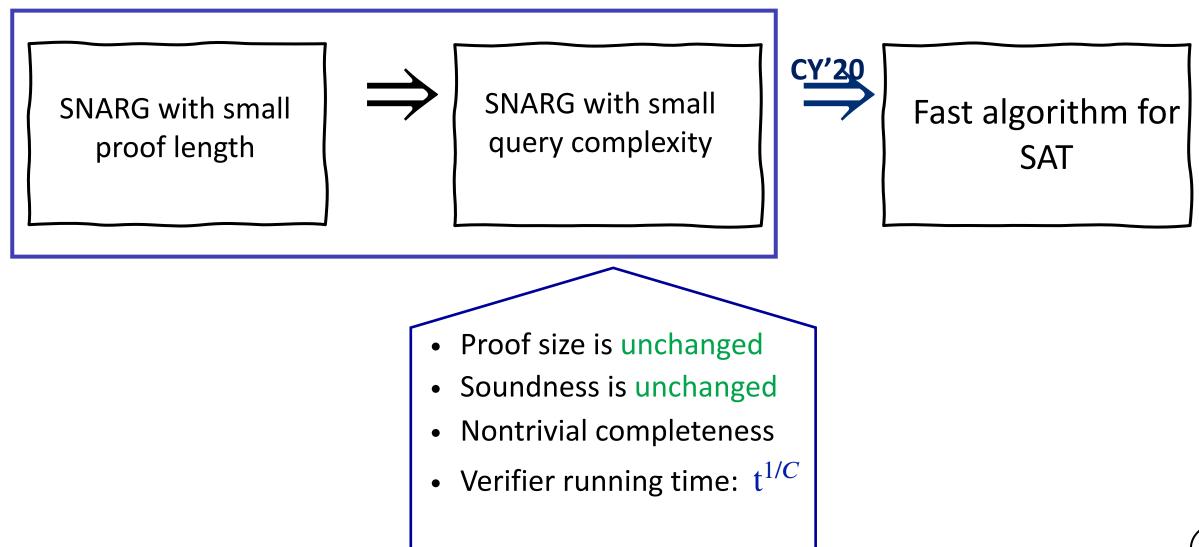


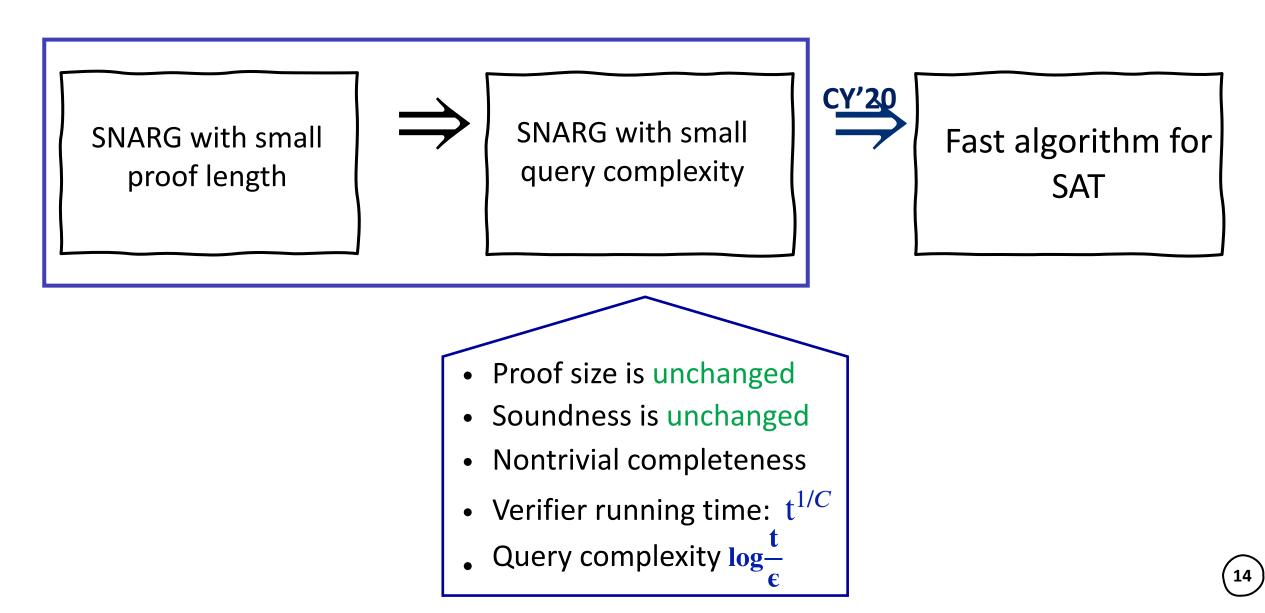


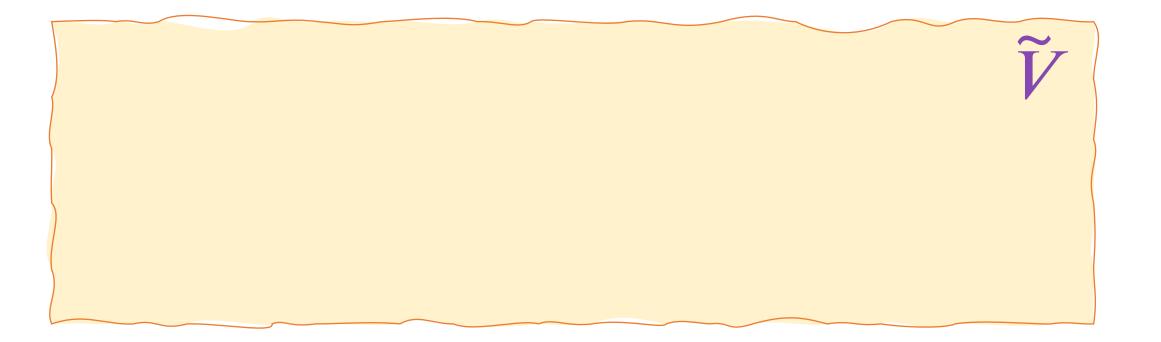


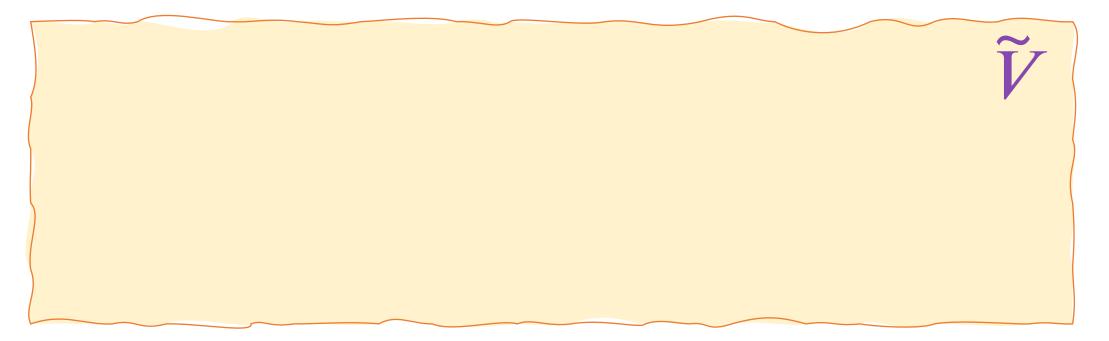


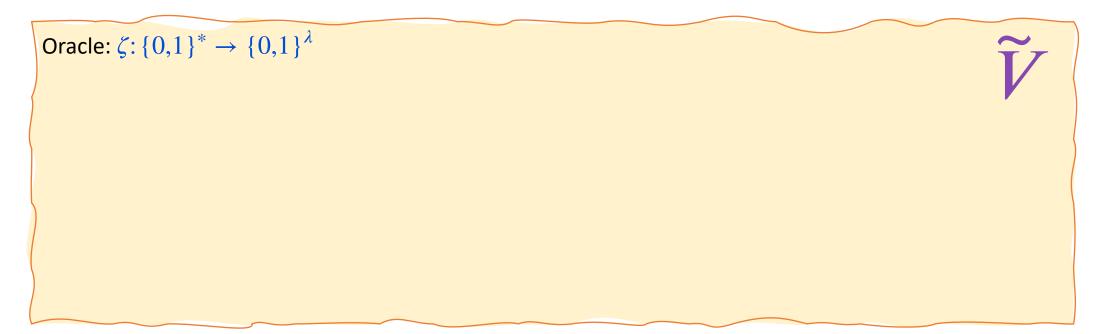


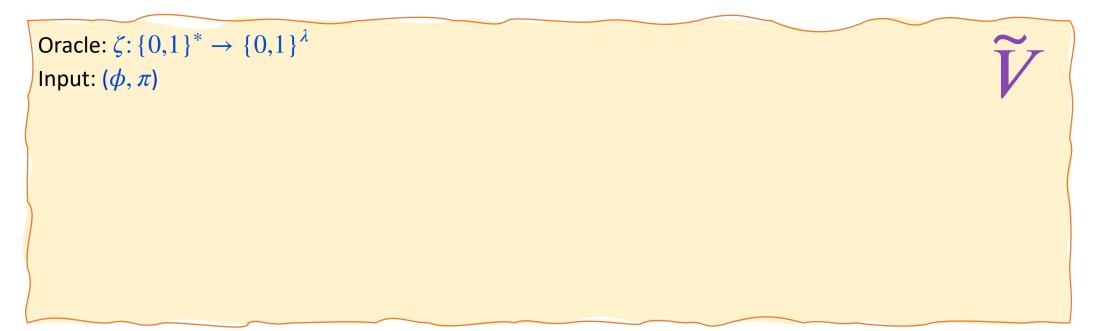


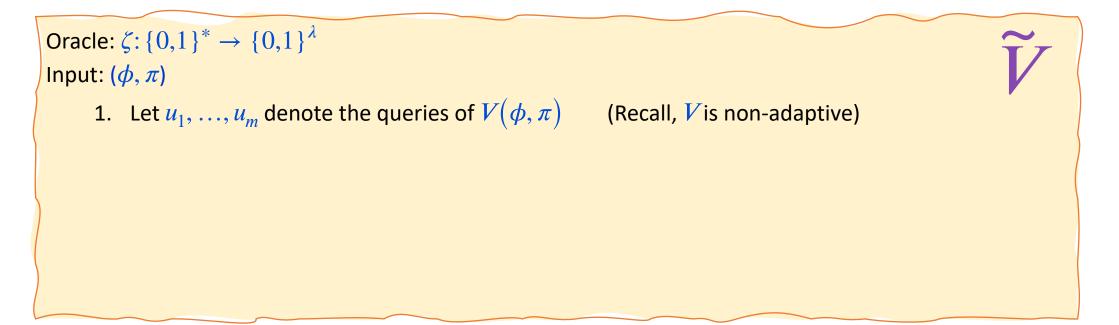


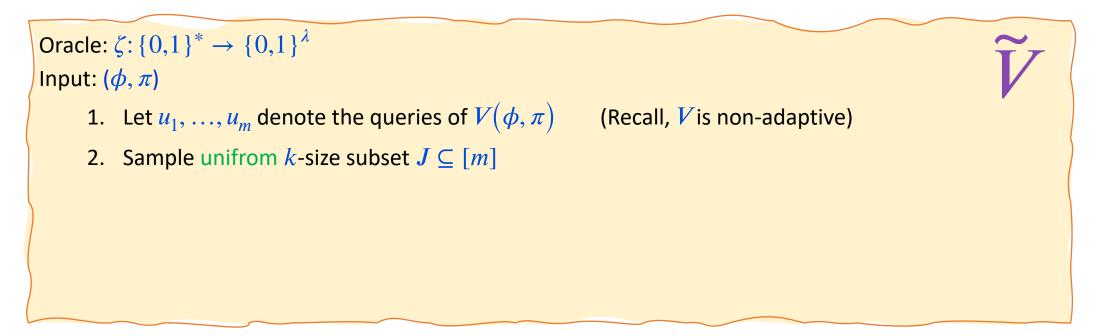


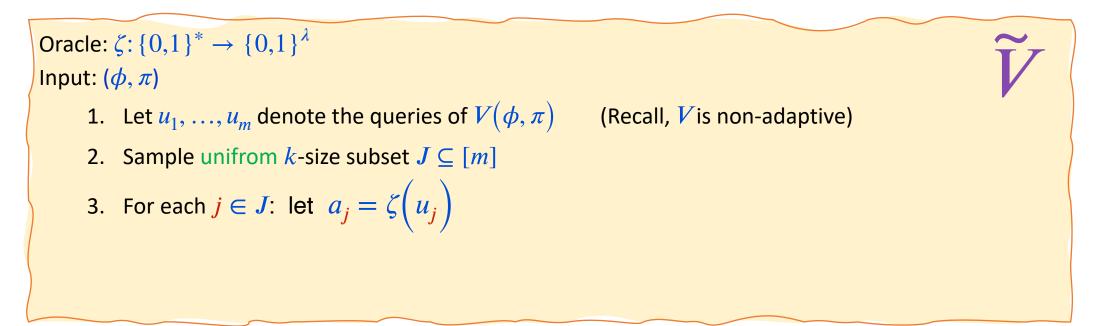




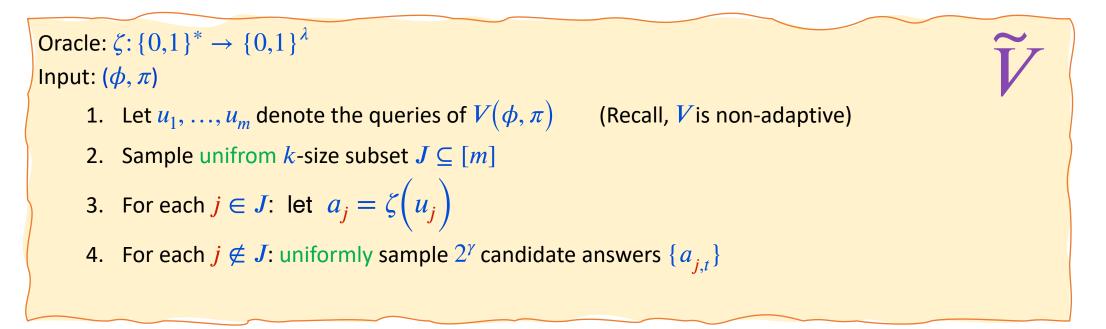




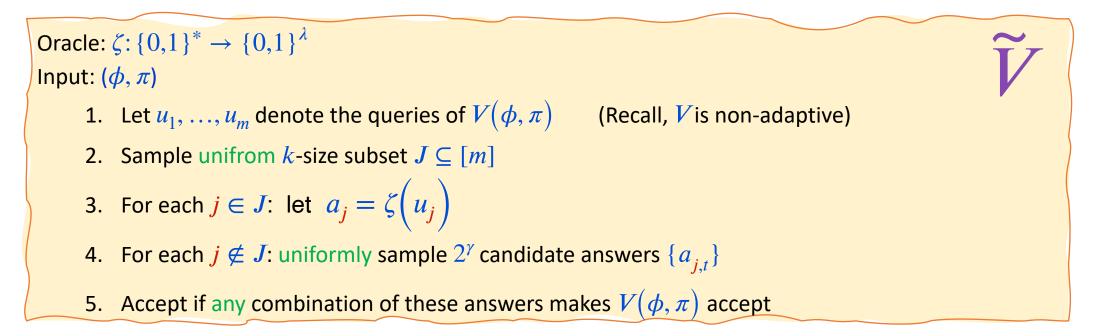




Given SNARG (P, V), we modify to \tilde{V} as follows (P is unchanged):



Given SNARG (P, V), we modify to \tilde{V} as follows (P is unchanged):



Given SNARG (P, V), we modify to \tilde{V} as follows (P is unchanged):

Oracle: $\zeta: \{0,1\}^* \to \{0,1\}^{\lambda}$ Input: (ϕ, π) 1. Let u_1, \dots, u_m denote the queries of $V(\phi, \pi)$ (Recall, V is non-adaptive) 2. Sample unifrom k-size subset $J \subseteq [m]$ 3. For each $j \in J$: let $a_j = \zeta(u_j)$ 4. For each $j \notin J$: uniformly sample 2^{γ} candidate answers $\{a_{j,t}\}$ 5. Accept if any combination of these answers makes $V(\phi, \pi)$ accept • $\gamma \approx \log t$ and $k \approx |\pi|/\gamma$ (hence, $|\pi| < \log(t/\epsilon) \cdot \log t \to q_{\tilde{V}} < \log(t/\epsilon)$)

Given SNARG (P, V), we modify to \tilde{V} as follows (P is unchanged):

Oracle: $\zeta: \{0,1\}^* \to \{0,1\}^{\lambda}$ Input: (ϕ, π) 1. Let u_1, \ldots, u_m denote the queries of $V(\phi, \pi)$ (Recall, V is non-adaptive) 2. Sample unifrom k-size subset $J \subseteq [m]$ 3. For each $j \in J$: let $a_j = \zeta(u_j)$ 4. For each $j \notin J$: uniformly sample 2^{γ} candidate answers $\{a_{j,t}\}$ 5. Accept if any combination of these answers makes $V(\phi, \pi)$ accept • $\gamma \approx \log t$ and $k \approx |\pi|/\gamma$ (hence, $|\pi| < \log(t/\epsilon) \cdot \log t \rightarrow q_{\widetilde{V}} < \log(t/\epsilon)$) • (P, V) has (t, ϵ) -salted-soundness $\rightarrow (P, \tilde{V})$ has (t, ϵ) -soundness

Given SNARG (P, V), we modify to \tilde{V} as follows (P is unchanged):

Oracle: $\zeta: \{0,1\}^* \to \{0,1\}^{\lambda}$ Input: (ϕ, π) 1. Let u_1, \ldots, u_m denote the queries of $V(\phi, \pi)$ (Recall, *V* is non-adaptive) 2. Sample unifrom k-size subset $J \subseteq [m]$ 3. For each $j \in J$: let $a_j = \zeta(u_j)$ 4. For each $j \notin J$: uniformly sample 2^{γ} candidate answers $\{a_{j,t}\}$ 5. Accept if any combination of these answers makes $V(\phi, \pi)$ accept • $\gamma \approx \log t$ and $k \approx |\pi|/\gamma$ (hence, $|\pi| < \log(t/\epsilon) \cdot \log t \rightarrow q_{\widetilde{V}} < \log(t/\epsilon)$) • (P, V) has (t, ϵ) -salted-soundness $\rightarrow (P, \tilde{V})$ has (t, ϵ) -soundness • $\left(P, \widetilde{V}\right)$ has completeness $\left(\gamma \cdot q_V \cdot \begin{pmatrix} q_V \\ k \end{pmatrix}\right)^{-1}$

Consider the two following argument systems with $\zeta: \{0,1\}^* \to \{0,1\}^{\lambda}$:

Consider the two following argument systems with $\zeta: \{0,1\}^* \to \{0,1\}^{\lambda}$:

$$y = \zeta(q_1)$$
$$\pi$$

Consider the two following argument systems with $\zeta: \{0,1\}^* \to \{0,1\}^{\lambda}$:

$$y = \zeta(q_1)$$
$$\pi$$

Local information: $\pi = \zeta(0)$ and V verifies that

 \tilde{V} accepts if $j \in J$ (*j* is the index of 0)

Short π cannot contain many such oracle answers

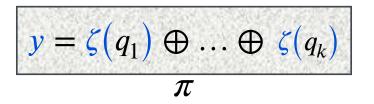
Consider the two following argument systems with $\zeta: \{0,1\}^* \to \{0,1\}^{\lambda}$:

$$y = \zeta(q_1)$$
$$\pi$$

Local information: $\pi = \zeta(0)$ and *V* verifies that

 \tilde{V} accepts if $j \in J$ (*j* is the index of 0)

Short π cannot contain many such oracle answers



Consider the two following argument systems with $\zeta: \{0,1\}^* \to \{0,1\}^{\lambda}$:

 $y = \zeta(q_1)$ π

Local information: $\pi = \zeta(0)$ and V verifies that

 \widetilde{V} accepts if $j \in J$ (*j* is the index of 0)

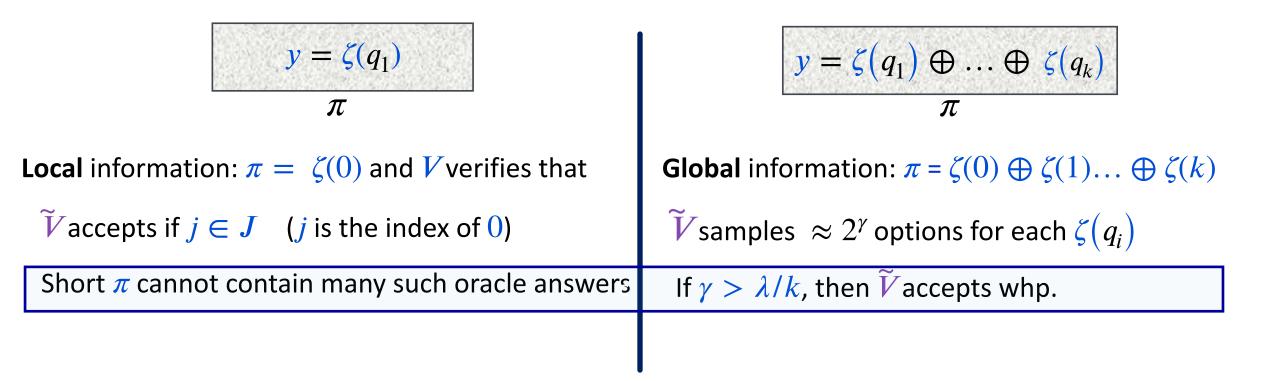
Short π cannot contain many such oracle answers

$$y = \zeta(q_1) \oplus \ldots \oplus \zeta(q_k)$$

$$\pi$$

Global information: $\pi = \zeta(0) \oplus \zeta(1)... \oplus \zeta(k)$ \widetilde{V} samples $\approx 2^{\gamma}$ options for each $\zeta(q_i)$ If $\gamma > \lambda/k$, then \widetilde{V} accepts whp.

Consider the two following argument systems with $\zeta: \{0,1\}^* \to \{0,1\}^{\lambda}$:



• The lemma shows V must make $\approx |\pi|/\gamma$ queries, and the rest can be completed by uniform sampling with some probability

- The lemma shows V must make $\approx |\pi|/\gamma$ queries, and the rest can be completed by uniform sampling with some probability
- The probability V guesses correctly the important queries is small, yet nontrivial as π is small

- The lemma shows V must make $\approx |\pi|/\gamma$ queries, and the rest can be completed by uniform sampling with some probability
- The probability V guesses correctly the important queries is small, yet nontrivial as $|\pi|$ is small
- This yields completeness slightly larger than the soundness error, ϵ

Lemma [Hitting High Entropy Events, Informal]:

Let $X = X_1, ..., X_n$ be variables over $(\{0,1\}^{\lambda})^n$, with $H(X) \ge \lambda \cdot n - \ell$

Lemma [Hitting High Entropy Events, Informal]:

Let $X = X_1, ..., X_n$ be variables over $(\{0,1\}^{\lambda})^n$, with $H(X) \ge \lambda \cdot n - \ell$

Then, $\mathbf{x} \leftarrow X$ consist of $O(\ell/\gamma)$ binding coordinates, when the rest can be completed using unifom sampling of size 2^{γ}

Lemma [Hitting High Entropy Events, Informal]:

Let $X = X_1, ..., X_n$ be variables over $(\{0,1\}^{\lambda})^n$, with $H(X) \ge \lambda \cdot n - \ell$

Then, $\mathbf{x} \leftarrow X$ consist of $O(\mathcal{C}/\gamma)$ binding coordinates, when the rest can be completed using unifom sampling of size 2^{γ}

• We first show that for $\mathbf{x} \leftarrow X$, exists $B \subseteq [n]$ such that for

Lemma [Hitting High Entropy Events, Informal]:

Let $X = X_1, ..., X_n$ be variables over $(\{0,1\}^{\lambda})^n$, with $H(X) \ge \lambda \cdot n - \ell$

Then, $\mathbf{x} \leftarrow X$ consist of $O(\mathcal{C}/\gamma)$ binding coordinates, when the rest can be completed using unifom sampling of size 2^{γ}

• We first show that for $\mathbf{x} \leftarrow X$, exists $B \subseteq [n]$ such that for

$$\mathbf{X}' = (X_{[n] \smallsetminus B} | X_B = x_B) \text{ and all } I \subseteq \left[n - \left| B \right| \right], \ \mathbf{H} \left(\mathbf{X}'_{\mathbf{I}} \right) \ge (\lambda - \gamma) \cdot \left| I \right|$$

Lemma [Hitting High Entropy Events, Informal]:

Let $X = X_1, ..., X_n$ be variables over $(\{0,1\}^{\lambda})^n$, with $H(X) \ge \lambda \cdot n - \ell$

Then, $\mathbf{x} \leftarrow X$ consist of $O(\mathcal{C}/\gamma)$ binding coordinates, when the rest can be completed using unifom sampling of size 2^{γ}

• We first show that for $\mathbf{x} \leftarrow X$, exists $B \subseteq [n]$ such that for

$$\mathbf{X}' = (X_{[n] \smallsetminus B} | X_B = x_B) \text{ and all } I \subseteq \left[n - \left| B \right| \right], \ \mathbf{H} \left(\mathbf{X}'_{\mathbf{I}} \right) \ge (\lambda - \gamma) \cdot \left| I \right|$$

• Then we show that for such B, sampling $S \leftarrow (\{0,1\}^{\gamma})^n$ intersects the support of X' with high probability

Lemma [Hitting High Entropy Events, Informal]:

Let $X = X_1, ..., X_n$ be variables over $(\{0,1\}^{\lambda})^n$, with $H(X) \ge \lambda \cdot n - \ell$

Then, $\mathbf{x} \leftarrow X$ consist of $O(\ell/\gamma)$ binding coordinates, when the rest can be completed using unifom sampling of size 2^{γ}

• We first show that for $\mathbf{x} \leftarrow X$, exists $B \subseteq [n]$ such that for

$$\mathbf{X}' = (X_{[n] \smallsetminus B} | X_B = x_B) \text{ and all } I \subseteq \left[n - \left| B \right| \right], \ \mathbf{H} \left(\mathbf{X}'_{\mathbf{I}} \right) \ge (\lambda - \gamma) \cdot \left| I \right|$$

- Then we show that for such B, sampling $S \leftarrow (\{0,1\}^{\gamma})^n$ intersects the support of X' with high probability
- We conclude by showing that the expected size of **B** is $O(\ell/\gamma)$

Given malicous P' that fools \widetilde{V} , we construct P that wins the salted soundness game:

1. **P** simulates **P**' to obtain a proof π

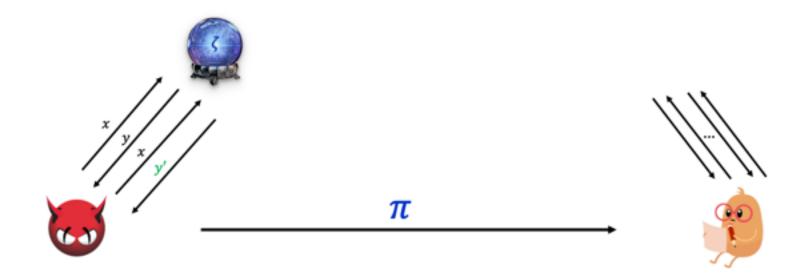
- 1. **P** simulates **P**' to obtain a proof π
- 2. Then, *P* emulates $\widetilde{V}(\pi)$

- 1. **P** simulates **P**' to obtain a proof π
- 2. Then, *P* emulates $\widetilde{V}(\pi)$
 - \widetilde{V} 's queries are emulated by queires in the game

- 1. **P** simulates **P**' to obtain a proof π
- 2. Then, *P* emulates $\widetilde{V}(\pi)$
 - \widetilde{V} 's queries are emulated by queires in the game
- 3. **P** chooses the answers that made \tilde{V} accept

- 1. **P** simulates **P**' to obtain a proof π
- 2. Then, *P* emulates $\widetilde{V}(\pi)$
 - \widetilde{V} 's queries are emulated by queires in the game
- 3. **P** chooses the answers that made \widetilde{V} accept
- Notice the similarity of the salted soundness game to the definition of \widetilde{V}

- 1. **P** simulates **P**' to obtain a proof π
- 2. Then, *P* emulates $\widetilde{V}(\pi)$
 - \widetilde{V} 's queries are emulated by queires in the game
- 3. **P** chooses the answers that made \widetilde{V} accept
- Notice the similarity of the salted soundness game to the definition of \widetilde{V}



SNARGs in the ROM:

SNARGs in the ROM:

• Have optimal size between $O\left(\log \frac{t}{\epsilon} \cdot \log t \cdot \log n\right)$ and $O\left(\log \frac{t}{\epsilon}\right)$

SNARGs in the ROM:

• Have optimal size between $O\left(\log \frac{t}{\epsilon} \cdot \log t \cdot \log n\right)$ and $O\left(\log \frac{t}{\epsilon}\right)$

• Have size $\Omega\left(\log \frac{t}{\epsilon} \cdot \log t / \log q_P\right)$ for "natural" constructions

SNARGs in the ROM:

• Have optimal size between $O\left(\log \frac{t}{\epsilon} \cdot \log t \cdot \log n\right)$ and $O\left(\log \frac{t}{\epsilon}\right)$

• Have size $\Omega\left(\log \frac{t}{\epsilon} \cdot \log t / \log q_P\right)$ for "natural" constructions

SNARGs in the ROM:

• Have optimal size between $O\left(\log \frac{t}{\epsilon} \cdot \log t \cdot \log n\right)$ and $O\left(\log \frac{t}{\epsilon}\right)$

• Have size $\Omega\left(\log \frac{t}{\epsilon} \cdot \log t/\log q_P\right)$ for "natural" constructions

Open questions:

SNARGs in the ROM:

• Have optimal size between $O\left(\log \frac{t}{\epsilon} \cdot \log t \cdot \log n\right)$ and $O\left(\log \frac{t}{\epsilon}\right)$

• Have size $\Omega\left(\log \frac{t}{\epsilon} \cdot \log t / \log q_P\right)$ for "natural" constructions

Open questions:

• General lower bound (for adaptive verifier or without salted soundness)

SNARGs in the ROM:

• Have optimal size between $O\left(\log \frac{t}{\epsilon} \cdot \log t \cdot \log n\right)$ and $O\left(\log \frac{t}{\epsilon}\right)$

• Have size $\Omega\left(\log \frac{t}{\epsilon} \cdot \log t / \log q_P\right)$ for "natural" constructions

Open questions:

- General lower bound (for adaptive verifier or without salted soundness)
- Build an improved SNARG without salted soundness

SNARGs in the ROM:

• Have optimal size between $O\left(\log \frac{t}{\epsilon} \cdot \log t \cdot \log n\right)$ and $O\left(\log \frac{t}{\epsilon}\right)$

• Have size $\Omega\left(\log \frac{t}{\epsilon} \cdot \log t / \log q_P\right)$ for "natural" constructions

Open questions:

- General lower bound (for adaptive verifier or without salted soundness)
- Build an improved SNARG without salted soundness

Thank You!