
Lower Bound on SNARGs
in the Random Oracle Model

Daniel Nukrai

Joint work with

Iftach Haitner & Eylon Yogev

Succinct Non-Interactive Arguments
SNARGS

2

SNARGs

3

VerifierProver

𝜋

𝑥
?
∈ 𝐿

SNARGs

3

VerifierProver

𝜋

𝑥
?
∈ 𝐿

CRS

SNARGs in the ROM

Prover Verifier

𝜙
?
∈ 𝐿

SNARG: Succinct Non-interactive Argument
ROM: Random Oracle Model

44

SNARGs in the ROM

Prover Verifier

𝜙
?
∈ 𝐿

𝜁:{0,1}∗ → {0,1}𝜆

SNARG: Succinct Non-interactive Argument
ROM: Random Oracle Model

44

SNARGs in the ROM

Prover Verifier

𝜙
?
∈ 𝐿

𝜁:{0,1}∗ → {0,1}𝜆

SNARG: Succinct Non-interactive Argument
ROM: Random Oracle Model

44

SNARGs in the ROM

Prover

𝜋
Verifier

𝜙
?
∈ 𝐿

𝜁:{0,1}∗ → {0,1}𝜆

SNARG: Succinct Non-interactive Argument
ROM: Random Oracle Model

44

SNARGs in the ROM

Prover

𝜋
Verifier

𝜙
?
∈ 𝐿

𝜁:{0,1}∗ → {0,1}𝜆

SNARG: Succinct Non-interactive Argument
ROM: Random Oracle Model

44

SNARGs in the ROM

Prover

𝜋
Verifier

𝜙
?
∈ 𝐿

𝜁:{0,1}∗ → {0,1}𝜆

SNARG: Succinct Non-interactive Argument
ROM: Random Oracle Model

• Soundness against (computationally unbounded) query bounded provers

44

• instance size () and cheating prover running time () 2𝜆 ≫ 𝑛 𝑡

SNARGs in the ROM

Prover

𝜋
Verifier

𝜙
?
∈ 𝐿

𝜁:{0,1}∗ → {0,1}𝜆

SNARG: Succinct Non-interactive Argument
ROM: Random Oracle Model

• Soundness against (computationally unbounded) query bounded provers

44

Completeness

VerifierProver

𝜙
?
∈ 𝐿

5

𝜋

𝜁:{0,1}∗ → {0,1}𝜆

Completeness

VerifierProver

𝜙
?
∈ 𝐿

-completeness: for every :

 

𝛼 𝜙 ∈ 𝐿

Pr
𝜁 [𝑉 𝜁(𝜙, 𝜋) = 1 :𝜋 ← 𝑃 𝜁] ≥ 𝛼

5

𝜋

𝜁:{0,1}∗ → {0,1}𝜆

-soundness(𝑡, 𝜖)

VerifierProver

𝜙
?
∈ 𝐿

6

𝜋

𝜁:{0,1}∗ → {0,1}𝜆

-soundness(𝑡, 𝜖)

VerifierProver

𝜙
?
∈ 𝐿

-soundness: for any and -query (comp. unbounded) :

 

(𝑡, 𝜖) 𝜙 ∉ 𝐿 𝑡 ~𝑃

Pr
𝜁 [𝑉 𝜁(𝜙, 𝜋) = 1 :𝜋 ← ~𝑃𝜁] ≤ 𝜖

6

𝜋

𝜁:{0,1}∗ → {0,1}𝜆

Importance of the ROM

7

Importance of the ROM

• Simple information-theoretic model

7

Importance of the ROM

• Simple information-theoretic model

• Supports many well-known constructions

7

Importance of the ROM

• Simple information-theoretic model

• Supports many well-known constructions

• Supports many well-known lower bounds

7

Importance of the ROM

• Simple information-theoretic model

• Supports many well-known constructions

• Supports many well-known lower bounds

• ROM huristic: ROM is instantiated via lightweight crypto (e.g. SHA-256)

7

Importance of the ROM

• Simple information-theoretic model

• Supports many well-known constructions

• Supports many well-known lower bounds

• ROM huristic: ROM is instantiated via lightweight crypto (e.g. SHA-256)
Constructions in ROM huristic are:

7

Importance of the ROM

• Simple information-theoretic model

• Supports many well-known constructions

• Supports many well-known lower bounds

• ROM huristic: ROM is instantiated via lightweight crypto (e.g. SHA-256)
Constructions in ROM huristic are:

• Fast to compute

7

Importance of the ROM

• Simple information-theoretic model

• Supports many well-known constructions

• Supports many well-known lower bounds

• ROM huristic: ROM is instantiated via lightweight crypto (e.g. SHA-256)
Constructions in ROM huristic are:

• Fast to compute
• No trusted setup

7

Importance of the ROM

• Simple information-theoretic model

• Supports many well-known constructions

• Supports many well-known lower bounds

• ROM huristic: ROM is instantiated via lightweight crypto (e.g. SHA-256)
Constructions in ROM huristic are:

• Fast to compute
• No trusted setup

• Potentially post-quantum …

7

Importance of the ROM

• Simple information-theoretic model

• Supports many well-known constructions

• Supports many well-known lower bounds

• ROM huristic: ROM is instantiated via lightweight crypto (e.g. SHA-256)
Constructions in ROM huristic are:

• Fast to compute
• No trusted setup

• Potentially post-quantum …
• Widely used in practice

7

Known ROM-SNARGS constructions

8

Known ROM-SNARGS constructions

8

•Micali’94, BCS’16:

•
Proof length:

• # verifier queries:

𝑂((log
𝑡
𝜖)

2

⋅ log𝑛)
Θ(log

𝑡
𝜖)

Known ROM-SNARGS constructions

8

•Micali’94, BCS’16:

•
Proof length:

• # verifier queries:

𝑂((log
𝑡
𝜖)

2

⋅ log𝑛)
Θ(log

𝑡
𝜖)

• CY’21:

• Proof length:

• # verifier queries:

𝑂(log
𝑡
𝜖

⋅ log𝑡 ⋅ log𝑛)
Θ(log

𝑡
𝜖)

Known ROM-SNARGS constructions

8

•Micali’94, BCS’16:

•
Proof length:

• # verifier queries:

𝑂((log
𝑡
𝜖)

2

⋅ log𝑛)
Θ(log

𝑡
𝜖)

+
Information

Theoretic Proof
Cryptographic

Commitment Scheme• CY’21:

• Proof length:

• # verifier queries:

𝑂(log
𝑡
𝜖

⋅ log𝑡 ⋅ log𝑛)
Θ(log

𝑡
𝜖)

Proof length

99

Micali

~𝑂(log
𝑡
𝜖) Lower bound

CY’21

Θ((log
𝑡
𝜖)

2

⋅ log𝑛)
Θ(log

𝑡
𝜖

⋅ log𝑡 ⋅ log𝑛)

Proof length

99

Micali

~𝑂(log
𝑡
𝜖) Lower bound

CY’21

Open

Θ((log
𝑡
𝜖)

2

⋅ log𝑛)
Θ(log

𝑡
𝜖

⋅ log𝑡 ⋅ log𝑛)

Our lower bound

10

Our lower bound
Thm: Assuming rnd ETH, any “natural” ROM-SNARG of

-soundness has proof size

Tight up to term ([CY’21] proof size is)

(𝑃, 𝑉)

(𝑡, 𝜖) Ω(log
𝑡
𝜖

⋅ log 𝑡/log𝑞𝑃)
log n ⋅ log q𝑃 Θ(log

𝑡
𝜖

⋅ log 𝑡 ⋅ log𝑛)

10

Our lower bound
Thm: Assuming rnd ETH, any “natural” ROM-SNARG of

-soundness has proof size

Tight up to term ([CY’21] proof size is)

(𝑃, 𝑉)

(𝑡, 𝜖) Ω(log
𝑡
𝜖

⋅ log 𝑡/log𝑞𝑃)
log n ⋅ log q𝑃 Θ(log

𝑡
𝜖

⋅ log 𝑡 ⋅ log𝑛)

10

Natural constructions:

Our lower bound
Thm: Assuming rnd ETH, any “natural” ROM-SNARG of

-soundness has proof size

Tight up to term ([CY’21] proof size is)

(𝑃, 𝑉)

(𝑡, 𝜖) Ω(log
𝑡
𝜖

⋅ log 𝑡/log𝑞𝑃)
log n ⋅ log q𝑃 Θ(log

𝑡
𝜖

⋅ log 𝑡 ⋅ log𝑛)

10

Natural constructions:

1. Non-adaptive deterministic verifier

Our lower bound
Thm: Assuming rnd ETH, any “natural” ROM-SNARG of

-soundness has proof size

Tight up to term ([CY’21] proof size is)

(𝑃, 𝑉)

(𝑡, 𝜖) Ω(log
𝑡
𝜖

⋅ log 𝑡/log𝑞𝑃)
log n ⋅ log q𝑃 Θ(log

𝑡
𝜖

⋅ log 𝑡 ⋅ log𝑛)

10

Natural constructions:

1. Non-adaptive deterministic verifier
2. Salted soundness

Our lower bound
Thm: Assuming rnd ETH, any “natural” ROM-SNARG of

-soundness has proof size

Tight up to term ([CY’21] proof size is)

(𝑃, 𝑉)

(𝑡, 𝜖) Ω(log
𝑡
𝜖

⋅ log 𝑡/log𝑞𝑃)
log n ⋅ log q𝑃 Θ(log

𝑡
𝜖

⋅ log 𝑡 ⋅ log𝑛)

10

Natural constructions:

1. Non-adaptive deterministic verifier
2. Salted soundness

3. Reasonable and (query complexity) as functions of 𝑞𝑃 𝑞𝑉 𝑃 /𝑉 𝑛

Our lower bound
Thm: Assuming rnd ETH, any “natural” ROM-SNARG of

-soundness has proof size

Tight up to term ([CY’21] proof size is)

(𝑃, 𝑉)

(𝑡, 𝜖) Ω(log
𝑡
𝜖

⋅ log 𝑡/log𝑞𝑃)
log n ⋅ log q𝑃 Θ(log

𝑡
𝜖

⋅ log 𝑡 ⋅ log𝑛)

10

Natural constructions:

1. Non-adaptive deterministic verifier
2. Salted soundness

3. Reasonable and (query complexity) as functions of 𝑞𝑃 𝑞𝑉 𝑃 /𝑉 𝑛
All known (non-contrived) constructions are natural

Proof size for natural constructions

11

This work

Micali

Lower bound

CY’21

Ω(log
𝑡
𝜖

⋅ log𝑡/ 𝐥𝐨𝐠𝒒𝑷)

Ω(log
𝑡
𝜖)

Θ((log
𝑡
𝜖)

2

⋅ log𝑛)
Θ(log

𝑡
𝜖

⋅ log𝑡 ⋅ 𝐥𝐨𝐠𝒏)

Lower bound on ROM SubVector Commitment
Subvector commitment (SVC) – non-interactive cmt with local opening.

12

Lower bound on ROM SubVector Commitment
Subvector commitment (SVC) – non-interactive cmt with local opening.

• -binding in ROM(𝑡, 𝜖)

12

Lower bound on ROM SubVector Commitment
Subvector commitment (SVC) – non-interactive cmt with local opening.

• -binding in ROM(𝑡, 𝜖)
• – commitment length𝛼

12

Lower bound on ROM SubVector Commitment
Subvector commitment (SVC) – non-interactive cmt with local opening.

• -binding in ROM(𝑡, 𝜖)
• – commitment length𝛼
• – length of opening elements.𝛽(𝑚) 𝑚

12

Lower bound on ROM SubVector Commitment
Subvector commitment (SVC) – non-interactive cmt with local opening.

• -binding in ROM(𝑡, 𝜖)
• – commitment length𝛼
• – length of opening elements.𝛽(𝑚) 𝑚

Thm: Assuming rnd ETH, any “natural” ROM-SVC of

-binding has

(𝑆, 𝑅)

(𝑡, 𝜖) 𝛼 + 𝛽(log
𝑡
𝜖) ∈ Ω(log

𝑡
𝜖

⋅ log 𝑡/log𝑞𝑆)

12

Lower bound on ROM SubVector Commitment
Subvector commitment (SVC) – non-interactive cmt with local opening.

• -binding in ROM(𝑡, 𝜖)
• – commitment length𝛼
• – length of opening elements.𝛽(𝑚) 𝑚

Thm: Assuming rnd ETH, any “natural” ROM-SVC of

-binding has

(𝑆, 𝑅)

(𝑡, 𝜖) 𝛼 + 𝛽(log
𝑡
𝜖) ∈ Ω(log

𝑡
𝜖

⋅ log 𝑡/log𝑞𝑆)
• Tight bound upto term (is commited string length) log n ⋅ log q𝑆 n

12

Lower bound on ROM SubVector Commitment
Subvector commitment (SVC) – non-interactive cmt with local opening.

• -binding in ROM(𝑡, 𝜖)
• – commitment length𝛼
• – length of opening elements.𝛽(𝑚) 𝑚

Thm: Assuming rnd ETH, any “natural” ROM-SVC of

-binding has

(𝑆, 𝑅)

(𝑡, 𝜖) 𝛼 + 𝛽(log
𝑡
𝜖) ∈ Ω(log

𝑡
𝜖

⋅ log 𝑡/log𝑞𝑆)
• Tight bound upto term (is commited string length) log n ⋅ log q𝑆 n

• How to prove: SVC + PCP SNARG →

12

Lower bound on ROM SubVector Commitment
Subvector commitment (SVC) – non-interactive cmt with local opening.

• -binding in ROM(𝑡, 𝜖)
• – commitment length𝛼
• – length of opening elements.𝛽(𝑚) 𝑚

Thm: Assuming rnd ETH, any “natural” ROM-SVC of

-binding has

(𝑆, 𝑅)

(𝑡, 𝜖) 𝛼 + 𝛽(log
𝑡
𝜖) ∈ Ω(log

𝑡
𝜖

⋅ log 𝑡/log𝑞𝑆)
• Tight bound upto term (is commited string length) log n ⋅ log q𝑆 n

• How to prove: SVC + PCP SNARG →

12

Salted Soundness

13

Malicious prover can resample queries, and choose the answers he likes

Salted Soundness

13

𝑥

Malicious prover can resample queries, and choose the answers he likes

Salted Soundness

13

𝑥

𝑦

Malicious prover can resample queries, and choose the answers he likes

Salted Soundness

13

𝑥

𝑦

Malicious prover can resample queries, and choose the answers he likes

𝑥

Salted Soundness

13

𝑥

𝑦

Malicious prover can resample queries, and choose the answers he likes

𝑥

𝑦′

Salted Soundness

13

𝑥

𝑦

𝜋

Malicious prover can resample queries, and choose the answers he likes

𝑥

𝑦′

Salted Soundness

13

𝑥

𝑦

𝜋

Malicious prover can resample queries, and choose the answers he likes

𝑥

𝑦′

Salted Soundness

13

𝑥

𝑦

𝜋

Malicious prover can resample queries, and choose the answers he likes

…
𝑥

𝑦′

Salted Soundness

13

𝑥

𝑦

𝜋

Malicious prover can resample queries, and choose the answers he likes
• All known constructions have salted soundness

…
𝑥

𝑦′

Salted Soundness

13

𝑥

𝑦

𝜋

Malicious prover can resample queries, and choose the answers he likes
• All known constructions have salted soundness
• Easy to construct a SNARG that has no salted soundness

…
𝑥

𝑦′

Salted Soundness

13

𝑥

𝑦

𝜋

Malicious prover can resample queries, and choose the answers he likes
• All known constructions have salted soundness
• Easy to construct a SNARG that has no salted soundness
• Seems hard to get rid of w/o making the verifier adaptive

…
𝑥

𝑦′

Short SNARGS to Fast Algorithms

14

SNARG with small
query complexity

⇒SNARG with small
proof length

CY’20

Short SNARGS to Fast Algorithms

14

SNARG with small
query complexity

⇒ ⇒ Fast algorithm for
SAT

SNARG with small
proof length

CY’20

Short SNARGS to Fast Algorithms

14

SNARG with small
query complexity

⇒ ⇒ Fast algorithm for
SAT

SNARG with small
proof length

CY’20

• Proof size is unchanged

Short SNARGS to Fast Algorithms

14

SNARG with small
query complexity

⇒ ⇒ Fast algorithm for
SAT

SNARG with small
proof length

CY’20

• Proof size is unchanged
• Soundness is unchanged

Short SNARGS to Fast Algorithms

14

SNARG with small
query complexity

⇒ ⇒ Fast algorithm for
SAT

SNARG with small
proof length

CY’20

• Proof size is unchanged
• Soundness is unchanged
• Nontrivial completeness

Short SNARGS to Fast Algorithms

14

SNARG with small
query complexity

⇒ ⇒ Fast algorithm for
SAT

SNARG with small
proof length

CY’20

• Proof size is unchanged
• Soundness is unchanged
• Nontrivial completeness

• Verifier running time: t1/𝐶

Short SNARGS to Fast Algorithms

14

SNARG with small
query complexity

⇒ ⇒ Fast algorithm for
SAT

SNARG with small
proof length

CY’20

• Proof size is unchanged
• Soundness is unchanged
• Nontrivial completeness

• Verifier running time: t1/𝐶

• Query complexity 𝐥𝐨𝐠
𝐭
𝛜

Short SNARGs to Low-query SNARGs

~𝑉

15

Short SNARGs to Low-query SNARGs
Given SNARG , we modify to as follows (is unchanged):(𝑃, 𝑉) ~𝑉 𝑃

~𝑉

15

Short SNARGs to Low-query SNARGs
Given SNARG , we modify to as follows (is unchanged):(𝑃, 𝑉) ~𝑉 𝑃

Oracle: 𝜁:{0,1}∗ → {0,1}𝜆 ~𝑉

15

Short SNARGs to Low-query SNARGs
Given SNARG , we modify to as follows (is unchanged):(𝑃, 𝑉) ~𝑉 𝑃

Oracle: 𝜁:{0,1}∗ → {0,1}𝜆

Input: ()𝜙, 𝜋
~𝑉

15

Short SNARGs to Low-query SNARGs
Given SNARG , we modify to as follows (is unchanged):(𝑃, 𝑉) ~𝑉 𝑃

Oracle: 𝜁:{0,1}∗ → {0,1}𝜆

Input: ()𝜙, 𝜋
1. Let denote the queries of (Recall, is non-adaptive)𝑢1, …, 𝑢𝑚 𝑉(𝜙, 𝜋) 𝑉

~𝑉

15

Short SNARGs to Low-query SNARGs
Given SNARG , we modify to as follows (is unchanged):(𝑃, 𝑉) ~𝑉 𝑃

Oracle: 𝜁:{0,1}∗ → {0,1}𝜆

Input: ()𝜙, 𝜋
1. Let denote the queries of (Recall, is non-adaptive)𝑢1, …, 𝑢𝑚 𝑉(𝜙, 𝜋) 𝑉
2. Sample unifrom -size subset 𝑘 𝐽 ⊆ [𝑚]

~𝑉

15

Short SNARGs to Low-query SNARGs
Given SNARG , we modify to as follows (is unchanged):(𝑃, 𝑉) ~𝑉 𝑃

Oracle: 𝜁:{0,1}∗ → {0,1}𝜆

Input: ()𝜙, 𝜋
1. Let denote the queries of (Recall, is non-adaptive)𝑢1, …, 𝑢𝑚 𝑉(𝜙, 𝜋) 𝑉
2. Sample unifrom -size subset 𝑘 𝐽 ⊆ [𝑚]

3. For each : let 𝑗 ∈ 𝐽 𝑎𝑗 = 𝜁(𝑢𝑗)

~𝑉

15

Short SNARGs to Low-query SNARGs
Given SNARG , we modify to as follows (is unchanged):(𝑃, 𝑉) ~𝑉 𝑃

Oracle: 𝜁:{0,1}∗ → {0,1}𝜆

Input: ()𝜙, 𝜋
1. Let denote the queries of (Recall, is non-adaptive)𝑢1, …, 𝑢𝑚 𝑉(𝜙, 𝜋) 𝑉
2. Sample unifrom -size subset 𝑘 𝐽 ⊆ [𝑚]

3. For each : let 𝑗 ∈ 𝐽 𝑎𝑗 = 𝜁(𝑢𝑗)
4. For each : uniformly sample candidate answers 𝑗 ∉ 𝐽 2𝛾 {𝑎𝑗,𝑡}

~𝑉

15

Short SNARGs to Low-query SNARGs
Given SNARG , we modify to as follows (is unchanged):(𝑃, 𝑉) ~𝑉 𝑃

Oracle: 𝜁:{0,1}∗ → {0,1}𝜆

Input: ()𝜙, 𝜋
1. Let denote the queries of (Recall, is non-adaptive)𝑢1, …, 𝑢𝑚 𝑉(𝜙, 𝜋) 𝑉
2. Sample unifrom -size subset 𝑘 𝐽 ⊆ [𝑚]

3. For each : let 𝑗 ∈ 𝐽 𝑎𝑗 = 𝜁(𝑢𝑗)
4. For each : uniformly sample candidate answers 𝑗 ∉ 𝐽 2𝛾 {𝑎𝑗,𝑡}

5. Accept if any combination of these answers makes accept 𝑉(𝜙, 𝜋)

~𝑉

15

Short SNARGs to Low-query SNARGs
Given SNARG , we modify to as follows (is unchanged):(𝑃, 𝑉) ~𝑉 𝑃

• and (hence,)𝛾 ≈ log t 𝑘 ≈ |𝜋 | /𝛾 𝜋 < log(𝑡/𝜖) ⋅ log𝑡 → 𝑞~𝑉 < log(𝑡/𝜖)

Oracle: 𝜁:{0,1}∗ → {0,1}𝜆

Input: ()𝜙, 𝜋
1. Let denote the queries of (Recall, is non-adaptive)𝑢1, …, 𝑢𝑚 𝑉(𝜙, 𝜋) 𝑉
2. Sample unifrom -size subset 𝑘 𝐽 ⊆ [𝑚]

3. For each : let 𝑗 ∈ 𝐽 𝑎𝑗 = 𝜁(𝑢𝑗)
4. For each : uniformly sample candidate answers 𝑗 ∉ 𝐽 2𝛾 {𝑎𝑗,𝑡}

5. Accept if any combination of these answers makes accept 𝑉(𝜙, 𝜋)

~𝑉

15

Short SNARGs to Low-query SNARGs
Given SNARG , we modify to as follows (is unchanged):(𝑃, 𝑉) ~𝑉 𝑃

• and (hence,)𝛾 ≈ log t 𝑘 ≈ |𝜋 | /𝛾 𝜋 < log(𝑡/𝜖) ⋅ log𝑡 → 𝑞~𝑉 < log(𝑡/𝜖)

• has -salted-soundness has -soundness (𝑃, 𝑉) (t, 𝜖) → (𝑃, ~𝑉) (t, 𝜖)

Oracle: 𝜁:{0,1}∗ → {0,1}𝜆

Input: ()𝜙, 𝜋
1. Let denote the queries of (Recall, is non-adaptive)𝑢1, …, 𝑢𝑚 𝑉(𝜙, 𝜋) 𝑉
2. Sample unifrom -size subset 𝑘 𝐽 ⊆ [𝑚]

3. For each : let 𝑗 ∈ 𝐽 𝑎𝑗 = 𝜁(𝑢𝑗)
4. For each : uniformly sample candidate answers 𝑗 ∉ 𝐽 2𝛾 {𝑎𝑗,𝑡}

5. Accept if any combination of these answers makes accept 𝑉(𝜙, 𝜋)

~𝑉

15

Short SNARGs to Low-query SNARGs
Given SNARG , we modify to as follows (is unchanged):(𝑃, 𝑉) ~𝑉 𝑃

• and (hence,)𝛾 ≈ log t 𝑘 ≈ |𝜋 | /𝛾 𝜋 < log(𝑡/𝜖) ⋅ log𝑡 → 𝑞~𝑉 < log(𝑡/𝜖)

• has -salted-soundness has -soundness (𝑃, 𝑉) (t, 𝜖) → (𝑃, ~𝑉) (t, 𝜖)

• has completeness (𝑃, ~𝑉) (𝛾 ⋅ 𝑞𝑉 ⋅ (𝑞𝑉

𝑘))
−1

Oracle: 𝜁:{0,1}∗ → {0,1}𝜆

Input: ()𝜙, 𝜋
1. Let denote the queries of (Recall, is non-adaptive)𝑢1, …, 𝑢𝑚 𝑉(𝜙, 𝜋) 𝑉
2. Sample unifrom -size subset 𝑘 𝐽 ⊆ [𝑚]

3. For each : let 𝑗 ∈ 𝐽 𝑎𝑗 = 𝜁(𝑢𝑗)
4. For each : uniformly sample candidate answers 𝑗 ∉ 𝐽 2𝛾 {𝑎𝑗,𝑡}

5. Accept if any combination of these answers makes accept 𝑉(𝜙, 𝜋)

~𝑉

15

Motivating examples

16

Motivating examples
Consider the two following argument systems with :𝜁:{0,1}∗ → {0,1}𝜆

16

Motivating examples
Consider the two following argument systems with :𝜁:{0,1}∗ → {0,1}𝜆

16

𝜋
𝑦 = 𝜁(𝑞1)

Motivating examples
Consider the two following argument systems with :𝜁:{0,1}∗ → {0,1}𝜆

16

𝜋
𝑦 = 𝜁(𝑞1)

Local information: and verifies that

 accepts if (is the index of)

 Short cannot contain many such oracle answers

𝜋 = 𝜁(0) 𝑉
~ 𝑉 𝑗 ∈ 𝐽 𝑗 0

𝜋

Motivating examples
Consider the two following argument systems with :𝜁:{0,1}∗ → {0,1}𝜆

16

𝜋
𝑦 = 𝜁(𝑞1)

Local information: and verifies that

 accepts if (is the index of)

 Short cannot contain many such oracle answers

𝜋 = 𝜁(0) 𝑉
~ 𝑉 𝑗 ∈ 𝐽 𝑗 0

𝜋

𝜋
 𝑦 = 𝜁(𝑞1) ⊕ … ⊕ 𝜁(𝑞𝑘)

Motivating examples
Consider the two following argument systems with :𝜁:{0,1}∗ → {0,1}𝜆

16

𝜋
𝑦 = 𝜁(𝑞1)

Local information: and verifies that

 accepts if (is the index of)

 Short cannot contain many such oracle answers

𝜋 = 𝜁(0) 𝑉
~ 𝑉 𝑗 ∈ 𝐽 𝑗 0

𝜋

Global information: =

 samples options for each

 If , then accepts whp.

𝜋 𝜁(0) ⊕ 𝜁(1)… ⊕ 𝜁(𝑘)
~ 𝑉 ≈ 2𝛾 𝜁(𝑞𝑖)

𝛾 > 𝜆 /𝑘 ~𝑉

𝜋
 𝑦 = 𝜁(𝑞1) ⊕ … ⊕ 𝜁(𝑞𝑘)

Motivating examples
Consider the two following argument systems with :𝜁:{0,1}∗ → {0,1}𝜆

16

𝜋
𝑦 = 𝜁(𝑞1)

Local information: and verifies that

 accepts if (is the index of)

 Short cannot contain many such oracle answers

𝜋 = 𝜁(0) 𝑉
~ 𝑉 𝑗 ∈ 𝐽 𝑗 0

𝜋

Global information: =

 samples options for each

 If , then accepts whp.

𝜋 𝜁(0) ⊕ 𝜁(1)… ⊕ 𝜁(𝑘)
~ 𝑉 ≈ 2𝛾 𝜁(𝑞𝑖)

𝛾 > 𝜆 /𝑘 ~𝑉

𝜋
 𝑦 = 𝜁(𝑞1) ⊕ … ⊕ 𝜁(𝑞𝑘)

c

Completeness

17

Completeness
• The lemma shows must make queries, and the rest can be completed

by uniform sampling with some probability
𝑉 ≈ |𝜋 | /𝛾

17

Completeness
• The lemma shows must make queries, and the rest can be completed

by uniform sampling with some probability
𝑉 ≈ |𝜋 | /𝛾

• The probability guesses correctly the important queries is small, yet nontrivial as
 is small

𝑉
|𝜋 |

17

Completeness
• The lemma shows must make queries, and the rest can be completed

by uniform sampling with some probability
𝑉 ≈ |𝜋 | /𝛾

• The probability guesses correctly the important queries is small, yet nontrivial as
 is small

𝑉
|𝜋 |

• This yields completeness slightly larger than the soundness error, 𝜖

17

Hitting High-Entropy Events Lemma

18

Hitting High-Entropy Events Lemma

18

Lemma [Hitting High Entropy Events, Informal]:

Let be variables over , with 𝑋 = 𝑋1, …, 𝑋𝑛 ({0,1}𝜆)𝑛 𝐻(𝑋) ≥ 𝜆 ⋅ 𝑛 − ℓ

Hitting High-Entropy Events Lemma

18

Lemma [Hitting High Entropy Events, Informal]:

Let be variables over , with 𝑋 = 𝑋1, …, 𝑋𝑛 ({0,1}𝜆)𝑛 𝐻(𝑋) ≥ 𝜆 ⋅ 𝑛 − ℓ
Then, consist of binding coordinates, when the rest can be completed
using unifom sampling of size

x ← 𝑋 𝑂(ℓ/𝛾)
2𝛾

Hitting High-Entropy Events Lemma

• We first show that for , exists such that for x ← 𝑋 𝐵 ⊆ [𝑛]

18

Lemma [Hitting High Entropy Events, Informal]:

Let be variables over , with 𝑋 = 𝑋1, …, 𝑋𝑛 ({0,1}𝜆)𝑛 𝐻(𝑋) ≥ 𝜆 ⋅ 𝑛 − ℓ
Then, consist of binding coordinates, when the rest can be completed
using unifom sampling of size

x ← 𝑋 𝑂(ℓ/𝛾)
2𝛾

Hitting High-Entropy Events Lemma

• We first show that for , exists such that for x ← 𝑋 𝐵 ⊆ [𝑛]

 and all X′ = (𝑋[𝑛]∖𝐵 |𝑋𝐵 = 𝑥𝐵) 𝐼 ⊆ [𝑛 − 𝐵], H(X′ I) ≥ (𝜆 − 𝛾) ⋅ 𝐼

18

Lemma [Hitting High Entropy Events, Informal]:

Let be variables over , with 𝑋 = 𝑋1, …, 𝑋𝑛 ({0,1}𝜆)𝑛 𝐻(𝑋) ≥ 𝜆 ⋅ 𝑛 − ℓ
Then, consist of binding coordinates, when the rest can be completed
using unifom sampling of size

x ← 𝑋 𝑂(ℓ/𝛾)
2𝛾

Hitting High-Entropy Events Lemma

• We first show that for , exists such that for x ← 𝑋 𝐵 ⊆ [𝑛]

 and all X′ = (𝑋[𝑛]∖𝐵 |𝑋𝐵 = 𝑥𝐵) 𝐼 ⊆ [𝑛 − 𝐵], H(X′ I) ≥ (𝜆 − 𝛾) ⋅ 𝐼

• Then we show that for such , sampling intersects the support of
 with high probability

𝐵 𝑆 ← ({0,1}𝛾)𝑛

𝑋′

18

Lemma [Hitting High Entropy Events, Informal]:

Let be variables over , with 𝑋 = 𝑋1, …, 𝑋𝑛 ({0,1}𝜆)𝑛 𝐻(𝑋) ≥ 𝜆 ⋅ 𝑛 − ℓ
Then, consist of binding coordinates, when the rest can be completed
using unifom sampling of size

x ← 𝑋 𝑂(ℓ/𝛾)
2𝛾

Hitting High-Entropy Events Lemma

• We first show that for , exists such that for x ← 𝑋 𝐵 ⊆ [𝑛]

 and all X′ = (𝑋[𝑛]∖𝐵 |𝑋𝐵 = 𝑥𝐵) 𝐼 ⊆ [𝑛 − 𝐵], H(X′ I) ≥ (𝜆 − 𝛾) ⋅ 𝐼

• Then we show that for such , sampling intersects the support of
 with high probability

𝐵 𝑆 ← ({0,1}𝛾)𝑛

𝑋′

• We conclude by showing that the expected size of is 𝐵 𝑂(ℓ/𝛾)

18

Lemma [Hitting High Entropy Events, Informal]:

Let be variables over , with 𝑋 = 𝑋1, …, 𝑋𝑛 ({0,1}𝜆)𝑛 𝐻(𝑋) ≥ 𝜆 ⋅ 𝑛 − ℓ
Then, consist of binding coordinates, when the rest can be completed
using unifom sampling of size

x ← 𝑋 𝑂(ℓ/𝛾)
2𝛾

Soundness

19

Soundness
Given malicous that fools , we construct that wins the salted soundness game:𝑃 ′

~𝑉 𝑃

19

Soundness
Given malicous that fools , we construct that wins the salted soundness game:𝑃 ′

~𝑉 𝑃
1. simulates to obtain a proof 𝑃 𝑃 ′ 𝜋

19

Soundness
Given malicous that fools , we construct that wins the salted soundness game:𝑃 ′

~𝑉 𝑃
1. simulates to obtain a proof 𝑃 𝑃 ′ 𝜋
2. Then, emulates 𝑃 ~𝑉(𝜋)

19

Soundness
Given malicous that fools , we construct that wins the salted soundness game:𝑃 ′

~𝑉 𝑃
1. simulates to obtain a proof 𝑃 𝑃 ′ 𝜋
2. Then, emulates 𝑃 ~𝑉(𝜋)

• ’s queries are emulated by queires in the game
~𝑉

19

Soundness
Given malicous that fools , we construct that wins the salted soundness game:𝑃 ′

~𝑉 𝑃
1. simulates to obtain a proof 𝑃 𝑃 ′ 𝜋
2. Then, emulates 𝑃 ~𝑉(𝜋)

• ’s queries are emulated by queires in the game
~𝑉

3. chooses the answers that made accept𝑃 ~𝑉

19

Soundness
Given malicous that fools , we construct that wins the salted soundness game:𝑃 ′

~𝑉 𝑃
1. simulates to obtain a proof 𝑃 𝑃 ′ 𝜋
2. Then, emulates 𝑃 ~𝑉(𝜋)

• ’s queries are emulated by queires in the game
~𝑉

3. chooses the answers that made accept𝑃 ~𝑉

• Notice the similarity of the salted soundness game to the definition of ~𝑉

19

Soundness
Given malicous that fools , we construct that wins the salted soundness game:𝑃 ′

~𝑉 𝑃
1. simulates to obtain a proof 𝑃 𝑃 ′ 𝜋
2. Then, emulates 𝑃 ~𝑉(𝜋)

• ’s queries are emulated by queires in the game
~𝑉

3. chooses the answers that made accept𝑃 ~𝑉

• Notice the similarity of the salted soundness game to the definition of ~𝑉

19

Conclusions and open problems

20

Conclusions and open problems
SNARGs in the ROM:

20

Conclusions and open problems
SNARGs in the ROM:

• Have optimal size between and 𝑂(log
𝑡
𝜖

⋅ log𝑡 ⋅ log𝑛) 𝑂(log
𝑡
𝜖)

20

Conclusions and open problems
SNARGs in the ROM:

• Have optimal size between and 𝑂(log
𝑡
𝜖

⋅ log𝑡 ⋅ log𝑛) 𝑂(log
𝑡
𝜖)

• Have size for “natural” constructionsΩ(log
𝑡
𝜖

⋅ log𝑡/ log𝑞𝑃)

20

Conclusions and open problems
SNARGs in the ROM:

• Have optimal size between and 𝑂(log
𝑡
𝜖

⋅ log𝑡 ⋅ log𝑛) 𝑂(log
𝑡
𝜖)

• Have size for “natural” constructionsΩ(log
𝑡
𝜖

⋅ log𝑡/ log𝑞𝑃)

20

Conclusions and open problems
SNARGs in the ROM:

• Have optimal size between and 𝑂(log
𝑡
𝜖

⋅ log𝑡 ⋅ log𝑛) 𝑂(log
𝑡
𝜖)

• Have size for “natural” constructionsΩ(log
𝑡
𝜖

⋅ log𝑡/ log𝑞𝑃)

Open questions:

20

Conclusions and open problems
SNARGs in the ROM:

• Have optimal size between and 𝑂(log
𝑡
𝜖

⋅ log𝑡 ⋅ log𝑛) 𝑂(log
𝑡
𝜖)

• Have size for “natural” constructionsΩ(log
𝑡
𝜖

⋅ log𝑡/ log𝑞𝑃)

Open questions:
• General lower bound (for adaptive verifier or without salted soundness)

20

Conclusions and open problems
SNARGs in the ROM:

• Have optimal size between and 𝑂(log
𝑡
𝜖

⋅ log𝑡 ⋅ log𝑛) 𝑂(log
𝑡
𝜖)

• Have size for “natural” constructionsΩ(log
𝑡
𝜖

⋅ log𝑡/ log𝑞𝑃)

Open questions:
• General lower bound (for adaptive verifier or without salted soundness)
• Build an improved SNARG without salted soundness

20

Conclusions and open problems
SNARGs in the ROM:

• Have optimal size between and 𝑂(log
𝑡
𝜖

⋅ log𝑡 ⋅ log𝑛) 𝑂(log
𝑡
𝜖)

• Have size for “natural” constructionsΩ(log
𝑡
𝜖

⋅ log𝑡/ log𝑞𝑃)

Open questions:
• General lower bound (for adaptive verifier or without salted soundness)
• Build an improved SNARG without salted soundness

20

Thank You!

