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SNARG: Succinct Non-interactive Argument
ROM: Random Oracle Model
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Prover _—nmm Verifier
e Soundness against (computationally unbounded) query bounded provers
24 > instance size (n) and cheating prover running time (7)
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Importance of the ROM

« Simple information-theoretic model

« Supports many well-known constructions
« Supports many well-known lower bounds
« ROM huristic: ROM is instantiated via lightweight crypto (e.g. SHA-256)

Constructions in ROM huristic are:

e Fast to compute
o No trusted setup

* Potentially post-quantum ...

o Widely used in practice
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Natural constructions:

1. Non-adaptive deterministic verifier
2. Salted soundness

3. Reasonable gpand g, (P/V query complexity) as functions of

All known (non-contrived) constructions are natural
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Salted Soundness

Malicious prover can resample queries, and choose the answers he likes
« All known constructions have salted soundness

o Easy to construct a SNARG that has no salted soundness

« Seems hard to get rid of w/o making the verifier adaptive
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o Proof size is unchanged
e Soundness is unchanged

« Nontrivial completeness

« Verifier running time: ¢/
. t
. Query complexity log—
€

Fast algorithm for
SAT
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~1
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Completeness

« The lemma shows Vmust make =~ |7 |/y queries, and the rest can be completed
by uniform sampling with some probability

« The probability V' guesses correctly the important queries is small, yet nontrivial as
| 7| is small

 This yields completeness slightly larger than the soundness error, ¢
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Lemma [Hitting High Entropy Events, Informal]:
Let X = X, ..., X, be variables over ({O,l}’l)n, with HX)>A-n =7

Then, X < X consist of O(Z/y) binding coordinates, when the rest can be completed

using unifom sampling of size 27

« We first show that for x < X, exists B C [n] such that for

X' = (X, 5] X5 =xp) andall I C [n— B ] H(X)) > (=7 |1

« Then we show that for such B, sampling .S < ({O,l }y)n intersects the support of
X" with high probability

« We conclude by showing that the expected size of Bis O(£/y)
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Thank You!



