Lower Bound on SNARGs
in the Random Oracle Model

Daniel Nukrai

000

TEL AVIV UNIVERSITY

Joint work with

Iftach Haitner & Eylon Yogev

Succinct Non-Interactive Arguments
SNARGS

SNARGSs

@
’

T 3

2

Prover Verifier

SNARGSs

CRS
]] @
/ \)
-
T
:
Prover Verifier

SNARGS in the ROM

SNARG: Succinct Non-interactive Argument
ROM: Random Oracle Model

T

Prover Verifier

2

SNARGS in the ROM

SNARG: Succinct Non-interactive Argument
ROM: Random Oracle Model

¢:{0.1}" - {01}

T

Prover Verifier

2

SNARGS in the ROM

SNARG: Succinct Non-interactive Argument
ROM: Random Oracle Model

¢:{0.1}" - {01}

T

Prover Verifier

2

SNARGS in the ROM

SNARG: Succinct Non-interactive Argument
ROM: Random Oracle Model

¢:{0.1}" - {01}

JT T

Prover —nmm————————— Verifier

SNARGS in the ROM

SNARG: Succinct Non-interactive Argument
ROM: Random Oracle Model

¢:{0.1}" - {01}

Prover —nmm————————— Verifier

SNARGS in the ROM

SNARG: Succinct Non-interactive Argument
ROM: Random Oracle Model

¢:{0.1}" - {01}

Prover —- —-s e e e > Verifier
Soundness against (computationally unbounded) query bounded provers

®

SNARGS in the ROM

SNARG: Succinct Non-interactive Argument
ROM: Random Oracle Model

¢:{0.1}" - {01}

Prover _—nmm Verifier
e Soundness against (computationally unbounded) query bounded provers
24 > instance size (n) and cheating prover running time (7)

®

Completeness
S0 (01 L

Prover —e————— S Verifier

Completeness
£{01)" > (0.1)

Prover —- - m e - - - > Verifier

a-completeness: forevery ¢ € L:

Izr[VC(qb,yr) =1:7« P‘:] > o

(1, €)- soundness

£:{0,1}* > {0,1} @

7t T

Prover —m—mn—— Verifier

a

(1, €)- soundness

{01} - (0,1} @

4 i

Prover —m—mn—— Verifier

a

(1, €)-soundness: forany ¢ ¢ L and t-query (comp. unbounded) P:

Pr[VC(gb,n) =1:7m « PC] <e€
¢

Importance of the ROM

Importance of the ROM

« Simple information-theoretic model

Importance of the ROM

« Simple information-theoretic model

« Supports many well-known constructions

Importance of the ROM

« Simple information-theoretic model

« Supports many well-known constructions

« Supports many well-known lower bounds

Importance of the ROM

« Simple information-theoretic model

« Supports many well-known constructions
« Supports many well-known lower bounds
« ROM huristic: ROM is instantiated via lightweight crypto (e.g. SHA-256)

Importance of the ROM

« Simple information-theoretic model

« Supports many well-known constructions
« Supports many well-known lower bounds
« ROM huristic: ROM is instantiated via lightweight crypto (e.g. SHA-256)

Constructions in ROM huristic are:

Importance of the ROM

« Simple information-theoretic model

« Supports many well-known constructions
« Supports many well-known lower bounds
« ROM huristic: ROM is instantiated via lightweight crypto (e.g. SHA-256)

Constructions in ROM huristic are:

e Fast to compute

Importance of the ROM

« Simple information-theoretic model

« Supports many well-known constructions
« Supports many well-known lower bounds
« ROM huristic: ROM is instantiated via lightweight crypto (e.g. SHA-256)

Constructions in ROM huristic are:

e Fast to compute
o No trusted setup

Importance of the ROM

« Simple information-theoretic model

« Supports many well-known constructions
« Supports many well-known lower bounds
« ROM huristic: ROM is instantiated via lightweight crypto (e.g. SHA-256)

Constructions in ROM huristic are:

e Fast to compute
o No trusted setup

* Potentially post-quantum ...

Importance of the ROM

« Simple information-theoretic model

« Supports many well-known constructions
« Supports many well-known lower bounds
« ROM huristic: ROM is instantiated via lightweight crypto (e.g. SHA-256)

Constructions in ROM huristic are:

e Fast to compute
o No trusted setup

* Potentially post-quantum ...

o Widely used in practice

Known ROM-SNARGS constructions

Known ROM-SNARGS constructions

e Micali’94, BCS’16:

2
[
Proof length: O< <10g—> - logn)
. €

!
, # verifier queries: © <10g—>
€

Known ROM-SNARGS constructions

« Micali’94, BCS’16:

2
[
Proof length: O< <10g—> : 10gn>
. €

!
, # verifier queries: © <10g—>

e CY'21:

[
, Proof length: O<10g— -logt - logn>
€

[
. # verifier queries: © <10g—>
€

Known ROM-SNARGS constructions

« Micali’94, BCS’16:

2
t +
Proof length: O< <10g—> : 10gn> y a
. € s(a|! |@%]#|%
S]] e]H] O

[
, # verifier queries: © <10g—>
€

’ Information Cryptographic
e CY'21: Theoretic Proof Commitment Scheme

[
, Proof length: O<10g— -logt - logn>
€

[
, # verifier queries: © <10g—>
€

Proof length

2
®<<logé> -logn) Micali

4
O log— - logt - logn /

Proof length

@((loggf.mgn)

t
® <log— - logt - logn)
€

Micali

CY’'21

' Lower bound

Our lower bound

Our lower bound

Thm: Assuming rnd ETH, any “natural” ROM-SNARG (P, V') of

[
(1, €)-soundness has proof size {2 <10g— - log t/logqp>
€

t
Tight up to logn - log qp term ([CY’21] proof size is ®<10g— -log t - 10gn>)
€

Our lower bound

Thm: Assuming rnd ETH, any “natural” ROM-SNARG (P, V') of

{
(1, €)-soundness has proof size {2 <10g— - log t/logqp>
€

t
Tight up to logn - log qp term ([CY’21] proof size is ®<10g— -log t - logn>)
€

Natural constructions:

Our lower bound

Thm: Assuming rnd ETH, any “natural” ROM-SNARG (P, V') of
[
(1, €)-soundness has proof size {2 <10g— - log t/logqp>
€
Tight up to logn - log qp term ([CY’21] proof size is (~)<logi -log t - 10gn>)
€

Natural constructions:

1. Non-adaptive deterministic verifier

Our lower bound

Thm: Assuming rnd ETH, any “natural” ROM-SNARG (P, V') of

[
(1, €)-soundness has proof size {2 <10g— - log t/logqp>
€

t
Tight up to logn - log qp term ([CY’21] proof size is ®<log— -log t - 10gn>)
€

Natural constructions:

1. Non-adaptive deterministic verifier

2. Salted soundness

Our lower bound

Thm: Assuming rnd ETH, any “natural” ROM-SNARG (P, V') of

[
(1, €)-soundness has proof size {2 <10g— - log t/long>
€

t
Tight up to logn - log qp term ([CY’21] proof size is ®<log— -log t - 10gn>)
€

Natural constructions:

1. Non-adaptive deterministic verifier
2. Salted soundness

3. Reasonable gpand g, (P/V query complexity) as functions of

Our lower bound

Thm: Assuming rnd ETH, any “natural” ROM-SNARG (P, V') of

[
(1, €)-soundness has proof size {2 <10g— - log t/long>
€

t
Tight up to logn - log qp term ([CY’21] proof size is ®<log— -log t - 10gn>)
€

Natural constructions:

1. Non-adaptive deterministic verifier
2. Salted soundness

3. Reasonable gpand g, (P/V query complexity) as functions of

All known (non-contrived) constructions are natural

Proof size for natural constructions

¢ 2
®<<log2> 'logn) Micali

® (logé - logt - lOgn> CY'21

Q<log£ : logt/logqp> ThlS WO rk

Q<10g1> Lower bound

Lower bound on ROM SubVector Commitment

Subvector commitment (SVC) — non-interactive cmt with local opening.

Lower bound on ROM SubVector Commitment

Subvector commitment (SVC) — non-interactive cmt with local opening.

. (7, €)-binding in ROM

Lower bound on ROM SubVector Commitment

Subvector commitment (SVC) — non-interactive cmt with local opening.
. (7, €)-binding in ROM

o 0 —commitment length

Lower bound on ROM SubVector Commitment

Subvector commitment (SVC) — non-interactive cmt with local opening.
. (7, €)-binding in ROM
o 0 —commitment length

o f(m) —length of opening m elements.

Lower bound on ROM SubVector Commitment

Subvector commitment (SVC) — non-interactive cmt with local opening.
. (7, €)-binding in ROM
o 0 —commitment length

o f(m) —length of opening m elements.

Thm: Assuming rnd ETH, any “natural” ROM-SVC (.S, R) of

{ t
(1, €)-binding has o + ﬂ(log—) e Q <log— - log t/loqu>
€ €

Lower bound on ROM SubVector Commitment

Subvector commitment (SVC) — non-interactive cmt with local opening.
. (7, €)-binding in ROM
o 0 —commitment length

o f(m) —length of opening m elements.

Thm: Assuming rnd ETH, any “natural” ROM-SVC (.S, R) of

{ t
(1, €)-binding has o + ﬂ(log—) e Q <log— - log t/loqu>
€ €

. Tight bound upto logn - log q¢term (nis commited string length)

Lower bound on ROM SubVector Commitment

Subvector commitment (SVC) — non-interactive cmt with local opening.
. (7, €)-binding in ROM
o 0 —commitment length

o f(m) —length of opening m elements.

Thm: Assuming rnd ETH, any “natural” ROM-SVC (.S, R) of

{ {
(, €)-binding has a + ﬂ(log;) e Q <logz - log t/loqu>
. Tight bound upto logn - log q¢term (nis commited string length)

« How to prove: SVC + PCP — SNARG

Lower bound on ROM SubVector Commitment

Subvector commitment (SVC) — non-interactive cmt with local opening.
. (7, €)-binding in ROM
o 0 —commitment length

o f(m) —length of opening m elements.

Thm: Assuming rnd ETH, any “natural” ROM-SVC (.S, R) of

{ {
(, €)-binding has a + ﬂ(log;) e Q <logz - log t/loqu>
. Tight bound upto logn - log q¢term (nis commited string length)

« How to prove: SVC + PCP — SNARG

Salted Soundness

Malicious prover can resample queries, and choose the answers he likes

Salted Soundness

Malicious prover can resample queries, and choose the answers he likes

Salted Soundness

Malicious prover can resample queries, and choose the answers he likes

Salted Soundness

Malicious prover can resample queries, and choose the answers he likes

Salted Soundness

Malicious prover can resample queries, and choose the answers he likes

Salted Soundness

Malicious prover can resample queries, and choose the answers he likes

Salted Soundness

Malicious prover can resample queries, and choose the answers he likes

Salted Soundness

Malicious prover can resample queries, and choose the answers he likes

Salted Soundness

Malicious prover can resample queries, and choose the answers he likes
« All known constructions have salted soundness

Salted Soundness

Malicious prover can resample queries, and choose the answers he likes
« All known constructions have salted soundness
o Easy to construct a SNARG that has no salted soundness

Salted Soundness

Malicious prover can resample queries, and choose the answers he likes
« All known constructions have salted soundness

o Easy to construct a SNARG that has no salted soundness

« Seems hard to get rid of w/o making the verifier adaptive

Short SNARGS to Fast Algorithms

SNARG with small
proof length

CY’20
: SNARG with small

qguery complexity

/\

Short SNARGS to Fast Algorithms

SNARG with small
proof length

CY’
: SNARG with small

qguery complexity

/\

Fast algorithm for
SAT

Short SNARGS to Fast Algorithms

SNARG with small
proof length

=

SNARG with small
qguery complexity

CY’%

/\

e Proof size is unchanged

Fast algorithm for
SAT

Short SNARGS to Fast Algorithms

SNARG with small
proof length

CY’
: SNARG with small

qguery complexity

/\

o Proof size is unchanged
e Soundness is unchanged

Fast algorithm for
SAT

Short SNARGS to Fast Algorithms

SNARG with small
proof length

CY’
: SNARG with small

qguery complexity

/\

o Proof size is unchanged
e Soundness is unchanged

« Nontrivial completeness

Fast algorithm for
SAT

Short SNARGS to Fast Algorithms

SNARG with small
proof length

CY’
: SNARG with small

qguery complexity

/\

o Proof size is unchanged
e Soundness is unchanged
« Nontrivial completeness

« Verifier running time: ¢/

Fast algorithm for
SAT

Short SNARGS to Fast Algorithms

SNARG with small
proof length

CY’
: SNARG with small

qguery complexity

/\

o Proof size is unchanged
e Soundness is unchanged

« Nontrivial completeness

« Verifier running time: ¢/
. t
. Query complexity log—
€

Fast algorithm for
SAT

Short SNARGs to Low-query SNARGs

=

Short SNARGs to Low-query SNARGs

Given SNARG (P, 1), we modify to 1/ as follows (Pis unchanged):

=

Short SNARGs to Low-query SNARGs

Given SNARG (P, 1), we modify to 1/ as follows (Pis unchanged):

Oracle: ¢: {0,1}* — {0,1}*

=

Short SNARGs to Low-query SNARGs

Given SNARG (P, 1), we modify to 1/ as follows (Pis unchanged):

Oracle: ¢: {0,1}* — {0,1}*

Input: (¢,) V

Short SNARGs to Low-query SNARGs

Given SNARG (P, 1), we modify to 1/ as follows (Pis unchanged):

Oracle: &: {0,1}* — {0,1}*

Input: (¢,) V

1. Letuy,...,u, denote the queries of V(qb, 7[) (Recall, V'is non-adaptive)

Short SNARGs to Low-query SNARGs

Given SNARG (P, 1), we modify to 1/ as follows (Pis unchanged):

Oracle: &: {0,1}* — {0,1}*

Input: (¢,) V

1. Letuy,...,u, denote the queries of V(qb, 7[) (Recall, V'is non-adaptive)

2. Sample unifrom k-size subset J C [m]

Short SNARGs to Low-query SNARGs

Given SNARG (P, 1), we modify to 1/ as follows (Pis unchanged):

Oracle: &: {0,1}* — {0,1}*

Input: (¢,) V

1. Letuy,...,u, denote the queries of V(qb, 7[) (Recall, V'is non-adaptive)

2. Sample unifrom k-size subset J C [m]

3. Foreachj € J: let a; = C(uj>

Short SNARGs to Low-query SNARGs

Given SNARG (P, 1), we modify to 1/ as follows (Pis unchanged):

Oracle: &: {0,1}* — {0,1}*

Input: (¢,) V

1. Letuy,...,u, denote the queries of V(qb, 7[) (Recall, V'is non-adaptive)

2. Sample unifrom k-size subset J C [m]
3. Foreachj € J: let a; = C(%)

4. Foreach j & J: uniformly sample 27 candidate answers {ajt}

Short SNARGs to Low-query SNARGs

Given SNARG (P, 1), we modify to 1/ as follows (Pis unchanged):

Oracle: &: {0,1}* — {0,1}* ~
Input: (¢,) V

1.
2.

3.

Let u;, ..., u, denote the queries of V(qb, 7[) (Recall, V'is non-adaptive)

Sample unifrom k-size subset J C [m]
Foreach j € J: let a; = C(%)
For each j & J: uniformly sample 27 candidate answers {ajt}

Accept if any combination of these answers makes V((b, n) accept

Short SNARGs to Low-query SNARGs

Given SNARG (P, 1), we modify to 1/ as follows (Pis unchanged):

Oracle: &: {0,1}* — {0,1}* ~
Input: (¢,) V

1.
2.

3.
4,

5.

. y~logtand k~ |x|/y (hence,

Let u;, ..., u, denote the queries of V(qb, 7[) (Recall, V'is non-adaptive)

Sample unifrom k-size subset J C [m]
Foreach j € J: let a; = é’(%)
For each j & J: uniformly sample 27 candidate answers {ajt}

Accept if any combination of these answers makes V(qﬁ, n) accept

m| <log(t/e) - logt —» g5 < log(t/e))

Short SNARGs to Low-query SNARGs

Given SNARG (P, 1), we modify to 1/ as follows (Pis unchanged):

Oracle: &: {0,1}* — {0,1}* ~
Input: (¢,) V

1.
2.

3.
4,

5.

. y~logtand k~ |x|/y (hence,

Let u;, ..., u, denote the queries of V(qb, n) (Recall, V'is non-adaptive)

Sample unifrom k-size subset J C [m]
Foreach j € J: let a; = é’(%)
For each j & J: uniformly sample 27 candidate answers {ajt}

Accept if any combination of these answers makes V(qﬁ, n) accept

m| <log(t/e) - logt —» g5 < log(t/e))

. (P, V) has(t, €)-salted-soundness — <P, V) has (t, €)-soundness

Short SNARGs to Low-query SNARGs

Given SNARG (P, 1), we modify to 1/ as follows (Pis unchanged):

Oracle: &: {0,1}* — {0,1}* ~
Input: (¢,) V

1.
2.

3.
4,

5.

. y~logtand k~ |x|/y (hence,

Let u;, ..., u, denote the queries of V(qb, n) (Recall, V'is non-adaptive)

Sample unifrom k-size subset J C [m]
Foreach j € J: let a; = é’(%)
For each j & J: uniformly sample 27 candidate answers {ajt}

Accept if any combination of these answers makes V(qﬁ, 7[) accept

m| <log(t/e) - logt —» g5 < log(t/e))

. (P, V) has(t, €)-salted-soundness — (P, V) has (t, €)-soundness

~1
. (P, ~V> has completeness <y~ qy - <qu>>

Motivating examples

Motivating examples

Consider the two following argument systems with ¢: {0,1}" — {0,1 }’l:

Motivating examples

Consider the two following argument systems with ¢: {0,1}* — {0,1 }’l:

y = ¢(q)

v/

Motivating examples

Consider the two following argument systems with ¢: {0,1}* — {0,1 }’l:

y = ¢(q)

v/

Local information: 7 = {(0) and V' verifies that

Vacceptsif j € J (jis the index of 0)

Short 7 cannot contain many such oracle answers

Motivating examples

Consider the two following argument systems with ¢: {0,1}* — {0,1 }’1:

y = ¢(q)

v/

Local information: 7 = {(0) and V' verifies that

Vacceptsif j € J (jis the index of 0)

Short 7 cannot contain many such oracle answers

y=¢C(q) ® ... B ()

T

Motivating examples

Consider the two following argument systems with ¢: {0,1}* — {0,1 }’1:

y = ¢(q)

v/

Local information: 7 = {(0) and V' verifies that

Vacceptsif j € J (jis the index of 0)

Short 7 cannot contain many such oracle answers

y=¢C(q) ® ... B ()

Global information: 7 =(0) @ {(1)... & {(k)

1/ samples =~ 27 options for each C(%)
If y > A/k, then V accepts whp.

Motivating examples

Consider the two following argument systems with ¢: {0,1}* — {0,1 }’1:

y = ¢(qp)

v/

Local information: 7 = {(0) and V' verifies that

Vacceptsif j € J (jis the index of 0)

y=¢C(q) ® ... B ()

Global information: 7 =(0) @ {(1)... & {(k)

1/ samples =~ 27 options for each C(%)

Short 7 cannot contain many such oracle answers

If y > A/k, then V accepts whp.

Completeness

Completeness

« The lemma shows Vmust make =~ |7 |/y queries, and the rest can be completed
by uniform sampling with some probability

Completeness

« The lemma shows Vmust make =~ |7 |/y queries, and the rest can be completed
by uniform sampling with some probability

« The probability V' guesses correctly the important queries is small, yet nontrivial as
| 7| is small

Completeness

« The lemma shows Vmust make =~ |7 |/y queries, and the rest can be completed
by uniform sampling with some probability

« The probability V' guesses correctly the important queries is small, yet nontrivial as
| 7| is small

 This yields completeness slightly larger than the soundness error, ¢

Hitting High-Entropy Events Lemma

Hitting High-Entropy Events Lemma

Lemma [Hitting High Entropy Events, Informal]:
Let X = X, ..., X, be variables over ({O,l}’l)n, with HX)>A-n =7

Hitting High-Entropy Events Lemma

Lemma [Hitting High Entropy Events, Informal]:

Let X = X, ..., X, be variables over ({O,l}’l)n, with HX)>A-n =7

Then, X < X consist of O(Z/y) binding coordinates, when the rest can be completed
using unifom sampling of size 27

Hitting High-Entropy Events Lemma

Lemma [Hitting High Entropy Events, Informal]:

Let X = X, ..., X, be variables over ({O,l}’l)n, with HX)>A-n =7

Then, X < X consist of O(Z/y) binding coordinates, when the rest can be completed
using unifom sampling of size 27

« We first show that for x < X, exists B C [n] such that for

Hitting High-Entropy Events Lemma

Lemma [Hitting High Entropy Events, Informal]:
Let X = X, ..., X, be variables over ({O,l}’l)n, with HX)>A-n =7

Then, X < X consist of O(Z/y) binding coordinates, when the rest can be completed

using unifom sampling of size 27

« We first show that for x < X, exists B C [n] such that for

X' = (X5 X5 = xp) andall I C [n— \B\], H(X]) > (1= |I]

Hitting High-Entropy Events Lemma

Lemma [Hitting High Entropy Events, Informal]:
Let X = X, ..., X, be variables over ({O,l}’l)n, with HX)>A-n =7

Then, X < X consist of O(Z/y) binding coordinates, when the rest can be completed

using unifom sampling of size 27

« We first show that for x < X, exists B C [n] such that for

X' = (X, 5] X5 =xp) andall I C [n— B] H(X)) > (=7 |1

« Then we show that for such B, sampling .S < ({O,l }y)n intersects the support of
X" with high probability

Hitting High-Entropy Events Lemma

Lemma [Hitting High Entropy Events, Informal]:
Let X = X, ..., X, be variables over ({O,l}’l)n, with HX)>A-n =7

Then, X < X consist of O(Z/y) binding coordinates, when the rest can be completed

using unifom sampling of size 27

« We first show that for x < X, exists B C [n] such that for

X' = (X, 5] X5 =xp) andall I C [n— B] H(X)) > (=7 |1

« Then we show that for such B, sampling .S < ({O,l }y)n intersects the support of
X" with high probability

« We conclude by showing that the expected size of Bis O(£/y)

Soundness

Soundness

Given malicous P’ that fools 7, we construct Pthat wins the salted soundness game:

Soundness

Given malicous P’ that fools 7, we construct Pthat wins the salted soundness game:

1. Psimulates P’ to obtain a proof =

Soundness

Given malicous P’ that fools 7, we construct Pthat wins the salted soundness game:

1. Psimulates P’ to obtain a proof =

2. Then, Pemulates V(7)

Soundness

Given malicous P’ that fools 7, we construct Pthat wins the salted soundness game:

1. Psimulates P’ to obtain a proof =
2. Then, Pemulates V(7)

« s queries are emulated by queires in the game

Soundness

Given malicous P’ that fools 7, we construct Pthat wins the salted soundness game:

1. Psimulates P’ to obtain a proof =
2. Then, Pemulates V(7)
. Tﬁs gueries are emulated by queires in the game

3. Pchooses the answers that made T/accept

Soundness

Given malicous P’ that fools 7, we construct Pthat wins the salted soundness game:

1. Psimulates P’ to obtain a proof =
2. Then, Pemulates V(7)
. Tﬁs gueries are emulated by queires in the game

3. Pchooses the answers that made ~Vaccept

« Notice the similarity of the salted soundness game to the definition of V

Soundness

Given malicous P’ that fools 7, we construct Pthat wins the salted soundness game:

1. Psimulates P’ to obtain a proof =
2. Then, Pemulates V(7)
. Tﬁs gueries are emulated by queires in the game

3. Pchooses the answers that made ~Vaccept

o Notice the similarity of the salted soundness game to the definition of V

Conclusions and open problems

Conclusions and open problems

SNARGS in the ROM:

Conclusions and open problems

SNARGS in the ROM:

. . ! 5
o Have optimal size between 0<1og— -logt - logn> and 0<1og—>
€ €

Conclusions and open problems

SNARGS in the ROM:

. . ! 5
o Have optimal size between 0<1og— -logt - logn> and 0<1og—>
€ €

. t .
o Have size Q(log— : logt/logqp> for “natural” constructions
€

Conclusions and open problems

SNARGS in the ROM:

. . ! 5
o Have optimal size between 0<1og— -logt - logn> and 0<1og—>
€ €

. t .
o Have size Q(log— : logt/logqp> for “natural” constructions
€

Conclusions and open problems

SNARGSs in the ROM:
o Have optimal size between 0<1ogi -logt - logn> and 0<1og1>
€ €

III

. t .
o Have size Q(log— : logt/logqp> for “natural” constructions
€

Open questions:

Conclusions and open problems

SNARGSs in the ROM:
o Have optimal size between 0<1ogi -logt - logn> and 0<1og1>
€ €

III

. t .
o Have size Q(log— : logt/logqp> for “natural” constructions
€

Open questions:
e General lower bound (for adaptive verifier or without salted soundness)

Conclusions and open problems

SNARGSs in the ROM:
o Have optimal size between 0<1ogi -logt - logn> and 0<1og1>
€ €

III

. t .
o Have size Q(log— : logt/logqp> for “natural” constructions
€

Open questions:
e General lower bound (for adaptive verifier or without salted soundness)
e Build an improved SNARG without salted soundness

Conclusions and open problems

SNARGSs in the ROM:
o Have optimal size between 0<1ogi -logt - logn> and 0<1og1>
€ €

III

. t .
o Have size Q(log— : logt/logqp> for “natural” constructions
€

Open questions:
e General lower bound (for adaptive verifier or without salted soundness)
e Build an improved SNARG without salted soundness

Thank You!

