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2. Salted soundness

3. Reasonable  and   ( query complexity) as functions of 𝑞𝑃 𝑞𝑉 𝑃 /𝑉  𝑛
All known (non-contrived) constructions are natural
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by uniform sampling with some probability 
𝑉 ≈ |𝜋 | /𝛾

• The probability  guesses correctly the important queries is small, yet nontrivial as 
 is small

𝑉
|𝜋 |

• This yields completeness slightly larger than the soundness error, 𝜖
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• We conclude by showing that the expected size of  is 𝐵 𝑂(ℓ/𝛾)
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