Rotational Differential-Linear Distinguishers of ARX Ciphers with Arbitrary Output Linear Masks

Zhongfeng Niu 1 ², Siwei Sun 2 , Yunwen Liu 3 , Chao Li 4

¹State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, China

²School of Cryptology, University of Chinese Academy of Sciences, China

³Cryptape Technology Co., Ltd. Hangzhou, China

 4 College of Liberal arts and Science, National University of Defense Technology, China

August 14, 2022

1 / 22

Table of Content

- Motivation
- (Rotational) Differential-Linear Correlation of E
- (Rotational) Differential-Linear Correlation of Iterative ARX Primitives
- Applications
- Conclusion

2 / 22

(Rotational) Differential-Linear Cryptanalysis

• For a vectorial boolean function $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$, a rotational differential-linear distinguisher with an input difference δ and output mask λ holds with a correlation

$$\mathbb{C}_{\delta,\lambda} = 2^{-n} \cdot \sum_{\mathbf{x} \in \mathbb{F}_2^n} (-1)^{\lambda \cdot \left(\overrightarrow{F(\mathbf{x})} \oplus F\left(\overrightarrow{\mathbf{x}} \oplus \delta\right)\right)}$$

Problem: How to estimate the correlation?

Mind: When the rotational parameter is 0, then the rotational differential-linear cryptanalysis is differential-linear cryptanalysis.

(Rotational) Differential-Linear Approximation

- (Rotational) Differential: $\delta \to \Delta$, probability p.
- Linear Approximation 1: $\Gamma \to \gamma$, probability $\frac{1}{2} + \epsilon_{\Gamma,\gamma}$;
- Linear Approximation 2: $\overrightarrow{\Gamma} \to \overrightarrow{\gamma}$, probability $\frac{1}{2} + \epsilon_{\vec{\Gamma}, \vec{\gamma}}$.

(CRYPTO 2022)

August 14, 2022

(Rotational) Differential-Linear Approximation

- (Rotational) Differential: $\delta \to \Delta$, probability p.
- Linear Approximation 1: $\Gamma \to \gamma$, probability $\frac{1}{2} + \epsilon_{\Gamma,\gamma}$;
- Linear Approximation 2: $\overrightarrow{\Gamma} \to \overrightarrow{\gamma}$, probability $\frac{1}{2} + \epsilon_{\overrightarrow{\Gamma}, \overrightarrow{\gamma}}.$
- (Rotational) Differential-Linear Approximation: $\delta \to \gamma$, theoretical probability: $\frac{1}{2} + 2p \; \epsilon_{\vec{\Gamma}, \vec{\gamma}} \; \epsilon_{\Gamma, \gamma}$?

Estimating the (Rotational) Differential-Linear Correlation

- Differential-Linear Cryptanalysis
 - Differential-Linear Connectivity Table (DLCT, EUROCRYPT 2019)
 - Differential-Linear cryptanalysis from algebraic point (CRYPOTO 2021)

Only applicable for SPN !!

Estimating the (Rotational) Differential-Linear Correlation

- Differential-Linear Cryptanalysis
 - Differential-Linear Connectivity Table (DLCT, EUROCRYPT 2019)
 - Differential-Linear cryptanalysis from algebraic point (CRYPOTO 2021)

Only applicable for SPN !!

- Rotational Differential-Linear Cryptanalysis
 - Morawiekci's technique (EUROCRYPT 2021)

Only applicable for the output mask with Hamming weight $1 \, !!$

(CRYPTO 2022) August 14, 2022 5 / 22

Importance

- ullet is the core component for ARX ciphers.
- Differential-Linear Cryptanalysis is one of the most powerful methods for ARX ciphers.

6 / 22

Motivation

- How to accurately calculate the (rotational) differential-linear correlation of

 for arbitrary output linear masks?
- Can we evaluate the (rotational) differential-linear correlation of Iterative ARX Primitives for arbitrary output linear masks?

| □ ▶ ◀ ∰ ▶ ◀ 볼 ▶ ◀ 볼 → ♡ Q (~)

7 / 22

(Rotational) Differential-Linear Correlation of \boxplus

Definition

The ordinary differential-linear correlation of $S(\mathbf{x}, \mathbf{y}) = \mathbf{x} \boxplus \mathbf{y}$ with input difference $(\boldsymbol{\alpha}, \boldsymbol{\beta}) \in \mathbb{F}_2^n \times \mathbb{F}_2^n$, and output linear mask $\boldsymbol{\lambda} \in \mathbb{F}_2^n$ is defined as

$$C_{(\boldsymbol{\alpha},\boldsymbol{\beta}),\boldsymbol{\lambda}}^{\mathrm{DL}}(S) = \frac{1}{2^{2n}} \sum_{(\mathbf{x},\mathbf{y}) \in \mathbb{F}_2^{2n}} (-1)^{\boldsymbol{\lambda} \cdot (S(\mathbf{x} \oplus \boldsymbol{\alpha}, \mathbf{y} \oplus \boldsymbol{\beta}) \oplus S(\mathbf{x}, \mathbf{y}))}.$$

Definition

The rotational differential-dinear correlation of the modulo addition $S(x,y)=x \boxplus y$ with rotational offset t, rotational difference (α,β) , and linear mask λ is defined as

$$\mathcal{C}^{\text{R-DL}}_{(\boldsymbol{\alpha},\boldsymbol{\beta}),\boldsymbol{\lambda}}(S) = \frac{1}{2^{2n}} \sum_{(\mathbf{x},\mathbf{y}) \in \mathbb{F}_2^{2n}} (-1)^{\boldsymbol{\lambda} \cdot \left[(((\mathbf{x} \ll t) \oplus \boldsymbol{\alpha}) \boxplus ((\mathbf{y} \ll t) \oplus \boldsymbol{\beta})) \oplus ((\mathbf{x} \boxplus \mathbf{y}) \ll t) \right]}.$$

(CRYPTO 2022) August 14, 2022

8 / 22

Motivation

- The time complexity for computing the (rotational) differential-linear correlation of \boxplus is about $O(2^{2n})$.
- In practice, the modulo additions often operate on large words (e.g., 32-bit or 64-bit words). The way of enumerating the input pairs is infeasible.

How to compute the (rotational) differential-linear correlation of \boxplus in polynomial time?

(CRYPTO 2022)

August 14, 2022 9 / 22

Related work in [LSL21] (EUROCRYPT 2021)

Some constraints:

- Liu.etc's method is only applicable for the output mask with Hamming weight 1.
- For the rotational differential-linear correlation of ⊞, Liu.etc's method adopts certain statistical assumptions, which may give rise to some inaccurate result.

10 / 22

Related work in [LSL21] (EUROCRYPT 2021)

Some constraints:

- Liu.etc's method is only applicable for the output mask with Hamming weight 1.
- For the rotational differential-linear correlation of ⊞, Liu.etc's method adopts certain statistical assumptions, which may give rise to some inaccurate result.

Improvement:

- A partition schemes of the sets $\mathbb{F}_2^n \times \mathbb{F}_2^n$.
- Give a formula a formula efficiently computes the exact correlations of arbitrary (rotational) differential-linear distinguishers of \boxplus .

(CRYPTO 2022)

August 14, 2022 11 / 22

Ordinary Differential-Linear Correlation of $\ oxdots$

Theorem

 $\mathbf{M}_{1,0,0} = \mathbf{M}_{0,1,0}$

The differential-linear correlation of the modulo addition $\mathcal{C}^{\mathrm{DL}}_{(\alpha,\beta),\boldsymbol{\lambda}}$ can be computed as

$$\frac{1}{2^{2n}} \begin{pmatrix} 1, & 1, & 1 \end{pmatrix} \mathbf{M}_{\alpha_{n-1}, \beta_{n-1}, \lambda_{n-1}}^{(n-1)} \cdots \mathbf{M}_{\alpha_0, \beta_0, \lambda_0}^{(0)} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

where $\mathbf{M}_{a,b,c}$ for All $(a,b,c) \in \mathbb{F}_2 \times \mathbb{F}_2 \times \mathbb{F}_2$ is defined as:

$$\mathbf{M}_{0,0,0} = \begin{pmatrix} 3 & 1 & 1 & 1 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 1 & 1 & 1 & 3 \end{pmatrix}, \qquad \mathbf{M}_{0,0,1} = \begin{pmatrix} 3 & -1 & -1 & 1 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 1 & -1 & -1 & 3 \end{pmatrix}, \qquad \mathbf{M}_{0,1,0} = \begin{pmatrix} 2 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \\ 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 2 \end{pmatrix},$$

$$\mathbf{M}_{1,1,0} = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 1 & 3 & 1 & 1 \\ 1 & 1 & 3 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}, \qquad \mathbf{M}_{1,1,1} = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 1 & -3 & -1 & 1 \\ 1 & -1 & -3 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}, \qquad \mathbf{M}_{0,1,1} = \begin{pmatrix} -2 & 1 & 1 & 0 \\ -1 & 2 & 0 & -1 \\ -1 & 0 & 2 & -1 \\ 0 & 1 & 1 & -2 \end{pmatrix},$$

 $M_{1,0,1} = M_{0,1,1}$.

(CRYPTO 2022) August 14, 2022

12 / 22

Rotational Differential-Linear Correlation of $\ oxdots$

Theorem

The rotational differential-linear correlation of \boxplus with rotational offset t, rotational difference (α, β) , and linear mask λ can be computed as

$$\frac{1}{2^{2n}} \begin{pmatrix} 1, & 0, & 1, & 0 \end{pmatrix} \mathbf{C}_{\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\lambda}} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \frac{1}{2^{2n}} \begin{pmatrix} 0, & 1, & 0, & 1 \end{pmatrix} \mathbf{C}_{\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\lambda}} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

where

$$\mathbf{C}_{\alpha,\beta,\lambda} = \prod_{i=0}^{t-1} \mathbf{M}_{\alpha_i,\beta_i,\lambda_i} \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \prod_{j=t}^{n-1} \mathbf{M}_{\alpha_j,\beta_j,\lambda_j}.$$

(CRYPTO 2022)

August 14, 2022 13 / 22

Compared with [LSL21] in EUROCRYPT 2021

Example

Consider the 32-bit modulo addition. Let $(\alpha, \beta) \in \mathbb{F}_2^{32} \times \mathbb{F}_2^{32}$ be the input difference

$$egin{cases} oldsymbol{lpha} = (01100011101111000111111011010101111)_2 \ oldsymbol{eta} = (0101001100111111111110100111111001111)_2 \end{cases}$$

Then, the rotational differential-linear correlations $\mathcal{C}^{\text{R-DL}}_{(\alpha,\beta),\mathbf{e}_i}$ with rotation offset t=30 can be computed with the formula presented in [LSL21] or theorem in our work, and the results are listed in following table.

i	0	1	2	3	4	5
[LSL21]	0	-0.5	-0.75	-0.875	-0.0625	0
This work	0.25	-0.375	-0.6875	-0.84375	-0.078125	0

(CRYPTO 2022) August 14, 2022 14 / 22

Rotational Morawiecki's technique revisited

• Observation 1. Rotational cryptanalysis et al. is a special case of rotational differential-linear cryanalysis, where the Hamming weight of the output mask is equal to 1.

$$\Pr[y_{i-t} = y_t^{'}] - \Pr[y_{i-t} \neq y_t^{'}] = \Pr[e_i \cdot (y_{i-t} \oplus y_t^{'}) = 0] - \Pr[e_i \cdot (y_{i-t} \oplus y_t^{'}) = 1]$$

• **Observation 2.** The output RD-L probability for the function $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ can be evaluated by the distribution of input difference:

$$\Pr[y_{i-t} \neq y_{t}^{'}] = \frac{1}{2^{n}} \sum_{u \in \mathbb{F}_{2}^{n}} \#\{x \in \mathbb{F}_{2}^{n} \mid \overrightarrow{x} \oplus x^{'} = u, \ y_{i-t} \neq y_{t}^{'}\} \prod_{i=0}^{n} ((1 - u_{i}) - (-1)^{u_{i}} \rho_{i})$$

Problem: How to estimate the correlation for arbitrary output masks?

Morawiecki's technique for arbitrary output masks

Lemma

Let $F: \mathbb{F}_2^m \to \mathbb{F}_2^n$ be a vectorial Boolean function and $0 \le t \le m-1$ be an integer. Assume that the input pair $(\mathbf{x}, \mathbf{x}') \in \mathbb{F}_2^m \times \mathbb{F}_2^m$ satisfies $\Pr[x_{i-t} \oplus x_i' = 1] = p_i \text{ for } 0 \le i < m, \text{ and the events } x_{i-t} \ne x_i' \text{ and } x_{i-t} \ne x_i'$ for different i and j are mutually independent. Then, for $\lambda \in \mathbb{F}_2^n$ and rotation offset t, the rotational differential-linear correlation of F can be computed as

$$C_{\boldsymbol{\lambda}}^{\text{R-DL}} = \Pr[\boldsymbol{\lambda} \cdot (\overleftarrow{F}(\mathbf{x}) \oplus F(\mathbf{x}')) = 0] - \Pr[\boldsymbol{\lambda} \cdot (\overleftarrow{F}(\mathbf{x}) \oplus F(\mathbf{x}')) = 1]$$

$$= \sum_{\mathbf{u} \in \mathbb{F}_{3}^{m}} \frac{1}{2^{m}} \sum_{\mathbf{x} \in \mathbb{F}_{3}^{m}} (-1)^{\boldsymbol{\lambda} \cdot (\overleftarrow{F}(\mathbf{x}) \oplus F(\overleftarrow{\mathbf{x}} \oplus \mathbf{u}))} \prod_{i=0}^{m-1} ((1 - u_{i}) - (-1)^{u_{i}} p_{i}).$$

16 / 22

New Morawiecki's technique for ⊞

Differential-Linear Correlation:

Theorem

Let \mathbf{x} , \mathbf{x}' , \mathbf{y} , and \mathbf{y}' be random n-bit strings such that $\Pr[x_i \oplus x_i' = 1] = p_i$ and $\Pr[y_i \oplus y_i' = 1] = q_i$ for $0 \le i < n$. In addition, the events $x_i \oplus x_i' = 1$ and $y_j \oplus y_j' = 1$ for $0 \le i, j < n$ are mutually independent. For $\lambda \in \mathbb{F}_2^n$, the differential-linear correlation of $F(\mathbf{x}, \mathbf{y}) = \mathbf{x} \boxplus \mathbf{y}$ can be computed as

$$C_{\lambda}^{\text{DL}} = \frac{1}{2^{2n}} (1, 1, 1, 1) \prod_{i=0}^{n-1} \mathbf{H}_{\lambda_i}^{\rho_i, q_i} (1, 0, 0, 0)^T,$$

where $\mathbf{H}_{\lambda_i}^{p_i,q_i}$ is a 4×4 matrix and is defined as

$$\mathbf{H}_{\lambda_i}^{
ho_i,q_i} = \sum_{a,b \in \mathbb{F}_2} ((1-a) - (-1)^a
ho_i)((1-b) - (-1)^b q_i) \mathbf{M}_{a,b,\lambda_i}.$$

(CRYPTO 2022) August 14, 2022 17 / 22

New Morawiecki's technique for ⊞

Rotational Differential-Linear Correlation:

Theorem

We use \mathbf{x} , \mathbf{x}' , \mathbf{y} , and \mathbf{y}' to represent random n-bit strings such that $\Pr[x_{i-t} \oplus x_i' = 1] = p_i$ and $\Pr[y_{i-t} \oplus y_i' = 1] = q_i$ for $0 \le i < n$. In addition, the events $x_{i-t} \oplus x_i' = 1$ and $y_{j-t} \oplus y_j' = 1$ for $0 \le i, j < n$ are mutually statistical independent. Let $S(\mathbf{x}, \mathbf{y}) = \mathbf{x} \boxplus \mathbf{y}$ and \mathbf{W} be

$$\prod_{i=0}^{t-1} \left(\sum_{(c,d) \in \mathbb{F}_2^2} \zeta(c,d,p_i,q_i) \mathbf{M}_{c,d,\lambda_i} \right) \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \prod_{i=t}^{n-1} \left(\sum_{(a,b) \in \mathbb{F}_2^2} \zeta(a,b,p_i,q_i) \mathbf{M}_{a,b,\lambda_i} \right),$$

where $\zeta(a,b,p,q)=((1-a)-(-1)^ap)((1-b)-(-1)^bq)$. Then, for $\lambda\in\mathbb{F}_2^n$ and rotation offset t, the rotational differential-linear correlation of $S(\mathbf{x},\mathbf{y})$ can be computed as

$$C_{\lambda}^{\text{R-DL}} = (1, 0, 1, 0) \mathbf{W} (1, 0, 0, 0)^{T} + (0, 1, 0, 1) \mathbf{W} (0, 1, 0, 0)^{T}.$$

(CRYPTO 2022) August 14, 2022 18 / 22

New Morawiecki's technique for the Linear part

Lemma

Let $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ be a vectorial Boolean function mapping $\mathbf{x} \in \mathbb{F}_2^n$ to $L \circ S(\mathbf{x}) \oplus \mathbf{c}$, where $\mathbf{c} \in \mathbb{F}_2^n$ is a constant, $S: \mathbb{F}_2^n \to \mathbb{F}_2^n$ is a nonlinear permutation, and L is an $n \times n$ binary matrix such that $L(\mathbf{y} \lll t) = (L\mathbf{y}) \lll t$ for all $\mathbf{y} \in \mathbb{F}_2^n$ and integer t. Then, the correlation of the rotational differential-linear approximation of F with rotation offset t, RX-difference Δ , and output linear mask $\lambda \in \mathbb{F}_2^n$ can be computed as

$$C_{\Delta,\lambda}^{\text{R-DL}}(F) = (-1)^{\lambda \cdot (\mathbf{c} \oplus \overleftarrow{\mathbf{c}})} C_{\Delta,L^{T_{\lambda}}}^{\text{R-DL}}(S).$$

Iterated evaluation of the D-L and R-L correlation

Algorithm 1: Iterated evaluation of the D-L and R-L correlation

Input: Input difference $\delta \in \mathbb{F}_2^n$; Output mask $\lambda \in \mathbb{F}_2^n$; Rotation offset t; Round m; Round function $F = L \circ S$ where L is a linear function.

Output: The D-L/R-L correlation

Initialization: generate the initial input RD-L probability distribution \mathbb{D}_0 according to input difference δ .

for k = 1 to m - 1 do

for i = 0 to n - 1 do

Under the input RD-L probability distribution \mathbb{D}_{k-1} , calculate the

D-L/R-L correlation c_i of function S for output mask $L^T e_i$;

According to c_0, \dots, c_{n-1} , generate input RD-L probability distribution \mathbb{D}_k .

Under the input RD-L probability distribution \mathbb{D}_{m-1} , calculate the D-L/R-L correlation θ of function S for output mask $L^T \lambda$;

return θ :

(CRYPTO 2022) August 14, 2022 20 / 22

Summary of Applications

Permutation/Block cipher	Туре	# Round	Probability/Correlation		Ref.
, , , , , , , , , , , , , , , , , , , ,			Theoretical	Experimental	_
	DC	4	2-6	_	[BBdS ⁺ 20a
	R-DL	4	$2^{-11.37}$	$2^{-7.35}$	[LSL21]
	DL	4	$2^{-0.27}$	$2^{-0.1}$	[LSL21]
Alzette	DC	8	$< 2^{-32}$	_	[BBdS ⁺ 20a
	DL	4	_ 1	1	This talk
	R-DL	4	$2^{-5.57}$	$2^{-3.14}$	This talk
	DL	5	$-2^{-0.33}$	$-2^{-0.13}$	This talk
	DL	6	$2^{-4.95}$	$2^{-1.45}$	This talk
	DL	8	$-2^{-8.24}$	$-2^{-5.50}$	This talk
	DC	4	2^{-35}	_	[DSM14]
SipHash	DL	3	$2^{-2.19}$	$2^{-0.78}$	This talk
	DL	4	$2^{-12.45}$	$2^{-6.03}$	This talk
	DC	8	2^{-24}	_	[ALLW14]
	LC	9	2^{-14}	_	[FWG ⁺ 16]
	DC	10	$2^{-31.01}$	_	[SHY16]
SPECK32	DL	8	$2^{-8.23}$	$2^{-6.87}$	This talk
	DL	9	$2^{-10.23}$	$2^{-8.93}$	This talk
	DL	10	$2^{-15.23}$	$2^{-13.90}$	This talk
	DL	4	_	$2^{-1.19}$	[CM16]
ChaCha	DL	4	$2^{-0.02}$	$2^{-0.98}$	This talk

Conclusion

- A formula efficiently computes the exact correlations of arbitrary (rotational) differential-linear distinguishers of \square .
- A new method estimates the correlations of arbitrary (rotational) differential-linear distinguishers of ARX Ciphers.
- It works well in round-reduced Alzette, SipHash, SPECK-32 and ChaCha.

(CRYPTO 2022) August 14, 2022 22 / 22