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White-Box Cryptography

def	encrypt(x):
		for	i	in	range(10):
				x	=	f(x,	key[i]))
		return	x

WBC: securing software crypto. implementations in the white-box model.

Applications: DRM, mobile payments, ...
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White-Box Implementations of Block Ciphers

Academic white-box
implementations:

• Fixed hard-coded cipher key.

• Compiler/method public.

• Security goal: key-extraction
resistance. white-box

implementation

white-box
compiler

randomnesskey
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CEJO Implementations
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Chow S, Eisen P, Johnson H & Van Oorschot PC. White-Box Cryptography and an AES Implementation. SAC 2002.
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CEJO Implementations
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CEJO Implementations
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CEJO round

...

4-bit non-linear
8-bit linear

encoded round

encoded look-up tables

All CEJO implementations have been broken.
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Self-Equivalence Implementations

encoded affine layers
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Self-Equivalence (SE) Implementations

• No look-up tables,
SE efficient with large encodings.

• CEJO can be reduced to SE,
but the converse doesn’t hold.

• Problem: difficult to find
non-linear layers with
many and large self-equivalences.

Candidate non-linear layer: permuted modular addition x, y 7→ (x ⊞ y, y)
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Finding Self-equivalences of x, y 7→ (x ⊞ y, y)

F is CCZ-equivalent to G if the graph of F, {(x, F(x))}, is equal to the graph
of G up to an affine permutation.

• F(x, y) = (x ⊞ y, y) is CCZ-equivalent to a quadratic function G.

A graph automorphism of F is an affine permutation mapping the graph of
F to itself.

CCZ-based method to find self-equivalences of F:
• Find graph automorphisms of low-degree G by solving a functional

equation.
• Transform graph automorphisms of G into self-equivalences of F using

CCZ-equivalence.
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github.com/ranea/Boolcrypt
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Self-Equivalences of the Permuted Modular Addition

SE found for wordsize 4 ≤ n ≤ 64:

Type #{(A,B) : S = B ◦ S ◦ A}
Linear 3 × 22n+2

Affine 3 × 22n+8

Affine-quadratic 32 × 23n+14 − 3 × 22n+8

Open problem: prove these SE subsets are
the full SE groups for n ≥ 4.



⋆ ⋆
⋆ 1 ⋆
...

. . . ...
⋆ 1 ⋆
⋆ ⋆ 1 ⋆ ⋆ . . . ⋆ ⋆
⋆ ⋆
⋆ ⋆ 1
...

... . . .
⋆ ⋆ 1
⋆ ⋆ ⋆ 1


( ⋆ b · · · b ⋆ ⋆ | ⋆ b · · · b ⋆ ⋆ )
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Implicit framework

Implicit implementation:

• an encoded implementation where

• the round encodings are the composition of affine permutations and
affine-nonlinear self-equivalences,

• and the encoded round functions are implemented by systems of
low-degree equations.
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Round Encodings in an Implicit Implementation
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Round Encodings in an Implicit Implementation
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Implicit Round Functions

Implemented by low-degree quasilinear implicit functions:
• P is an implicit function of F if

P(x, y) = 0 ⇐⇒ y = F(x) .

• Evaluate F(x0) by substituting x0 = x and solving P(x0, y) = 0 for y.
• Fast solving if P is quasilinear:

∀x, the function y 7→ P(x, y) is affine .

Permuted modular addition has a quasilinear quadratic implicit function!
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Size of an Implicit Round Function
Upper bound on the size of a (2n,n)-bit P for an n-bit cipher.

Cipher blocksize Degree of P Size of P
64 2 0.05 MB
64 3 1.42 MB
64 4 6.50 MB
128 2 0.40 MB
128 3 22.50 MB
128 4 193.19 MB

For the permuted modular addition, P is cubic or quartic
if affine-quadratic self-equivalences are used.
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Security of Implicit Implementations

Security goal: key-extraction resistance.

An implicit implementation is secure against known generic attacks if
• quadratic input encodings OR
• large non-linear layer

Implicit framework cannot secure SPN ciphers with affine encodings.
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Security of Implicit Implementations

New generic attack (reduction to self-equivalence implementations)
based on functional equations (affine equivalence problems):

G ◦ XFY= ◦

unknown affine permutations

known functions
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Security of Implicit Implementations

function E = O ◦ (L ◦ S) ◦ ⊕k ◦ I P = V ◦ T ◦ U ◦ (⊕k ∥ L−1) ◦ (I ∥ O−1)

equation E = Y ◦ (L ◦ S) ◦ X P = Y ◦ T ◦ X
degree high low
access black-box white-box
goal find any solution find any solution and guess U

16/18



github.com/ranea/whiteboxarx
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Conclusion

• Implicit framework: new design that prevents generic attacks,
first method applicable to ARX ciphers.

• New method to find self-equivalences based on the CCZ-equivalence,
applied to the permuted modular addition.

• Two open-source tools: BoolCrypt and whiteboxarx.

• Future work: new attacks, other non-linear layers, . . .
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