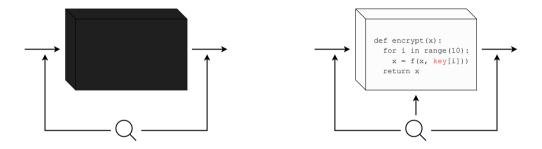


IMPLICIT WHITE-BOX IMPLEMENTATIONS: WHITE-BOXING ARX CIPHERS Adrián Ranea, Joachim Vandersmissen, and Bart Preneel

White-Box Cryptography

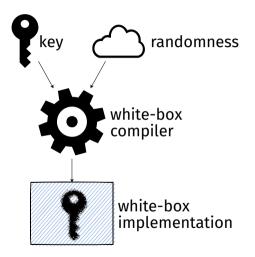


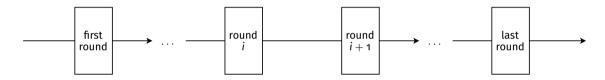
WBC: securing software crypto. implementations in the white-box model. Applications: DRM, mobile payments, ...

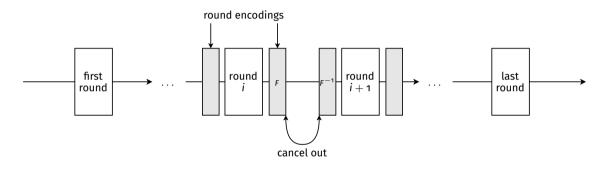
White-Box Implementations of Block Ciphers

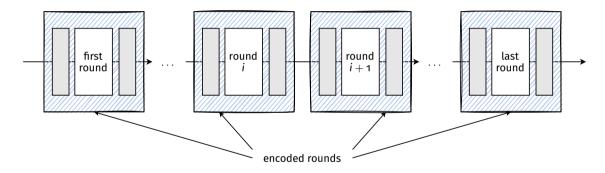
Academic white-box implementations:

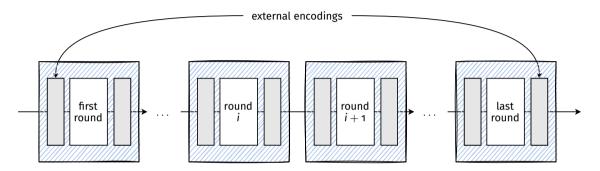
- Fixed hard-coded cipher key.
- Compiler/method public.
- Security goal: key-extraction resistance.

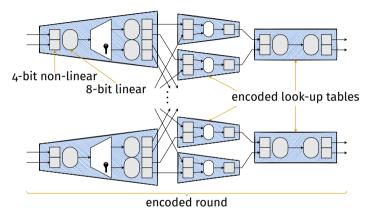












All CEJO implementations have been broken.

Self-Equivalence Implementations



Self-Equivalence (SE) Implementations

- No look-up tables, SE efficient with large encodings.
- CEJO can be reduced to SE, but the converse doesn't hold.

• **Problem:** difficult to find non-linear layers with many and large self-equivalences.

Self-Equivalence (SE) Implementations

- No look-up tables, SE efficient with large encodings.
- CEJO can be reduced to SE, but the converse doesn't hold.

• **Problem:** difficult to find non-linear layers with many and large self-equivalences.

Candidate non-linear layer: permuted modular addition $x, y \mapsto (x \boxplus y, y)$

Finding Self-equivalences of $x, y \mapsto (x \boxplus y, y)$

F is CCZ-equivalent to G if the graph of F, $\{(x, F(x))\}$, is equal to the graph of G up to an affine permutation.

• $F(x, y) = (x \boxplus y, y)$ is CCZ-equivalent to a quadratic function G.

Finding Self-equivalences of $x, y \mapsto (x \boxplus y, y)$

F is CCZ-equivalent to G if the graph of F, $\{(x, F(x))\}$, is equal to the graph of G up to an affine permutation.

• $F(x, y) = (x \boxplus y, y)$ is CCZ-equivalent to a quadratic function G.

A graph automorphism of *F* is an affine permutation mapping the graph of *F* to itself.

CCZ-based method to find self-equivalences of *F*:

- Find graph automorphisms of low-degree *G* by solving a functional equation.
- Transform graph automorphisms of *G* into self-equivalences of *F* using CCZ-equivalence.

github.com/ranea/Boolcrypt

GitHub - ranea/BoolCrypt: Python library for vectorial Boolean functions in cryptography

H BoolCrypt 0.1 Search docs

bookrypt.utilities module

boolcrypt.equivalence module boolcrypt.functionaleguations

boolcrypt.cczselfequivalence

bookrypt.modularaddition module

bookrowtise, proorladd package,

hook past fordook module

bookrypt.findpolyoptimal module

bookrypt.sboxes module

bookrypt.findpoly module

E API reference

module

☆ > API reference > bookcrypt.cczselfequivalence module. View page source

boolcrypt.cczselfequivalence module

Find self-equivalences of a function by finding the self-equivalences of its graph (i.e., also called graph automorphisms) parametrized by a CCZequivalent function with lower degree.

boolerppt.cczelfequivalence.find_self_equivalence/cc_unit. antimitie_mapping.cc_ed_mipticle-their.pith.cc_upress-line.jeft_cc

Find a SE of F by finding a SE of the graph of G.

Let B be the function (optionally) given by air? and G its CC2-equivalent function through the <u>assistition_apping</u> L, that is, Graph(F)=L(Graph(G)), 5 (fit given) and G must be in ANF form, but L can be given in ANF, as a matrix, or as a (matrix, vector) pair. If F is not given, its number of input variables must be given in <u>inmercipant</u>. Are year.

Graph(F) is defined as usual, $\{x, y\}$: for all x, y=F(x)). If ccz_anf_implicit=False, Graph(G) is defined similarly as Graph(F): Otherwise, Graph(G)=[(x, y): G(x, y)=0) if ccz_anf_implicit=True.

This methods finds a self-equivalence (SE) (A, B) with given degrees of F (a pair of permutations (A,B) such that B F A \rightarrow F) by finding a SE (an automorphism) of the graph of F parametrized by G. A is also called a right SE and B a left SE. If no solution is found, None is returned.

If the SE degrees are both 1 and se_ct_terms=True (resp. False), this method finds an affine (resp. linear) SE.

This methods returns SE (A, B) by finding a Graph(G)-SE C=(c_0 , c_1) s.t. L C L^{(-1) is diagonal and can be written as L C L^{(-1) = (A, B^{(-1)}). This is

Self-Equivalences of the Permuted Modular Addition

SE found for wordsize $4 \le n \le 64$:

Туре	$\#\{(A,B):S=B\circS\circA\}$
Linear	$3 \times 2^{2n+2}$
Affine	$3 \times 2^{2n+8}$
Affine-quadratic	$3^2 \times 2^{3n+14} - 3 \times 2^{2n+8}$

Open problem: prove these SE subsets are the full SE groups for $n \ge 4$.

Self-Equivalences of the Permuted Modular Addition

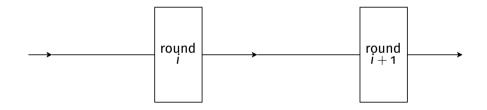
SE found for wordsize $4 \le n \le 64$:				
Туре	$\#\{(A,B):S=B\circ S\circ A\}$			
Linear	3 × 2 ²ⁿ⁺²	*		
Affine	3 × 2 ² 1+8	*		
Affine-quadratic	$3^2 \times 2^{3n+14} - 3 \times 2^{2n+8}$:		
Open problem: prove these SE subsets are the full SE groups for $n \ge 4$.				

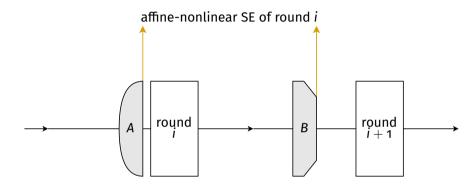
(*				*				`	١
* 1				*					
:	·			:					
*		1		*					
* * *		\star	1	*	*		*	*	
*				*					
*				*	1				
:				::		٠.			
*				*			1		
(*				*			*	1 ,	/
(*b·	···b) *	*	*	b		b ,	* *)

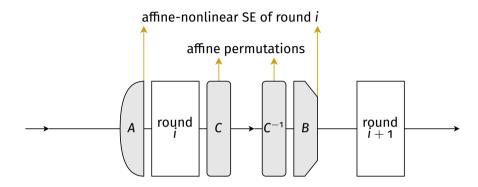
Implicit framework

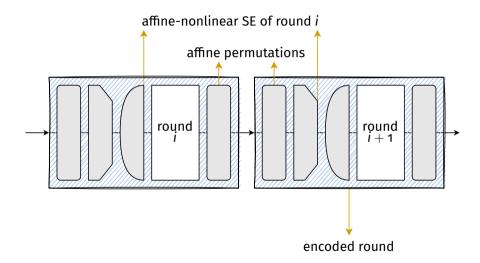
Implicit implementation:

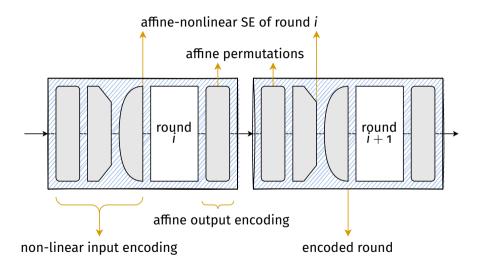
- an encoded implementation where
- the round encodings are the composition of affine permutations and affine-nonlinear self-equivalences,
- and the encoded round functions are implemented by systems of low-degree equations.











Implicit Round Functions

Implemented by low-degree quasilinear implicit functions:

• *P* is an implicit function of *F* if

$$P(x,y) = 0 \iff y = F(x)$$
.

- Evaluate $F(x_0)$ by substituting $x_0 = x$ and solving $P(x_0, y) = 0$ for y.
- Fast solving if *P* is quasilinear:

 $\forall x$, the function $y \mapsto P(x, y)$ is affine.

Permuted modular addition has a quasilinear quadratic implicit function!

Size of an Implicit Round Function

Upper bound on the size of a (2n, n)-bit P for an n-bit cipher.

Cipher blocksize	Degree of P	Size of P
64	2	0.05 MB
64	3	1.42 MB
64	4	6.50 MB
128	2	0.40 MB
128	3	22.50 MB
128	4	193.19 MB

For the permuted modular addition, *P* is cubic or quartic if affine-quadratic self-equivalences are used.

Security of Implicit Implementations

Security goal: key-extraction resistance.

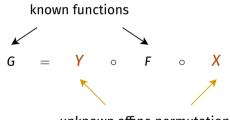
An implicit implementation is secure against known generic attacks if

- quadratic input encodings OR
- large non-linear layer

Implicit framework cannot secure SPN ciphers with affine encodings.

Security of Implicit Implementations

New generic attack (reduction to self-equivalence implementations) based on functional equations (affine equivalence problems):



unknown affine permutations

Security of Implicit Implementations

function	$ \overline{E} = \mathbf{O} \circ (L \circ S) \circ \oplus_k \circ I$	$\boldsymbol{P} = \boldsymbol{V} \circ \boldsymbol{T} \circ \boldsymbol{U} \circ (\oplus_{k} \parallel L^{-1}) \circ (\boldsymbol{I} \parallel \boldsymbol{O}^{-1})$
equation	$ \overline{E} = \mathbf{Y} \circ (\mathbf{L} \circ \mathbf{S}) \circ \mathbf{X}$	$P = \mathbf{Y} \circ \mathbf{T} \circ \mathbf{X}$
degree	high	low
access	black-box	white-box
goal	find any solution	find any solution and guess U

github.com/ranea/whiteboxarx

GITHUB.COM

GitHub - ranea/whiteboxarx: Implicit White-box Implementations of ARX Ciphers

G ranea / whiteboxarx Public

Implicit White-box Implementations of ARX Ciphers

E README.md

Implicit White-box Implementations of ARX Ciphers

This repository contains Python scripts to generate implicit white-box implementations of ARX cliphers following the method described in the paper implicit White-Box Implementations: White-Boxing ARX cliphers.

Note that this repository is an early prototype and some details/features of the implicit framework are not fully implemented yet.

Requirements

- Python 3 (version >= 3.7)
- BoolCrypt (version >= 0.1.1)
- · SageMath equipped with CryptoMiniSat
- · gcc or another C compiler (to compile exported C code)
- · M4RI (to compile exported C code)

Usage (Linux)

1 - Setting the environment variables

First, append to the environment variable PYTHONPATH the directory containing the beolcrypt. Ibrary and this repository

export PYTHONPATH=".../boolcrypt-master:.../whiteboxarx-master"

In a virtual environment, add2virtualenv can be used to add folders to the PYTHOKPATH

2 - Generating the affine layers

1

Conclusion

- Implicit framework: new design that prevents generic attacks, first method applicable to ARX ciphers.
- New method to find self-equivalences based on the CCZ-equivalence, applied to the permuted modular addition.
- Two open-source tools: BoolCrypt and whiteboxarx.
- Future work: new attacks, other non-linear layers, ...