e fwo

IMPLICIT WHITE-BOX IMPLEMENTATIONS: WHITE-BOXING ARX CIPHERS
ADRIAN RANEA, JOACHIM VANDERSMISSEN, AND BART PRENEEL

White-Box Cryptography

def encrypt(x):
—_— for i in range(10): | —>»

x = f(x, keyl[il]))
return x

f
Q Q

WBC: securing software crypto. implementations in the white-box model.

Applications: DRM, mobile payments, ...

1/18

White-Box Implementations of Block Ciphers

. . key @ randomness
Academic white-box \ /

implementations:

* Fixed hard-coded cipher key. white-box
compiler
e Compiler/method public.

e Security goal: key-extraction
resistance. white-box

implementation

2/18

CEJO Implementations

first
round

round

round
i+1

last

A\ 4

round

Chow S, Eisen P, Johnson H & Van Oorschot PC. White-Box Cryptography and an AES Implementation. SAC 2002.

3/18

CEJO Implementations

first
round

round encodings

round

cancel out

round
i+1

last

A\ 4

round

Chow S, Eisen P, Johnson H & Van Oorschot PC. White-Box Cryptography and an AES Implementation. SAC 2002.

3/18

CEJO Implementations

| first
round

| round

round
i+1

last
round

AN

encoded rounds

/

Chow S, Eisen P, Johnson H & Van Oorschot PC. White-Box Cryptography and an AES Implementation. SAC 2002.

3/18

CEJO Implementations

external encodings

| first
round

| round

round
i+1

last
round

Chow S, Eisen P, Johnson H & Van Oorschot PC. White-Box Cryptography and an AES Implementation. SAC 2002.

3/18

CEJO round

4-bit non-linear
8-bit linear

encoded round

All CEJO implementations have been broken.

4/18

Self-Equivalence Implementations

(A, B) self-equivalence of S < S=BoSoA

S-box layer

affine layer

encoded affine layers

5/18

Self-Equivalence (SE) Implementations

* No look-up tables,
SE efficient with large encodings. * Problem: difficult to find
non-linear layers with

* CEJO can be reduced to SE, many and large self-equivalences.

but the converse doesn’t hold.

6/18

Self-Equivalence (SE) Implementations

* No look-up tables,
SE efficient with large encodings. * Problem: difficult to find
non-linear layers with

* CEJO can be reduced to SE, many and laree self-equivalences
but the converse doesn’t hold. y g quiv .

Candidate non-linear layer: permuted modular addition x,y — (x By, y)

6/18

Finding Self-equivalences of x,y — (x By, y)

Fis CCZ-equivalent to G if the graph of F, {(x, F(x))}, is equal to the graph
of G up to an affine permutation.

* F(x,y) = (xBy,y) is CCZ-equivalent to a quadratic function G.

7/18

Finding Self-equivalences of x,y — (x By, y)

Fis CCZ-equivalent to G if the graph of F, {(x, F(x))}, is equal to the graph
of G up to an affine permutation.

* F(x,y) = (xBy,y) is CCZ-equivalent to a quadratic function G.
A graph automorphism of F is an affine permutation mapping the graph of
F to itself.
CCZ-based method to find self-equivalences of F:

* Find graph automorphisms of low-degree G by solving a functional
equation.

e Transform graph automorphisms of G into self-equivalences of F using
CCZ-equivalence.

7/18

github.com/ranea/Boolcrypt

ranea/BoolCrypt .

Python library for vectorial Boolean functions in ---
cryptography

A ©o PA Y1

Contributor Issues Stars Fork O

GITHUB.COM

GitHub - ranea/BoolCrypt: Python library for vectorial Boolean functions in
cryptography

BoolCrypt

© AP reference
booleryptutiiies module

boolcrypt equivalence module

2 API reference » boolerypt.cezselfequivalence module View page source

boolcrypt.cczselfequivalence module

Find afunction by

graph (L. also called graph automorphisms) parametrized by a CCZ:
‘equivalent function with lower degree.

modle boolerypt find_self_¢ _anf
adissble_mapping, ccz_anf_implicit=False, ight_se_degree=1,inv left_se_degree=1,

boolerypt.cezselfequivalence se_ct_terms=True, ignore_diagonal_equatio

module

boolcryptsbores module
boolryptmodularadcition module.
boolcrypt se_pmodadd package
boolcryp.classiication module.
boolcrypt findpoly module:
boolcrypt findpolymodp modie:
boolcrypt indpolyoptimal module.

i, a8 verébily eauatons- T,

equation=False,chec_se=True, bpr-! se_anf=N

=, Input_ccz_anf_vars=None, anf=None, Input_anf_vars=Nore,
. vars=None, return_ccz_se=False verbose:=False, debug=False,
Flename=None, “solve_args) ource

Find a SE of F by finding a SE of the graph of G.

Let F be the function (optionally) given by anf and G its CCZ-equivalent
function through the assissible apping L, that is, Graph(F)=L(Graph(G).
F (it given) and G must be in ANF form, but L can be given in ANF, asa
matrix,or as a (matrix, vector) pair. If F is not given, its number of input
Variables must be givenin nun_ tnput_an vars

Graph(F)is defined as usual, [(x, y): for all

cit=False, Graph(G) is defined sin
Otherwise, Graph(G)={(x, y: Gix,

003 1f
arly as GraphiF):
if ccz_anf_implic

This . B)
pair of permutations (A8 such that B F A = F) by finding a SE (an
automorphism) of the graph of F parametrized by G. A s also called a right
SE and B a left SE. If no solution is found, None is returned,

If the SE degrees are both 1 and se_ct_terms=True (resp. False), this
method finds an affine (resp. linear) SE.

“This methods retums SE (A, B) by finding a Graph(G)-SE C=(c_0, c_1) 5. L
CLA{-1}is diagonal and can be written as L C LA(-1] = (A, BA-1). This is

8/18

github.com/ranea/Boolcrypt

Self-Equivalences of the Permuted Modular Addition

SE found for wordsize 4 < n < 64:

Type #{(A,B):S=BoSoA}
Linear 3 x 22M1+2
Affine 3 x 22M+8

Affine-quadratic 32 x 23/1+% _ 3 x 22n+8

Open problem: prove these SE subsets are
the full SE groups for n > 4.

9/18

Self-Equivalences of the Permuted Modular Addition

SE found for wordsize 4 < n < 64: : 1 :
Type #{(A,B):S=BoSoAl * ' 1 *
Linear 3 x 22142 * N .
Affine 3 x 22M1+8 . s
Affine-quadratic 32 x 23/1+% _ 3 x 22n+8 : :
* 1
Open problem: prove these SE subsets are * * * 1

the full SE groups for n > 4. (xb - bk x|xb - bxx)

9/18

Implicit framework

Implicit implementation:
e an encoded implementation where

* the round encodings are the composition of affine permutations and
affine-nonlinear self-equivalences,

e and the encoded round functions are implemented by systems of
low-degree equations.

10/18

Round Encodings in an Implicit Implementation

Y

round

Y

round
I+1

11/18

Round Encodings in an Implicit Implementation

affine-nonlinear SE of round i
A A

round . round
AT > B i+1 [

11/18

Round Encodings in an Implicit Implementation

affine-nonlinear SE of round i
A A

affine permutations

round _ round
AR ¢ c'HB I+1

11/18

Round Encodings in an Implicit Implementation

affine-nonlinear SE of round i

affine permutations

| round || | round
I I+1

Y

encoded round

11/18

Round Encodings in an Implicit Implementation

affine-nonlinear SE of round i

affine permutations

round round
I I+1

affine output encoding

non-linear input encoding encoded round

11/18

Implicit Round Functions

Implemented by low-degree quasilinear implicit functions:

e Pisan implicit function of F if

P(x,y) =0 < y =F(x).

* Evaluate F(x,) by substituting x, = x and solving P(x,,y) = o for y.

e Fast solving if P is quasilinear:

Vx, the function y — P(x,y) is affine.

Permuted modular addition has a quasilinear quadratic implicit function!

12/18

Size of an Implicit Round Function

Upper bound on the size of a (2n, n)-bit P for an n-bit cipher.

Cipher blocksize Degree of P Size of P

64 2 0.05 MB
64 3 1.42 MB
64 4 6.50 MB
128 2 0.40 MB
128 3 22.50 MB
128 4 193.19 MB

For the permuted modular addition, P is cubic or quartic
if affine-quadratic self-equivalences are used.

13/18

Security of Implicit Implementations

Security goal: key-extraction resistance.

An implicit implementation is secure against known generic attacks if
e quadratic input encodings OR
e large non-linear layer

Implicit framework cannot secure SPN ciphers with affine encodings.

14/18

Security of Implicit Implementations

New generic attack (reduction to self-equivalence implementations)
based on functional equations (affine equivalence problems):

known functions

« N

G = Y o F o X

unknown affine permutations

15/18

Security of Implicit Implementations

function | E=0o(LoS)o@sol P=VoToUo(&| L ")o(l| 07
equation | E=Yo(LoS)oX P=YoToX

degree | high low

access | black-box white-box

goal | find any solution find any solution and guess U

16/18

github.com/ranea/whiteboxarx

@ ranea/ whiteboxarx - pisic
Implicit White-bos Implementations of ARX Ciphers

¢ Code (@ lssues Iy Pulrequests (Actons [Projects [0 Wki @ Security
= READMEmd 7

Implicit White-box Implementations of
ARX Ciphers
This repository contains Python scripts to generate implicit white-box implementations of

ARX ciphers following the method described in the paper Implicit White-Box
Implementations: White-Boxing ARX Ciphers.

ranea/whiteboxarx &'n":
| | | |

Implicit White-box Implementations of ARX Ciphers . Note that th itory is an early prototype and the implicit
framework are not ully implemented yet.

Requirements

« Python 3 (version »= 3.7)
+ BoolCryp (version >= 0.1.1)
a2 ©o v 4 %1 O « SageMath equipped with CryptoMiniSat

Contributors Issues Stars Fork « gec or another C compiler (to compile exported C code)

+ M4 to compile exported C code)

1
GITHUB.COM

GitHub - ranea/whiteboxarx: Implicit White-box Implementations of ARX 1.- Setting the environment variables

Ciphers

Usage (Linux)

First, append to the environment variable PYTHONPATH the directory containing the.
boolcrypt library and this repository

export. PYTHONPATH=". .. /boolerypt-naster ;.. . /uhiteboxarx-naster”
In a virtual environment, add2virtualenv can be used to add folders to the PYTHONPATH

2- Generating the affine layers

17/18

github.com/ranea/whiteboxarx

Conclusion
e Implicit framework: new design that prevents generic attacks,
first method applicable to ARX ciphers.

e New method to find self-equivalences based on the CCZ-equivalence,
applied to the permuted modular addition.

* Two open-source tools: BoolCrypt and whiteboxarx.

e Future work: new attacks, other non-linear layers, ...

18/18

