Syndrome Decoding in the Head: Shorter Signatures from Zero-Knowledge Proofs

<u>Thibauld Feneuil^{1,2}</u> Antoine Joux³ Matthieu Rivain¹

1. CryptoExperts, Paris, France

2. Sorbonne Université, CNRS, INRIA, Institut de Mathématiques de Jussieu-Paris Rive Gauche, Ouragan, Paris, France

3. CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

CRYPTO'22. August 16, 2022.

Zero-Knowledge Proofs for Syndrome Decoding

Syndrome Decoding Problem

From (H, y), find $x \in \mathbb{F}^m$ such that

$$y = Hx$$
 and $wt_H(x) \le w$.

 $wt_H(x) := nb$ of non-zero coordinates of x

Zero-Knowledge Proofs for Syndrome Decoding

Syndrome Decoding Problem

From (H, y), find $x \in \mathbb{F}^m$ such that

$$y = Hx$$
 and $wt_H(x) \le w$.

MPC-in-the-Head Paradigm

MPC-in-the-Head Paradigm

- Generic technique to build *zero-knowledge protocols* using *multi-party computation*.
- Introduced in 2007 by:

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure multiparty computation. STOC 2007.

SD in the Head 0000000000

Signature Scheme 0000000

イロト イロト イヨト イヨト 二日

4/22

Sharing of the secret

The secret x satisfies

$$y = Hx$$
 and $wt_H(x) \le w$.

We share it in N parts:

$$x = x^{(1)} + x^{(2)} + \ldots + x^{(N-1)} + x^{(N)}.$$

Introduction 000● Signature Scheme 0000000

MPC-in-the-Head Paradigm

The multi-party computation outputs

- Accept if x is a syndrome decoding solution,

- Reject otherwise.

SD in the Head

Signature Scheme 0000000

MPC-in-the-Head Paradigm

SD in the Head

Signature Scheme 0000000

MPC-in-the-Head Paradigm

Rephrase the constraint

The multi-party computation must check that the vector \boldsymbol{x} satisfies

$$\underbrace{y = Hx}_{\text{linear, easy to check}}$$

and

 $\operatorname{wt}_H(\boldsymbol{x}) \leq w$

non-linear, hard to check

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

7/22

Rephrase the constraint

The multi-party computation must check that the vector \boldsymbol{x} satisfies

$$y = H\mathbf{x}$$

and

$$\exists Q, P$$
 two polynomials : $SQ = PF$ and $\deg Q = w$

where

S is defined by interpolation such that $\forall i, \ S(\gamma_i) = x_i$, $F := \prod_{i=1}^m (X - \gamma_i).$

SD in the Head

Signature Scheme 0000000

8/22

Rephrase the constraint

Let us assume that there exists $Q, P \in \mathbb{F}_{poly}[X]$ s.t.

 $S \cdot Q = P \cdot F$ and $\deg Q = w$

where

S is built by interpolation such that $\forall i, S(\gamma_i) = x_i,$ $F := \prod_{i=1}^m (X - \gamma_i),$

then, the verifier deduces that

$$\begin{aligned} \forall i \le m, \ (\boldsymbol{Q} \cdot \boldsymbol{S})(\gamma_i) &= \boldsymbol{P}(\gamma_i) \cdot \boldsymbol{F}(\gamma_i) = 0\\ \Rightarrow \ \forall i \le m, \ \boldsymbol{Q}(\gamma_i) = 0 \quad \text{or} \quad \boldsymbol{S}(\gamma_i) = \boldsymbol{x}_i = 0 \end{aligned}$$

Rephrase the constraint

Let us assume that there exists $Q, P \in \mathbb{F}_{poly}[X]$ s.t.

 $S \cdot Q = P \cdot F$ and $\deg Q = w$

where

S is built by interpolation such that $\forall i, S(\gamma_i) = x_i,$ $F := \prod_{i=1}^m (X - \gamma_i),$

then, the verifier deduces that

$$\begin{aligned} \forall i \leq m, \ (\boldsymbol{Q} \cdot \boldsymbol{S})(\gamma_i) &= \boldsymbol{P}(\gamma_i) \cdot \boldsymbol{F}(\gamma_i) = 0 \\ \Rightarrow \ \forall i \leq m, \ \boldsymbol{Q}(\gamma_i) = 0 \quad \text{or} \quad \boldsymbol{S}(\gamma_i) = \boldsymbol{x}_i = 0 \\ \text{wt}_H(\boldsymbol{x}) \leq w \end{aligned}$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

9/22

Rephrase the constraint

Such polynomial Q can be built as

And $P := \frac{S \cdot Q}{F}$ since F divides $S \cdot Q$.

Guidelines for the MPC Protocol

We want to build a MPC protocol which check if some vector is a syndrome decoding solution.

Let us assume H = (H'|I). We split x as $\begin{pmatrix} x_A \\ x_B \end{pmatrix}$. We have y = Hx, so

$$\boldsymbol{x_B} = \boldsymbol{y} - \boldsymbol{H'}\boldsymbol{x_A}.$$

Guidelines for the MPC Protocol

We want to build a MPC protocol which check if some vector is a syndrome decoding solution.

Let us assume H = (H'|I). We split x as $\begin{pmatrix} x_A \\ x_B \end{pmatrix}$. We have y = Hx, so

$$x_B = y - H' x_A.$$

Inputs of the MPC protocol: x_A, Q, P . Aim of the MPC protocol:

Check that x_A corresponds to a syndrome decoding solution.

Guidelines for the MPC Protocol

Inputs: x_A , Q, P.

1. Build $x_B := y - H'x_A$ and deduce $x := \begin{pmatrix} x_A \\ x_B \end{pmatrix}$. We have

$$y = H\mathbf{x}.$$

Guidelines for the MPC Protocol

Inputs: x_A , Q, P.

1. Build $x_B := y - H'x_A$ and deduce $x := \begin{pmatrix} x_A \\ x_B \end{pmatrix}$.

2. Build the polynomial S by interpolation such that

$$\forall i \in \{1,\ldots,m\}, \mathbf{S}(\gamma_i) = \mathbf{x}_i.$$

Interpolation Formula:

$$S(X) = \sum_{i} x_{i} \cdot \prod_{\ell \neq i} \frac{X - \gamma_{\ell}}{\gamma_{i} - \gamma_{\ell_{\Box}}}.$$

Guidelines for the MPC Protocol

Inputs: x_A , Q, P.

- 1. Build $x_B := y H'x_A$ and deduce $x := \begin{pmatrix} x_A \\ x_B \end{pmatrix}$.
- 2. Build the polynomial S by interpolation such that

$$\forall i \in \{1, \ldots, m\}, \mathbf{S}(\gamma_i) = \mathbf{x_i}.$$

3. Check that $S \cdot Q = P \cdot F$.

Guidelines for the MPC Protocol

Inputs: x_A , Q, P.

- 1. Build $x_B := y H'x_A$ and deduce $x := \begin{pmatrix} x_A \\ x_B \end{pmatrix}$.
- 2. Build the polynomial S by interpolation such that

$$\forall i \in \{1,\ldots,m\}, \mathbf{S}(\gamma_i) = \mathbf{x_i}.$$

- 3. Get a random point r from $\mathbb{F}_{\text{points}}$ (field extension of \mathbb{F}_{poly}).
- 4. Compute S(r), Q(r) and P(r).
- 5. Using [BN20], check that $S(r) \cdot Q(r) = P(r) \cdot F(r)$.

[BN20] Carsten Baum and Ariel Nof. Concretely-efficient zero-knowledge arguments for arithmetic circuits and their application to lattice-based cryptography. PKC 2020.

Analysis

Even if x_A does not describe a SD solution (implying that $S \cdot Q \neq P \cdot F$), the MPC protocol can output ACCEPT if

Case 1 :

$$S(r) \cdot Q(r) = P(r) \cdot F(r)$$

which occurs with probability (Schwartz-Zippel Lemma)

$$\Pr_{\substack{r \leftarrow \$_{\text{Points}}}} [S(r) \cdot Q(r) = P(r) \cdot F(r)] \le \frac{m + w - 1}{|\mathbb{F}_{\text{points}}|}$$

Analysis

Even if x_A does not describe a SD solution (implying that $S \cdot Q \neq P \cdot F$), the MPC protocol can output ACCEPT if

Case 1:

$$S(r) \cdot Q(r) = P(r) \cdot F(r)$$

which occurs with probability (Schwartz-Zippel Lemma)

$$\Pr_{r \xleftarrow{\$}{\mathbb{F}_{\text{points}}}} [S(r) \cdot Q(r) = P(r) \cdot F(r)] \le \frac{m + w - 1}{|\mathbb{F}_{\text{points}}|}$$

Case 2 : the [BN20] protocol fails, which occurs with probability

$$\frac{1}{|\mathbb{F}_{\text{points}}|}$$

Summary

The MPC protocol π checks that (x_A, Q, P) describes a solution of the SD instance (H, y).

	Output of π		
	Accept	Reject	
A good witness	1	0	
Not a good witness	p	1-p	

where

$$p = \underbrace{\frac{m + w - 1}{|\mathbb{F}_{\text{points}}|}}_{\text{false positive from Schwartz-Zippel}} + \left(1 - \frac{m + w - 1}{|\mathbb{F}_{\text{points}}|}\right) \cdot \underbrace{\frac{1}{|\mathbb{F}_{\text{points}}|}}_{\text{false positive from [BN20]}}$$

MPC-in-the-Head paradigm

	<u>Verifier</u> \mathcal{V}
	H, y
$Com_1,,Com_N$	$r \in \mathbb{F}$
, r	/ C m points
·	
broadcast messages	\$ (1)
	$i^* \leftarrow \{1, \dots, N\}$
$\leftarrow \cdots \cdots$	
all V_i for $i \neq i^*$	
,	Check that the views are consistent
	Check that the MPC output is ACCEPT
	check that the kir o butput is receiver
	$\xrightarrow{\text{Com}_1,,\text{Com}_N} \xrightarrow{r}$ $\xrightarrow{\text{broadcast messages}} \xrightarrow{i^*}$ $\xrightarrow{\text{all } V_i \text{ for } i \neq i^*} \xrightarrow{i^*}$

SD in the Head 000000000

Signature Scheme 0000000

Zero-Knowledge Protocol

Soundness error:

$$p + (1-p) \cdot \frac{1}{N}$$

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ ▶ 15 / 22

Zero-Knowledge Protocol

Soundness error:

$$p + (1-p) \cdot \frac{1}{N}$$

<u>Proof size</u>:

 $\circ~$ Inputs of N-1 parties:

< □ ト < □ ト < 直 ト < 直 ト < 直 ト 目 の Q () 15 / 22

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

15/22

Zero-Knowledge Protocol

Soundness error:

$$p + (1-p) \cdot \frac{1}{N}$$

<u>Proof size</u>:

 $\circ~$ Inputs of N-1 parties:

- Party i < N: a seed of λ bits
- Last party: $\llbracket x_A \rrbracket_N$, $\llbracket Q \rrbracket_N$, $\llbracket P \rrbracket_N$

Zero-Knowledge Protocol

Soundness error:

$$p + (1-p) \cdot \frac{1}{N}$$

<u>Proof size</u>:

- $\circ~$ Inputs of N-1 parties:
 - Party i < N: a seed of λ bits
 - Last party: $\llbracket x_A \rrbracket_N$, $\llbracket Q \rrbracket_N$, $\llbracket P \rrbracket_N$
- $\circ\,$ Extra cost due to [BN20] protocol.
- Use of several optimisations.

Fiat-Shamir Transform

Signature algorithm:

Inputs:

- x such that y = Hx and $wt_H(x) \le w$
- the message **mess** to sign
- 1. Prepare the witness, *i.e.* the polynomials P and Q.
- 2. Commit to party's inputs in distinct commitments COM_1, \ldots, COM_N .
- 3. $r = \operatorname{Hash}(\mathsf{mess}, \mathsf{salt}, \operatorname{COM}_1, \dots, \operatorname{COM}_N).$
- 4. Run the MPC protocol π for each party.
- 5. $i^* = \text{Hash}(\text{mess}, \text{salt}, r, \text{broadcast messages}).$
- 6. Build the signature with the views of all the parties except the party i^* .

Security of the signature

5-round Identification Scheme \Rightarrow Signature

Attack of [KZ20]:

$$\operatorname{cost}_{\text{forge}} := \min_{\tau_1, \tau_2: \tau_1 + \tau_2 = \tau} \left\{ \frac{1}{\sum_{i=\tau_1}^{\tau} {\tau_1 \choose i} p^i (1-p)^{\tau-i}} + N^{\tau_2} \right\}$$

[KZ20] Daniel Kales and Greg Zaverucha. An attack on some signature schemes constructed from five-pass identification schemes. CANS 2020.

Parameters selected

Variant 1: SD over \mathbb{F}_2 ,

(m, k, w) = (1280, 640, 132)

We have $\mathbb{F}_{poly} = \mathbb{F}_{2^{11}}$.

Parameters selected

Variant 1: SD over \mathbb{F}_2 ,

(m, k, w) = (1280, 640, 132)

We have $\mathbb{F}_{poly} = \mathbb{F}_{2^{11}}$.

Variant 2: SD over \mathbb{F}_2 ,

$$(m, k, w) = (1536, 888, 120)$$

but we split $x := (x_1 \mid \ldots \mid x_6)$ into 6 chunks and we prove that wt_H $(x_i) \leq \frac{w}{6}$ for all *i*.

We have
$$\mathbb{F}_{poly} = \mathbb{F}_{2^8}$$
.

Parameters selected

Variant 3: SD over \mathbb{F}_{2^8} ,

$$(m, k, w) = (256, 128, 80)$$

We have $\mathbb{F}_{poly} = \mathbb{F}_{2^8}$.

SD in the Head

Obtained Performances

Scheme Name	sgn	pk	$t_{\sf sgn}$	$t_{\sf verif}$
FJR22 - \mathbb{F}_2 (fast)	15.6 KB	0.09 KB	-	-
FJR22 - \mathbb{F}_2 (short)	10.9 KB	0.09 KB	-	-
FJR22 - \mathbb{F}_2 (fast)	17.0 KB	0.09 KB	$13 \mathrm{ms}$	$13 \mathrm{ms}$
FJR22 - \mathbb{F}_2 (short)	11.8 KB	0.09 KB	$64 \mathrm{ms}$	$61 \mathrm{ms}$
FJR22 - \mathbb{F}_{256} (fast)	11.5 KB	0.14 KB	$6 \mathrm{ms}$	$6 \mathrm{ms}$
FJR22 - \mathbb{F}_{256} (short)	8.26 KB	$0.14~\mathrm{KB}$	$30 \mathrm{ms}$	$27 \mathrm{ms}$

Obtained Performances

Scheme N	ame	sgn	pk	$t_{\sf sgn}$	$t_{\sf verif}$
FJR22 - \mathbb{F}_2	(fast)	15.6 KB	0.09 KB	-	-
FJR22 - \mathbb{F}_2	(short)	10.9 KB	0.09 KB	-	-
FJR22 - \mathbb{F}_2	(fast)	17.0 KB	0.09 KB	$13 \mathrm{ms}$	$13 \mathrm{ms}$
FJR22 - \mathbb{F}_2	(short)	11.8 KB	$0.09~\mathrm{KB}$	$64 \mathrm{ms}$	$61 \mathrm{ms}$
FJR22 - \mathbb{F}_{256}	(fast)	11.5 KB	0.14 KB	$6 \mathrm{ms}$	$6 \mathrm{ms}$
FJR22 - \mathbb{F}_{256}	(short)	8.26 KB	0.14 KB	$30 \mathrm{ms}$	$27 \mathrm{ms}$

Obtained Performances

Scheme N	ame	sgn	pk	$t_{\sf sgn}$	$t_{\sf verif}$
FJR22 - \mathbb{F}_2	(fast)	15.6 KB	0.09 KB	-	-
FJR22 - \mathbb{F}_2	(short)	10.9 KB	0.09 KB	-	-
FJR22 - \mathbb{F}_2	(fast)	17.0 KB	0.09 KB	13 ms	<u>13 ms</u>
FJR22 - \mathbb{F}_2	(short)	11.8 KB	$0.09~\mathrm{KB}$	$64 \mathrm{ms}$	$61 \mathrm{ms}$
FJR22 - \mathbb{F}_{256}	(fast)	11.5 KB	0.14 KB	6 ms	<mark>6 ms</mark>
FJR22 - \mathbb{F}_{256}	(short)	8.26 KB	0.14 KB	$30 \mathrm{ms}$	$27 \mathrm{ms}$

Signature Scheme

Comparison Code-based Signatures (1/2)

Scheme Name	sgn	pk	$t_{\sf sgn}$	$t_{\sf verif}$
BGS21	24.1 KB	0.1 KB	-	-
BGS21	$22.5~\mathrm{KB}$	1.7 KB	-	-
GPS21 - 256	22.2 KB	0.11 KB	-	-
GPS21 - 1024	19.5 KB	$0.12~\mathrm{KB}$	-	-
FJR21 (fast)	22.6 KB	0.09 KB	$13 \mathrm{ms}$	$12 \mathrm{ms}$
FJR21 (short)	16.0 KB	0.09 KB	$62 \mathrm{ms}$	$57 \mathrm{ms}$
BGKM22 - Sig1	23.7 KB	0.1 KB	-	-
BGKM22 - Sig2	$20.6~\mathrm{KB}$	$0.2~\mathrm{KB}$	-	-
FJR22 - \mathbb{F}_2 (fast)	15.6 KB	0.09 KB	-	-
FJR22 - \mathbb{F}_2 (short)	$10.9~\mathrm{KB}$	0.09 KB	-	-
FJR22 - \mathbb{F}_2 (fast)	17.0 KB	0.09 KB	13 ms	13 ms
FJR22 - \mathbb{F}_2 (short)	11.8 KB	0.09 KB	$64 \mathrm{ms}$	$61 \mathrm{ms}$
FJR22 - \mathbb{F}_{256} (fast)	11.5 KB	0.14 KB	6 ms	$6 \mathrm{ms}$
FJR22 - \mathbb{F}_{256} (short)	8.26 KB	$0.14~\mathrm{KB}$	$30 \mathrm{ms}$	$27 \mathrm{ms}$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

20/22

Signature Scheme 0000000

Comparison Code-based Signatures (2/2)

Scheme Name	sgn	pk	$t_{\sf sgn}$	$t_{\sf verif}$
Durandal - I	3.97 KB	14.9 KB	$4 \mathrm{ms}$	5 ms
Durandal - II	4.90 KB	18.2 KB	5 ms	$6 \mathrm{ms}$
LESS-FM - I	15.2 KB	9.78 KB	-	-
LESS-FM - II	$5.25~\mathrm{KB}$	205 KB	-	-
LESS-FM - III	10.39 KB	$11.57~\mathrm{KB}$	-	-
Wave	$2.07~\mathrm{KB}$	3.1 MB	$\geq 300 \text{ ms}$	$2 \mathrm{ms}$
Wavelet	0.91 KB	3.1 MB	$\geq 300~{\rm ms}$	$\leq 1 \text{ ms}$
FJR22 - \mathbb{F}_2 (fast)	15.6 KB	0.09 KB	-	-
$FJR22 - \mathbb{F}_2$ (short)	10.9 KB	$0.09~\mathrm{KB}$	-	-
FJR22 - \mathbb{F}_2 (fast)	17.0 KB	0.09 KB	13 ms	13 ms
$FJR22 - \mathbb{F}_2$ (short)	11.8 KB	$0.09~\mathrm{KB}$	64 ms	$61 \mathrm{ms}$
FJR22 - \mathbb{F}_{256} (fast)	11.5 KB	0.14 KB	6 ms	6 ms
FJR22 - \mathbb{F}_{256} (short)	8.26 KB	$0.14~\mathrm{KB}$	30 ms	$27 \mathrm{ms}$

▲□▶ ▲□▶ ★ ■▶ ★ ■▶ - ■ - のへで

21/22

Conclusion

Summary

- \mathbb{I} New signature scheme with Syndrome Decoding
- IS Conservative scheme (based on a NP-Hard problem)
- \square Small "signature size + public key size"

Future Work

- \blacksquare Optimize the signature implementation.
- \mathbb{I} Search parameter sets which provide better performances.

More details in https://eprint.iacr.org/2022/188.